पूर्व आदेश: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Reflexive and transitive binary relation}} {{About|binary relations|the graph vertex ordering|depth-first search|purchase orders for unreleased products|pr...")
 
No edit summary
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Reflexive and transitive binary relation}}
{{short description|Reflexive and transitive binary relation}}
{{About|binary relations|the graph vertex ordering|depth-first search|purchase orders for unreleased products|pre-order|other uses}}
[[File:Prewellordering example svg.svg|thumb|प्राकृतिक संख्याओं पर x//4≤y//4 द्वारा परिभाषित अग्रिम-आदेश x R y का हासे आरेख।चक्रों के कारण R प्रतिसममित नहीं है। यदि चक्र में सभी संख्याओं को समतुल्य माना जाता है, तो आंशिक, सम रैखिक, क्रम<ref>on the set of numbers divisible by 4</ref> प्राप्त होना। नीचे पहला उदाहरण देखें।]]गणित में, विशेष रूप से क्रम सिद्धांत में, अग्रिम-आदेश या अर्ध-आदेश [[द्विआधारी संबंध]] है जो [[प्रतिवर्त संबंध]] और [[सकर्मक संबंध]] भी कहा जाता है। समतुल्य संबंधों और (गैर-विशुद्ध) [[आंशिक आदेश|आंशिक आदेशों]] की तुलना में सीमाएँ अधिक सामान्य हैं, दोनों अग्रिम-आदेश की विशेष स्थितियों हैं: [[एंटीसिमेट्रिक संबंध|प्रतिसममित संबंध]] (या [[कंकाल (श्रेणी सिद्धांत)|कंकाल]]) अग्रिम-आदेश आंशिक आदेश है, और [[सममित संबंध]] अग्रिम-आदेश [[तुल्यता संबंध]] है।
{{Redirect|Quasiorder|irreflexive transitive relations|strict order}}


{{stack|{{Binary relations}}}}
यह नाम {{em|पूर्व आदेश}} इस विचार से आता है कि अग्रिम-आदेश (जो आंशिक आदेश नहीं हैं) 'लगभग' (आंशिक) आदेश हैं, किन्तु पूरी तरह से नहीं; वे न तो आवश्यक रूप से प्रतिसममित और न ही [[असममित संबंध]] हैं। क्योंकि अग्रिम-आदेश बाइनरी संबंध है, प्रतीक <math>\,\leq\,</math> संबंध के लिए सांकेतिक उपकरण के रूप में उपयोग किया जा सकता है। यद्यपि, क्योंकि वे आवश्यक रूप से प्रतिसममित नहीं हैं, कुछ सामान्य अंतर्ज्ञान प्रतीक से जुड़े <math>\,\leq\,</math> प्रयुक्त नहीं हो सकता हैं। दूसरी तरफ, आंशिक क्रम और तुल्यता संबंध को परिभाषित करने के लिए, सामान्य शैली में अग्रिम-आदेश का उपयोग किया जा सकता है। यद्यपि, ऐसा करना सदैव उपयोगी या अनुपयोगी होता है, यह अध्ययन किए जा रहे बाधा क्षेत्र पर निर्भर करता है।
[[File:Prewellordering example svg.svg|thumb|[[प्राकृतिक संख्या]]ओं पर xinteger division|//4≤yinteger division|//4 द्वारा परिभाषित पूर्व आदेश x R y का हस्से आरेख। चक्रों के कारण R प्रतिसममित नहीं है। यदि एक चक्र में सभी संख्याओं को समतुल्य माना जाता है, तो एक आंशिक, सम रैखिक, क्रम<ref>on the set of numbers divisible by 4</ref> प्राप्त होना। नीचे पहला उदाहरण देखें।]]गणित में, विशेष रूप से क्रम सिद्धांत में, एक पूर्व-आदेश या अर्ध-आदेश एक [[द्विआधारी संबंध]] है जो [[प्रतिवर्त संबंध]] और [[सकर्मक संबंध]] है। समतुल्य संबंधों और (गैर-सख्त) [[आंशिक आदेश]]ों की तुलना में सीमाएँ अधिक सामान्य हैं, दोनों एक पूर्व-आदेश के विशेष मामले हैं: एक [[एंटीसिमेट्रिक संबंध]] (या [[कंकाल (श्रेणी सिद्धांत)]]) पूर्व-आदेश एक आंशिक आदेश है, और एक [[सममित संबंध]] पूर्व-आदेश एक है [[तुल्यता संबंध]]।


नाम {{em|preorder}} इस विचार से आता है कि पूर्व-आदेश (जो आंशिक आदेश नहीं हैं) 'लगभग' (आंशिक) आदेश हैं, लेकिन पूरी तरह से नहीं; वे न तो आवश्यक रूप से प्रतिसममित और न ही [[असममित संबंध]] हैं। क्योंकि प्रीआर्डर एक बाइनरी रिलेशन है, सिंबल <math>\,\leq\,</math> संबंध के लिए नोटेशनल डिवाइस के रूप में इस्तेमाल किया जा सकता है। हालाँकि, क्योंकि वे आवश्यक रूप से एंटीसिमेट्रिक नहीं हैं, कुछ सामान्य अंतर्ज्ञान प्रतीक से जुड़े हैं <math>\,\leq\,</math> लागू नहीं हो सकता। दूसरी ओर, एक आंशिक क्रम और एक तुल्यता संबंध को परिभाषित करने के लिए, एक सीधी-सादी शैली में एक पूर्व-आदेश का उपयोग किया जा सकता है। हालाँकि, ऐसा करना हमेशा उपयोगी या उपयोगी नहीं होता है, यह अध्ययन किए जा रहे समस्या क्षेत्र पर निर्भर करता है।
शब्दों में, कब <math>a \leq b,</math> होने पर b {{em|covers}} a या वह a {{em|precedes}} b , या वह b {{em|reduces}} a आदि कहे जा सकते है । कभी-कभी, अंकन ← या → या <math>\,\lesssim\,</math> के स्थान पर <math>\,\leq.</math> प्रयोग किया जाता है।


शब्दों में, कब <math>a \leq b,</math> कोई कह सकता है कि बी {{em|covers}} ए या वह ए {{em|precedes}} बी, या वह बी {{em|reduces}} एक के लिए। कभी-कभी, अंकन ← या → या <math>\,\lesssim\,</math> की जगह प्रयोग किया जाता है <math>\,\leq.</math>
प्रत्येक अग्रिम-आदेश [[निर्देशित ग्राफ]] से मिलता हुआ होता है, समुच्चय के तत्वों के साथ कोने के अनुरूप होता है, और कोने के बीच निर्देशित किनारों के अनुरूप तत्वों के युग्म के बीचआदेश संबंध प्रदर्शित करता है। इसका विलोम सत्य नहीं है: अधिकांश निर्देशित रेखांकन न तो प्रतिवर्त और न ही सकर्मक होते हैं । सामान्यतः, संबंधित ग्राफ़ में चक्र (ग्राफ़ सिद्धांत) हो सकता है। अग्रिम-आदेश जो असममित है अब चक्र नहीं है; यह आंशिक क्रम है, और निर्देशित चक्रीय ग्राफ से मिलता हुआ होता है। अग्रिम-आदेश जो सममित है तुल्यता संबंध प्रदर्शित करता है; इसके बारे में सोचा जा सकता है कि ग्राफ़ के किनारों पर दिशा चिह्नक विलुप्त हो गए हैं। सामान्यतः, अग्रिम-आदेश के संबंधित निर्देशित ग्राफ में कई वियोजित किए गए घटक हो सकते हैं।
प्रत्येक प्रीऑर्डर के लिए, एक [[निर्देशित ग्राफ]]से मेल खाता है, सेट के तत्वों के साथ कोने के अनुरूप होता है, और कोने के बीच निर्देशित किनारों के अनुरूप तत्वों के जोड़े के बीच ऑर्डर संबंध होता है। इसका विलोम सत्य नहीं है: अधिकांश निर्देशित रेखांकन न तो प्रतिवर्त होते हैं और न ही सकर्मक। सामान्य तौर पर, संबंधित ग्राफ़ में चक्र (ग्राफ़ सिद्धांत) हो सकता है। एक पूर्व-आदेश जो असममित है अब चक्र नहीं है; यह एक आंशिक क्रम है, और एक निर्देशित चक्रीय ग्राफ से मेल खाता है। एक पूर्व-आदेश जो सममित है एक तुल्यता संबंध है; इसके बारे में सोचा जा सकता है कि ग्राफ़ के किनारों पर दिशा चिह्नक खो गए हैं। सामान्य तौर पर, प्रीऑर्डर के संबंधित निर्देशित ग्राफ में कई डिस्कनेक्ट किए गए घटक हो सकते हैं।


== औपचारिक परिभाषा ==
== औपचारिक परिभाषा ==


एक [[सजातीय संबंध]] पर विचार करें <math>\,\leq\,</math> किसी दिए गए [[सेट (गणित)]] पर <math>P,</math> ताकि परिभाषा के अनुसार, <math>\,\leq\,</math> का कुछ उपसमुच्चय है <math>P \times P</math> और अंकन <math>a \leq b</math> के स्थान पर प्रयोग किया जाता है <math>(a, b) \in \,\leq.</math> तब <math>\,\leq\,</math> ए कहा जाता है{{em|preorder}}या{{em|quasiorder}}अगर यह रिफ्लेक्सिव रिलेशन और सकर्मक रिलेशन है; अर्थात्, यदि यह संतुष्ट करता है:
[[सजातीय संबंध]] पर विचार करें तो किसी दिए गए समुच्चय <math>P,</math>[[सेट (गणित)|पर]] <math>\,\leq\,</math> जिससे परिभाषा के अनुसार, <math>\,\leq\,</math> का कुछ उपसमुच्चय <math>P \times P</math> है और अंकन <math>a \leq b</math> के स्थान पर <math>(a, b) \in \,\leq.</math> प्रयोग किया जाता है , तब <math>\,\leq\,</math> को {{em|preorder}} या {{em|quasiorder}} कहा जाता है यदि यह प्रतिवर्ती संबंध और सकर्मक संबंध है; अर्थात्, यदि यह संतुष्ट करता है:
#Reflexive संबंध: <math>a \leq a</math> सभी के लिए <math>a \in P,</math> और
#प्रतिवर्ती संबंध: <math>a \leq a</math> सभी के लिए <math>a \in P,</math> और
#सकर्मक संबंध: यदि <math>a \leq b \text{ and } b \leq c \text{ then } a \leq c</math> सभी के लिए <math>a, b, c \in P.</math> एक सेट जो एक प्रीआर्डर से लैस होता है उसे एक प्रीऑर्डर्ड सेट (या प्रोसेट) कहा जाता है।<ref>For "proset", see e.g. {{citation|last1=Eklund|first1=Patrik|last2=Gähler|first2=Werner|doi=10.1002/mana.19901470123|journal=Mathematische Nachrichten|mr=1127325|pages=219–233|title=Generalized Cauchy spaces|volume=147|year=1990}}.</ref> #सख्त प्रीऑर्डर पर जोर या इसके विपरीत, एक प्रीऑर्डर को गैर-सख्त प्रीऑर्डर के रूप में भी संदर्भित किया जा सकता है।
#सकर्मक संबंध: यदि <math>a \leq b \text{ and } b \leq c \text{ then } a \leq c</math> सभी के लिए <math>a, b, c \in P.</math>  
#एक समुच्चय जो अग्रिम-आदेश से लैस होता है उसे अग्रिम-आदेश समुच्चय (या प्रोसेट) कहा जाता है।<ref>For "proset", see e.g. {{citation|last1=Eklund|first1=Patrik|last2=Gähler|first2=Werner|doi=10.1002/mana.19901470123|journal=Mathematische Nachrichten|mr=1127325|pages=219–233|title=Generalized Cauchy spaces|volume=147|year=1990}}.</ref> विशुद्ध अग्रिम-आदेश पर बल या इसके विपरीत, अग्रिम-आदेश को गैर-विशुद्ध अग्रिम-आदेश के रूप में भी संदर्भित किया जा सकता है।
यदि प्रतिवर्तता को [[अविचलित संबंध]] से बदल दिया जाता है (ट्रांज़िटिविटी रखते हुए) तो परिणाम को विशुद्ध अग्रिम-आदेश कहा जाता है; स्पष्ट रूप से, <math>P</math> पर '''a''' {{em|strict preorder}} सजातीय द्विआधारी संबंध है <math>\,<\,</math> पर <math>P</math> जो निम्नलिखित बाधाओं को पूरा करता है:<li>असंवेदनशीलता या विरोधी संवेदनशीलता संबंध: {{em|नाट}} <math>a < a</math> सभी के लिए <math>a \in P;</math> वह है, <math>\,a < a</math> है {{em|false}} सभी के लिए <math>a \in P,</math> और
<li>सकर्मक संबंध: यदि <math>a < b \text{ and } b < c \text{ then } a < c</math> सभी '''के लिए''' <math>a, b, c \in P.</math> के लिए,<li>एक द्विआधारी संबंध विशुद्ध अग्रिम-आदेश है यदि और केवल यदि यह [[सख्त आंशिक आदेश|विशुद्ध आंशिक आदेश]] है। परिभाषा के अनुसार, विशुद्ध आंशिक आदेश असममित संबंध विशुद्ध अग्रिम-आदेश है, जहां <math>\,<\,</math> को {{em|asymmetric}} कहा जाता है यदि <math>a < b \text{ implies } \textit{ not } \ b < a</math> सभी <math>a, b.</math>के लिए होता है , इसके विपरीत, प्रत्येक विशुद्ध अग्रिम-आदेश विशुद्ध आंशिक आदेश है क्योंकि प्रत्येक सकर्मक अपरिवर्तनीय संबंध आवश्यक रूप से असममित संबंध है।
<li>
<li>चूंकि वे समतुल्य हैं, विशुद्ध आंशिक आदेश शब्द को विशेष रूप से विशुद्ध अग्रिम-आदेश पर पसंद किया जाता है और पाठकों को ऐसे संबंधों के विवरण के लिए विशुद्ध आंशिक आदेश के लिए संदर्भित किया जाता है।विशुद्ध अग्रिम-आदेश के विपरीत, कई (गैर-विशुद्ध) अग्रिम-आदेश हैं जो (गैर-विशुद्ध) आंशिक आदेश नहीं हैं।<li>यदि अग्रिम-आदेश भी प्रतिसममित संबंध है, अर्थात, <math>a \leq b</math> और <math>b \leq a</math> तात्पर्य <math>a = b,</math> तो यह [[आंशिक रूप से आदेशित सेट|आंशिक रूप से आदेशित]] समुच्चय है।
<li>दूसरी तरफ, यदि यह सममित संबंध है, अर्थात यदि <math>a \leq b</math> तात्पर्य <math>b \leq a,</math> तो यह तुल्यता संबंध है।<li>एक अग्रिम-आदेश [[कुल अग्रिम आदेश]] है यदि <math>a \leq b</math> या <math>b \leq a</math> सभी <math>a, b \in P.</math> के लिए होता है।


{{anchor|Strict preorder}}
यदि रिफ्लेक्सिविटी को [[अविचलित संबंध]] से बदल दिया जाता है (ट्रांज़िटिविटी रखते हुए) तो परिणाम को एक सख्त प्रीऑर्डर कहा जाता है; स्पष्ट रूप से, ए{{em|strict preorder}}पर <math>P</math> एक सजातीय द्विआधारी संबंध है <math>\,<\,</math> पर <math>P</math> जो निम्नलिखित शर्तों को पूरा करता है:
<ओल>
<li>इरेफ्लेक्सिव रिलेशन या एंटी-रिफ्लेक्सिविटी: {{em|not}} <math>a < a</math> सभी के लिए <math>a \in P;</math> वह है, <math>\,a < a</math> है {{em|false}} सभी के लिए <math>a \in P,</math> और</ली>
<li>सकर्मक संबंध: यदि <math>a < b \text{ and } b < c \text{ then } a < c</math> सभी के लिए <math>a, b, c \in P.</math></ली>
</ओल>


एक द्विआधारी संबंध एक सख्त पूर्व-आदेश है यदि और केवल यदि यह एक [[सख्त आंशिक आदेश]] है। परिभाषा के अनुसार, एक सख्त आंशिक आदेश एक असममित संबंध सख्त पूर्व आदेश है, जहां <math>\,<\,</math> कहा जाता है {{em|asymmetric}} अगर <math>a < b \text{ implies } \textit{ not } \ b < a</math> सभी के लिए <math>a, b.</math> इसके विपरीत, प्रत्येक सख्त पूर्व-आदेश एक सख्त आंशिक आदेश है क्योंकि प्रत्येक सकर्मक अपरिवर्तनीय संबंध आवश्यक रूप से असममित संबंध है।
<li>
हालांकि वे समतुल्य हैं, सख्त आंशिक आदेश शब्द को विशेष रूप से सख्त पूर्व आदेश पर पसंद किया जाता है और पाठकों को ऐसे संबंधों के विवरण के लिए सख्त आंशिक आदेश के लिए संदर्भित किया जाता है। सख्त पूर्व-आदेशों के विपरीत, कई (गैर-सख्त) पूर्व-आदेश हैं {{em|not}} (गैर-सख्त) आंशिक आदेश।
<li>पूर्वनिर्धारित समुच्चय की धारणा <math>P</math> [[श्रेणी सिद्धांत]] में [[पतली श्रेणी]] के रूप में तैयार किया जा सकता है; अर्थात्, श्रेणी के रूप में वस्तु से दूसरी वस्तु में अधिकतम रूपवाद किया जा सकता है। यहाँ [[वस्तु (श्रेणी सिद्धांत)]] के तत्वों <math>P,</math> के अनुरूप है और संबंधित वस्तुओं के लिए आकारिकी है, अन्यथा शून्य होता है । वैकल्पिक रूप से, अग्रिम-आदेशित समुच्चय को [[समृद्ध श्रेणी]] के रूप में समझा जा सकता है, अर्थात श्रेणी से समृद्ध <math>2 = (0 \to 1).</math>होता है।


=== संबंधित परिभाषाएँ ===


अगर एक प्रीऑर्डर भी एंटीसिमेट्रिक रिलेशन है, यानी, <math>a \leq b</math> और <math>b \leq a</math> तात्पर्य <math>a = b,</math> तो यह [[आंशिक रूप से आदेशित सेट]] है।
<li>
 
<li>[[पूर्व-आदेशित वर्ग|अग्रिम-आदेशित वर्ग]] ऐसा [[वर्ग (गणित)|वर्ग]] है जो अग्रिम-आदेश से सुसज्जित है। प्रत्येक समुच्चय वर्ग है और इसलिए प्रत्येक पूर्वनिर्धारित समुच्चय पूर्वनिर्धारित वर्ग है।
दूसरी ओर, यदि यह सममित संबंध है, अर्थात यदि <math>a \leq b</math> तात्पर्य <math>b \leq a,</math> तो यह एक तुल्यता संबंध है।
 
एक प्रीऑर्डर [[कुल अग्रिम आदेश]] है अगर <math>a \leq b</math> या <math>b \leq a</math> सभी के लिए <math>a, b \in P.</math>
एक पूर्वनिर्धारित सेट की धारणा <math>P</math> एक [[श्रेणी सिद्धांत]] में एक [[पतली श्रेणी]] के रूप में तैयार किया जा सकता है; अर्थात्, एक श्रेणी के रूप में एक वस्तु से दूसरी वस्तु में अधिकतम एक रूपवाद। यहाँ [[वस्तु (श्रेणी सिद्धांत)]] के तत्वों के अनुरूप है <math>P,</math> और संबंधित वस्तुओं के लिए एक आकारिकी है, अन्यथा शून्य। वैकल्पिक रूप से, एक पूर्व-आदेशित सेट को [[समृद्ध श्रेणी]] के रूप में समझा जा सकता है, श्रेणी से समृद्ध <math>2 = (0 \to 1).</math>
एक [[पूर्व-आदेशित वर्ग]] एक ऐसा [[वर्ग (गणित)]] है जो एक पूर्व-आदेश से सुसज्जित है। प्रत्येक सेट एक वर्ग है और इसलिए प्रत्येक पूर्वनिर्धारित सेट एक पूर्वनिर्धारित वर्ग है।


== उदाहरण ==
== उदाहरण ==


=== ग्राफ सिद्धांत ===
=== ग्राफ सिद्धांत ===
* (ऊपर चित्र देखें) xinteger division|//4 का अर्थ सबसे बड़ा पूर्णांक है जो x से कम या बराबर है जो 4 से विभाजित है, इस प्रकार 1integer division|//4 0 है, जो निश्चित रूप से 0 से कम या उसके बराबर है, जो स्वयं 0पूर्णांक विभाजन के समान है|//4.
* (ऊपर चित्र देखें) x//4 से अभिप्राय सबसे बड़े पूर्णांक से है जो x से कम या उसके बराबर 4 से विभाजित है, इस प्रकार 1//4 0 है, जो निश्चित रूप से 0 से कम या उसके बराबर है, जो स्वयं 0//4 के रूप में समान है।
 
* किसी भी निर्देशित ग्राफ़ (संभवतः चक्र युक्त) में पहुंच योग्यता संबंध अग्रिम-आदेश को जन्म देता है, जहां <math>x \leq y</math> अग्रिम-आदेश में यदि और केवल यदि निर्देशित ग्राफ में x से y तक का रास्ता है। इसके विपरीत, प्रत्येक अग्रिम-आदेश निर्देशित ग्राफ़ का रीचैबिलिटी संबंधशिप है (उदाहरण के लिए, ग्राफ़ जिसमें प्रत्येक जोड़ी के लिए x से y तक का कोर है {{nowrap|(''x'', ''y'')}} साथ <math>x \leq y.</math> यद्यपि, कई अलग-अलग ग्राफ़ में एक-दूसरे के समान गम्‍यता अग्रिम-आदेश हो सकते हैं। उसी तरह, निर्देशित अचक्रीय ग्राफ़ की पुन: योग्यता, बिना चक्र वाले निर्देशित ग्राफ़, आंशिक रूप से निर्देशित किए गए समुच्चयों को जन्म देते हैं (अतिरिक्त एंटीसिमेट्री संपत्ति को संतुष्ट करने वाले अग्रिम-आदेश)।
* किसी भी निर्देशित ग्राफ (संभवतः चक्र युक्त) में पुन: योग्यता संबंध एक प्रीऑर्डर को जन्म देता है, जहां <math>x \leq y</math> प्रीऑर्डर में अगर और केवल अगर निर्देशित ग्राफ में x से y तक का रास्ता है। इसके विपरीत, प्रत्येक प्रीऑर्डर एक निर्देशित ग्राफ़ का रीचैबिलिटी रिलेशनशिप है (उदाहरण के लिए, ग्राफ़ जिसमें प्रत्येक जोड़ी के लिए x से y तक का किनारा है {{nowrap|(''x'', ''y'')}} साथ <math>x \leq y.</math> हालाँकि, कई अलग-अलग ग्राफ़ में एक-दूसरे के समान रीचैबिलिटी प्रीऑर्डर हो सकते हैं। उसी तरह, निर्देशित एसाइक्लिक ग्राफ़ की पुन: योग्यता, बिना चक्र वाले निर्देशित ग्राफ़, आंशिक रूप से ऑर्डर किए गए सेटों को जन्म देते हैं (अतिरिक्त एंटीसिमेट्री संपत्ति को संतुष्ट करने वाले पूर्व-आदेश)।
* [[ग्राफ सिद्धांत]] में [[ग्राफ-मामूली|ग्राफ-]]सामान्य संबंध।
* [[ग्राफ सिद्धांत]] में [[ग्राफ-मामूली]] रिलेशन।


=== कंप्यूटर विज्ञान ===
=== कंप्यूटर विज्ञान ===
कंप्यूटर विज्ञान में, निम्नलिखित पूर्व-आदेशों के उदाहरण मिल सकते हैं।
कंप्यूटर विज्ञान में, निम्नलिखित अग्रिम-आदेशों के उदाहरण मिल सकते हैं।
* [[बिग ओ नोटेशन]] फ़ंक्शन पर प्रीऑर्डर का कारण बनता है <math>f: \mathbb{N} \to \mathbb{N}</math>. संबंधित तुल्यता संबंध को स्पर्शोन्मुख_विश्लेषण # परिभाषा कहा जाता है।
* [[बिग ओ नोटेशन|स्पर्शोन्मुख आदेश कार्यों]] <math>f: \mathbb{N} \to \mathbb{N}</math>. पर अग्रिम-आदेश का कारण बनता है संबंधित तुल्यता संबंध को स्पर्शोन्मुख तुल्यता कहा जाता है।
* [[बहुपद-समय में कमी]] | बहुपद-समय, कई-एक कमी | कई-एक (मानचित्रण) और ट्यूरिंग कटौती जटिलता वर्गों पर पूर्व-आदेश हैं।
* बहुपद-समय, कई-एक (मानचित्रण) और ट्यूरिंग रिडक्शन जटिलता वर्गों पर अग्रिम-आदेश हैं।
* [[सबटाइपिंग]] संबंध आमतौर पर प्रीऑर्डर होते हैं।<ref>{{cite book |last=Pierce |first=Benjamin C. |author-link=Benjamin C. Pierce
* [[सबटाइपिंग|उप-टाइपिंग]] संबंध सामान्यतः अग्रिम-आदेश होते हैं।<ref>{{cite book |last=Pierce |first=Benjamin C. |author-link=Benjamin C. Pierce
  |date=2002 |title=Types and Programming Languages |title-link=Types and Programming Languages |location=Cambridge, Massachusetts/London, England |publisher=The MIT Press |pages=182ff |isbn=0-262-16209-1}}</ref>
  |date=2002 |title=Types and Programming Languages |title-link=Types and Programming Languages |location=Cambridge, Massachusetts/London, England |publisher=The MIT Press |pages=182ff |isbn=0-262-16209-1}}</ref>
* [[सिमुलेशन प्रीऑर्डर]]्स प्रीऑर्डर्स हैं (इसलिए नाम)
* [[सिमुलेशन प्रीऑर्डर|अनुकार अग्रिम आदेश]] अग्रिम आदेश (इसलिए नाम) हैं।
* सार पुनर्लेखन प्रणालियों में संबंधों में कमी।
* सार पुनर्लेखन प्रणालियों में संबंधों में कमी।
* द्वारा परिभाषित [[शब्द (तर्क)]] के सेट पर समावेशन प्रस्ताव <math>s \leq t</math> यदि एक शब्द (तर्क) # टी की शर्तों के साथ संचालन एस का [[प्रतिस्थापन उदाहरण]] है।
* <math>s \leq t</math> द्वारा परिभाषित परिस्थितियों के सेट पर समावेशन अग्रिम-आदेश, यदि ''t'' का सबटर्म(उपवाक्य) ''s'' का [[प्रतिस्थापन उदाहरण]] है।
* थीटा-अवधारणा,<ref>{{cite journal |last=Robinson | first=J. A. |title=A machine-oriented logic based on the resolution principle |journal=ACM |volume=12 |number=1 |pages=23–41 |year=1965 | doi=10.1145/321250.321253 | s2cid=14389185 |url=https://dl.acm.org/doi/pdf/10.1145/321250.321253}}</ref> जो तब होता है जब पूर्व के लिए एक [[प्रतिस्थापन (तर्क)]] लागू करने के बाद, एक वियोगात्मक प्रथम-क्रम सूत्र में शाब्दिक दूसरे द्वारा समाहित होते हैं।
* थीटा-अवधारणा,<ref>{{cite journal |last=Robinson | first=J. A. |title=A machine-oriented logic based on the resolution principle |journal=ACM |volume=12 |number=1 |pages=23–41 |year=1965 | doi=10.1145/321250.321253 | s2cid=14389185 |url=https://dl.acm.org/doi/pdf/10.1145/321250.321253}}</ref> जो तब होता है जब पूर्व के लिए [[प्रतिस्थापन (तर्क)|प्रतिस्थापन]] प्रयुक्त करने के बाद, वियोगात्मक प्रथम-क्रम सूत्र में शाब्दिक दूसरे द्वारा निहित होते हैं।


=== अन्य ===
=== अन्य ===
और उदाहरण:
और उदाहरण:
* प्रत्येक [[परिमित सामयिक स्थान]] परिभाषित करके अपने बिंदुओं पर एक पूर्व-आदेश को जन्म देता है <math>x \leq y</math> यदि और केवल यदि x, y के प्रत्येक [[पड़ोस (गणित)]] से संबंधित है। इस तरह से एक टोपोलॉजिकल स्पेस के स्पेशलाइजेशन (प्री) ऑर्डर के रूप में हर परिमित प्रीऑर्डर का गठन किया जा सकता है। यही है, परिमित [[टोपोलॉजी]] और परिमित सीमा के बीच एक-से-एक पत्राचार होता है। हालांकि, अनंत टोपोलॉजिकल रिक्त स्थान और उनकी विशेषज्ञता की सीमाओं के बीच संबंध एक-से-एक नहीं है।
* प्रत्येक [[परिमित सामयिक स्थान]] परिभाषित करके अपने बिंदुओं पर अग्रिम-आदेश को जन्म देता है <math>x \leq y</math> यदि और केवल यदि x, y के प्रत्येक [[पड़ोस (गणित)|निकटतम]] से संबंधित है। इस तरह से सामयिक(टोपोलॉजिकल) स्थान के विशेषज्ञता अग्रिम-आदेश के रूप में हर परिमित अग्रिम-आदेश का गठन किया जा सकता है। यही है, परिमित [[टोपोलॉजी|सामयिक]] और परिमित सीमा के मध्य एक-से-एक पत्राचार होता है। चूंकि, अनंत सामयिक रिक्त स्थान और उनकी विशेषज्ञता की सीमाओं के बीच संबंध एक-से-एक नहीं है।
* नेट [[निर्देशित सेट|निर्देशित]] समुच्चय अग्रिम-आदेश है, अर्थात तत्वों की प्रत्येक जोड़ी में [[ऊपरी सीमा]] होती है। नेट के माध्यम से अभिसरण की परिभाषा सामयिक में महत्वपूर्ण है, जहां महत्वपूर्ण विशेषताओं को खोए बिना अग्रिम-आदेशों को आंशिक रूप से आदेशित समुच्चयों द्वारा प्रतिस्थापित नहीं किया जा सकता है।
* <math>x \leq y</math> द्वारा परिभाषित संबंध यदि <math>f(x) \leq f(y),</math> जहां ''f'' कुछ अग्रिम-आदेश में प्रकार्य है।
* <math>x \leq y</math> द्वारा परिभाषित संबंध '''<math>x \leq y</math>''' यदि ''x'' से ''y'' तक कुछ [[इंजेक्शन समारोह|अंतःक्षेपण समारोह]] उपस्थित है। अन्तःक्षेपण को या किसी भी प्रकार की संरचना-संरक्षण कार्य, जैसे [[रिंग समरूपता]], या क्रमचय [[अनुमान]] से बदला जा सकता है।
* गणनीय कुल अदेशन(ऑर्डरिंग) के लिए [[एम्बेडिंग|अंत:स्थापन]] संबंध।
* [[श्रेणी (गणित)|श्रेणी]] किसी भी वस्तु x से किसी भी अन्य वस्तु y में अधिकतम रूपवाद के साथ अग्रिम-आदेश है। ऐसी श्रेणियों को पतली श्रेणी कहा जाता है। इस अर्थ में, श्रेणियां वस्तुओं के बीच से अधिक संबंधों की अनुमति देकर अग्रिम-आदेशों को सामान्यीकृत करती हैं: प्रत्येक आकारिकी विशिष्ट (नामित) अग्रिम-आदेश संबंध है।


* एक नेट (गणित) एक [[निर्देशित सेट]] प्रीऑर्डर है, यानी तत्वों की प्रत्येक जोड़ी में [[ऊपरी सीमा]] होती है। नेट के माध्यम से अभिसरण की परिभाषा टोपोलॉजी में महत्वपूर्ण है, जहां महत्वपूर्ण विशेषताओं को खोए बिना पूर्व-आदेशों को आंशिक रूप से आदेशित सेटों द्वारा प्रतिस्थापित नहीं किया जा सकता है।
विशुद्ध दुर्बल अदेशन कुल अग्रिम आदेश का उदाहरण:
 
* द्वारा परिभाषित संबंध <math>x \leq y</math> अगर <math>f(x) \leq f(y),</math> जहां एफ कुछ प्रीऑर्डर में एक फ़ंक्शन है।
* द्वारा परिभाषित संबंध <math>x \leq y</math> अगर एक्स से वाई तक कुछ [[इंजेक्शन समारोह]] मौजूद है। इंजेक्शन को [[अनुमान]] से बदला जा सकता है, या किसी भी प्रकार की संरचना-संरक्षण कार्य, जैसे [[रिंग समरूपता]], या क्रमचय।
* गणनीय कुल ऑर्डरिंग के लिए [[एम्बेडिंग]] संबंध।
* एक [[श्रेणी (गणित)]] किसी भी वस्तु x से किसी भी अन्य वस्तु y में अधिकतम एक रूपवाद के साथ एक पूर्व-आदेश है। ऐसी श्रेणियों को पतली श्रेणी कहा जाता है। इस अर्थ में, श्रेणियां वस्तुओं के बीच एक से अधिक संबंधों की अनुमति देकर पूर्व-आदेशों को सामान्यीकृत करती हैं: प्रत्येक आकारिकी एक विशिष्ट (नामित) पूर्व-आदेश संबंध है।
 
सख्त कमजोर ऑर्डरिंग का उदाहरण#कुल अग्रिम आदेश:
* वरीयता, सामान्य मॉडल के अनुसार।
* वरीयता, सामान्य मॉडल के अनुसार।


== उपयोग करता है ==
== उपयोग ==
कई स्थितियों में पूर्व-आदेश एक महत्वपूर्ण भूमिका निभाते हैं:
कई स्थितियों में अग्रिम-आदेश महत्वपूर्ण भूमिका निभाते हैं:
* हर प्रीऑर्डर को एक टोपोलॉजी दी जा सकती है, [[अलेक्जेंडर टोपोलॉजी]]; और वास्तव में, सेट पर प्रत्येक प्रीऑर्डर उस सेट पर एक अलेक्जेंड्रोव टोपोलॉजी के साथ एक-से-एक पत्राचार में है।
* हर अग्रिम-आदेश को सामयिकता दी जा सकती है, [[अलेक्जेंडर टोपोलॉजी|अलेक्जेंडर सामयिक]]; और वास्तव में, समुच्चय पर प्रत्येक अग्रिम-आदेश उस समुच्चय पर अलेक्जेंड्रोव सामयिक के साथ एक-से-एक पत्राचार में है।
* [[आंतरिक बीजगणित]] को परिभाषित करने के लिए पूर्व-आदेशों का उपयोग किया जा सकता है।
* [[आंतरिक बीजगणित]] को परिभाषित करने के लिए अग्रिम-आदेशों का उपयोग किया जा सकता है।
* प्रीऑर्डर्स कुछ प्रकार के [[मॉडल तर्क]] के लिए क्रिपके शब्दार्थ प्रदान करते हैं।
* अग्रिम आदेश कुछ प्रकार के [[मॉडल तर्क]] के लिए क्रिपके शब्दार्थ प्रदान करते हैं।
* प्रीऑर्डर्स का उपयोग फोर्सिंग (गणित) में [[समुच्चय सिद्धान्त]] में स्थिरता और [[स्वतंत्रता (गणितीय तर्क)]] परिणामों को साबित करने के लिए किया जाता है।<ref>{{citation
* अग्रिम आदेश का उपयोग फोर्सिंग में [[समुच्चय सिद्धान्त]] में स्थिरता और [[स्वतंत्रता (गणितीय तर्क)|स्वतंत्रता]] परिणामों को सिद्ध करने के लिए किया जाता है।<ref>{{citation
  | last = Kunen | first = Kenneth
  | last = Kunen | first = Kenneth
  | title = Set Theory, An Introduction to Independence Proofs
  | title = Set Theory, An Introduction to Independence Proofs
Line 84: Line 72:
  | year = 1980
  | year = 1980
}}.</ref>
}}.</ref>
== निर्माण ==
एक समुच्चय <math>S</math> पर प्रत्येक द्विआधारी संबंध <math>R</math> को [[सकर्मक बंद]] और [[रिफ्लेक्सिव क्लोजर|प्रतिवर्ती क्लोजर]] <math>R^{+=}.</math> को लेकर <math>S</math> पर अग्रिम-आदेश तक बढ़ाया जा सकता है , सकर्मक समापन <math>R : x R^+ y</math> में पथ कनेक्शन को इंगित करता है यदि और केवल यदि <math>x</math> से <math>y.</math> तक कोई <math>R</math>-[[पथ (ग्राफ सिद्धांत)|पथ]] है।


एक द्विआधारी संबंध दिया <math>R,</math> पूरक रचना <math>R \backslash R = \overline{R^\textsf{T} \circ \overline{R}}</math> अग्रिम-आदेश बनाता है जिसे बायाँ अवशिष्ट कहा जाता है,<ref>In this context, "<math>\backslash</math>" does not mean "set difference".</ref> जहाँ <math>R^\textsf{T}</math>, <math>R,</math> के विलोम संबंध को दर्शाता है और <math>\overline{R}</math> <math>R,</math> के [[पूरक (सेट सिद्धांत)|पूरक]] संबंध को दर्शाता है जबकि <math>\circ</math> संबंध संरचना को दर्शाता है।


== निर्माण ==
=== विभाजनों पर अग्रिम आदेश और आंशिक आदेश ===


हर द्विआधारी संबंध <math>R</math> एक सेट पर <math>S</math> पर प्रीऑर्डर तक बढ़ाया जा सकता है <math>S</math> [[सकर्मक बंद]] और [[रिफ्लेक्सिव क्लोजर]] लेकर, <math>R^{+=}.</math> सकर्मक समापन पथ कनेक्शन को इंगित करता है <math>R : x R^+ y</math> अगर और केवल अगर कोई है <math>R</math>-[[पथ (ग्राफ सिद्धांत)]] से <math>x</math> को <math>y.</math> बायनरी रिलेशन से प्रेरित लेफ्ट रेसीड्यूल प्रीऑर्डर
<math>S</math> पर <math>\,\lesssim\,</math> के अग्रिम-आदेश को देखते हुए <math>S</math> पर तुल्यता संबंध <math>\,\sim\,</math> को परिभाषित कर सकता है जैसे कि:<math display="block">a \sim b \quad \text{ if and only if } \quad a \lesssim b \; \text{ and } \; b \lesssim a.</math> परिणामी संबंध <math>\,\sim\,</math>प्रतिवर्ती है क्योंकि अग्रिम-आदेश <math>\,\lesssim\,</math> प्रतिवर्त है; <math>\,\lesssim\,</math> की संक्रामकता को दो बार प्रयुक्त करके सकर्मक और परिभाषा के अनुसार सममित को प्रदर्शित करता है ।


एक द्विआधारी संबंध दिया <math>R,</math> पूरक रचना <math>R \backslash R = \overline{R^\textsf{T} \circ \overline{R}}</math> एक पूर्व-आदेश बनाता है जिसे विषम संबंध#पूर्व-आदेश R\R कहा जाता है,<ref>In this context, "<math>\backslash</math>" does not mean "set difference".</ref> कहाँ <math>R^\textsf{T}</math> के विलोम संबंध को दर्शाता है <math>R,</math> और <math>\overline{R}</math> के [[पूरक (सेट सिद्धांत)]] संबंध को दर्शाता है <math>R,</math> जबकि <math>\circ</math> संबंध संरचना को दर्शाता है।
इस संबंध का उपयोग करके, तुल्यता के भागफल समुच्चय <math>S / \sim,</math> पर आंशिक क्रम बनाना संभव है, जो कि सभी [[तुल्यता वर्ग|तुल्यता वर्गों]] का समुच्चय <math>\,\sim.</math> है।


=== विभाजनों पर अग्रिम आदेश और आंशिक आदेश ===


एक पूर्व आदेश दिया <math>\,\lesssim\,</math> पर <math>S</math> कोई एक तुल्यता संबंध को परिभाषित कर सकता है <math>\,\sim\,</math> पर <math>S</math> ऐसा है कि
<li>यदि अग्रिम-आदेश <math>R^{+=},</math>द्वारा निरूपित किया जाता है तब तुल्यता वर्ग <math>R</math>-चक्र का समुच्चय <math>S / \sim</math> है: <math>x \in [y]</math> यदि और केवल यदि <math>x = y</math> या <math>x</math> <math>R</math>-साइकिल के साथ <math>y</math> किसी भी स्थितियों में है <math>S / \sim</math> पर <math>[x] \leq [y]</math> यदि और केवल यदि <math>x \lesssim y.</math>परिभाषित करना संभव है। यह अच्छी तरह से परिभाषित है, जिसका अर्थ है कि इसकी परिभाषित स्थिति किस <math>[x]</math> और <math>[y]</math> प्रतिनिधि पर निर्भर नहीं करती है सामान्यतः यह <math>\,\sim.\,</math> की परिभाषा से अनुसरण करते हैं यह आसानी से सत्यापित है कि यह आंशिक रूप सेआदेश किए गए समुच्चय का उत्पादन करता है।<li>इसके विपरीत, किसी समुच्चय <math>S,</math> के विभाजन पर किसी आंशिक क्रम से <math>S</math> पर स्वतः अग्रिम-आदेश बनाना संभव है । अग्रिम-आदेशों और युग्म (विभाजन, आंशिक क्रम) के बीच एक-से-एक पत्राचार होता है।
<math display=block>a \sim b \quad \text{ if and only if } \quad a \lesssim b \; \text{ and } \; b \lesssim a.</math> परिणामी संबंध <math>\,\sim\,</math> प्रीऑर्डर के बाद से रिफ्लेक्सिव है <math>\,\lesssim\,</math> प्रतिवर्त है; की संक्रामकता को लागू करके सकर्मक <math>\,\lesssim\,</math> दो बार; और परिभाषा के अनुसार सममित।
<li>{{em|उदाहरण}}: अनुमानित रूप में <math>S</math> [[सिद्धांत (गणितीय तर्क)|सिद्धांत]] हो, जो कुछ गुणों के साथ [[वाक्य (गणितीय तर्क)|वाक्य]] का समुच्चय है (जिसका विवरण सिद्धांत में पाया जा सकता है)। उदाहरण के लिए, <math>S</math> [[प्रथम-क्रम सिद्धांत]] (जैसे ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत) या सरल [[प्रस्तावक कलन]] अथवा शून्य-क्रम सिद्धांत हो सकता है | <math>S</math> के अनेक गुणों में से है कि यह तार्किक परिणामों के अनुसार बंद है, उदाहरण के लिए, यदि कोई वाक्य <math>A \in S</math> तार्किक रूप से कुछ वाक्य <math>B,</math> का तात्पर्य है जो <math>A \Rightarrow B</math> और <math>B \Leftarrow A,</math> हो तो आवश्यक रूप से <math>B \in S</math> (विधि समुच्चय करके) के रूप में भी लिखा जाएगा।


इस संबंध का उपयोग करके, तुल्यता के भागफल सेट पर एक आंशिक क्रम बनाना संभव है, <math>S / \sim,</math> जो कि सभी [[तुल्यता वर्ग]]ों का समुच्चय है <math>\,\sim.</math> यदि पूर्व आदेश द्वारा निरूपित किया जाता है <math>R^{+=},</math> तब <math>S / \sim</math> का सेट है <math>R</math>-चक्र (ग्राफ सिद्धांत) तुल्यता वर्ग:
<math>x \in [y]</math> अगर और केवल अगर <math>x = y</math> या <math>x</math> एक में है <math>R</math>-साइकिल के साथ <math>y</math> किसी भी मामले में, पर <math>S / \sim</math> परिभाषित करना संभव है <math>[x] \leq [y]</math> अगर और केवल अगर <math>x \lesssim y.</math> यह अच्छी तरह से परिभाषित है, जिसका अर्थ है कि इसकी परिभाषित स्थिति किस प्रतिनिधि पर निर्भर नहीं करती है <math>[x]</math> और <math>[y]</math> चुने गए हैं, की परिभाषा से अनुसरण करते हैं <math>\,\sim.\,</math> यह आसानी से सत्यापित है कि यह आंशिक रूप से ऑर्डर किए गए सेट का उत्पादन करता है।


इसके विपरीत, किसी सेट के विभाजन पर किसी आंशिक क्रम से <math>S,</math> पर प्रीऑर्डर बनाना संभव है <math>S</math> अपने आप। पूर्व-आदेशों और जोड़े (विभाजन, आंशिक क्रम) के बीच एक-से-एक पत्राचार होता है।
<li>
<li>रिश्ता <math>\,\Leftarrow\,</math> <math>S</math> पर अग्रिम आदेश है क्योंकि <math>A \Leftarrow A</math> सदैव धारण करता है और जब भी <math>A \Leftarrow B</math> और <math>B \Leftarrow C</math> दोनों धारण करते हैं तो <math>A \Leftarrow C.</math> भी होता है। इसके अतिरिक्त, किसी भी <math>A, B \in S,</math> <math>A \sim B</math> के लिए यदि और केवल यदि <math>A \Leftarrow B \text{ and } B \Leftarrow A</math>; अर्थात्, दो वाक्य <math>\,\Leftarrow\,</math> के संबंध में समतुल्य हैं यदि और केवल यदि वे [[तार्किक रूप से समकक्ष|तार्किक रूप से समतुल्य]] हैं। यह विशेष तुल्यता संबंध <math>A \sim B</math> सामान्यतः अपने विशेष प्रतीक <math>A \iff B,</math> के साथ दर्शाया जाता है और इसलिए <math>\,\sim.</math> प्रतीक के स्थान पर <math>\,\iff\,</math> उपयोग किया जा सकता है वाक्य का तुल्यता वर्ग <math>A,</math> <math>[A],</math> द्वारा चिह्नित किया जाता है , सभी वाक्यों से मिलकर <math>B \in S</math> बनता है जो तार्किक रूप <math>A</math> से समकक्ष (अर्थात सभी <math>B \in S</math> ऐसा है कि <math>A \iff B</math>) हैं।


{{em|Example}}: होने देना <math>S</math> एक [[सिद्धांत (गणितीय तर्क)]] हो, जो कुछ गुणों के साथ [[वाक्य (गणितीय तर्क)]] का एक सेट है (जिसका विवरण सिद्धांत (गणितीय तर्क) में पाया जा सकता है)। उदाहरण के लिए, <math>S</math> एक [[प्रथम-क्रम सिद्धांत]] हो सकता है (जैसे ज़र्मेलो-फ्रेंकेल सेट सिद्धांत) या एक सरल [[प्रस्तावक कलन]] | शून्य-क्रम सिद्धांत। के अनेक गुणों में से एक है <math>S</math> क्या यह तार्किक परिणामों के तहत बंद है, उदाहरण के लिए, यदि कोई वाक्य <math>A \in S</math> तार्किक रूप से कुछ वाक्य का तात्पर्य है <math>B,</math> जो इस प्रकार लिखा जाएगा <math>A \Rightarrow B</math> और के रूप में भी <math>B \Leftarrow A,</math> फिर अनिवार्य रूप से <math>B \in S</math> (विधि सेट करके)।
<li>
रिश्ता <math>\,\Leftarrow\,</math> पर एक अग्रिम आदेश है <math>S</math> क्योंकि <math>A \Leftarrow A</math> हमेशा धारण करता है और जब भी <math>A \Leftarrow B</math> और <math>B \Leftarrow C</math> दोनों पकड़ तो ऐसा करता है <math>A \Leftarrow C.</math> इसके अलावा, किसी के लिए <math>A, B \in S,</math> <math>A \sim B</math> अगर और केवल अगर <math>A \Leftarrow B \text{ and } B \Leftarrow A</math>; अर्थात्, दो वाक्यों के संबंध में समकक्ष हैं <math>\,\Leftarrow\,</math> अगर और केवल अगर वे [[तार्किक रूप से समकक्ष]] हैं। यह विशेष तुल्यता संबंध <math>A \sim B</math> आमतौर पर अपने विशेष प्रतीक के साथ दर्शाया जाता है <math>A \iff B,</math> और इसलिए यह प्रतीक <math>\,\iff\,</math> की जगह इस्तेमाल किया जा सकता है <math>\,\sim.</math> वाक्य का तुल्यता वर्ग <math>A,</math> द्वारा चिह्नित <math>[A],</math> सभी वाक्यों से मिलकर बनता है <math>B \in S</math> जो तार्किक रूप से समकक्ष हैं <math>A</math> (बस इतना ही <math>B \in S</math> ऐसा है कि <math>A \iff B</math>).
<li><math>\,\Leftarrow,\,</math>द्वारा प्रेरित <math>S / \sim</math> आंशिक आदेश जिसे उसी प्रतीक<math>\,\Leftarrow,\,</math> द्वारा भी दर्शाया जाएगा <math>[A] \Leftarrow [B]</math> की विशेषता यदि और केवल यदि <math>A \Leftarrow B,</math> जहां दाहिने हाथ की स्थिति तुल्यता वर्गों के प्रतिनिधियों <math>A \in [A]</math> और <math>B \in [B]</math> की पसंद से स्वतंत्र होती है।
आंशिक आदेश जारी है <math>S / \sim</math> प्रेरक <math>\,\Leftarrow,\,</math> जिसे उसी प्रतीक द्वारा भी दर्शाया जाएगा <math>\,\Leftarrow,\,</math> द्वारा चित्रित है <math>[A] \Leftarrow [B]</math> अगर और केवल अगर <math>A \Leftarrow B,</math> जहां दाहिने हाथ की स्थिति प्रतिनिधियों की पसंद से स्वतंत्र होती है <math>A \in [A]</math> और <math>B \in [B]</math> तुल्यता वर्गों की।
यह सब कहा गया है <math>\,\Leftarrow\,</math> अब तक इसके विलोम संबंध के बारे में भी कहा जा सकता है <math>\,\Rightarrow.\,</math> पहले से ऑर्डर किया हुआ सेट <math>(S, \Leftarrow)</math> एक निर्देशित सेट है क्योंकि अगर <math>A, B \in S</math> और अगर <math>C := A \wedge B</math> [[तार्किक संयोजन]] द्वारा गठित वाक्य को दर्शाता है <math>\,\wedge,\,</math> तब <math>A \Leftarrow C</math> और <math>B \Leftarrow C</math> कहाँ <math>C \in S.</math> आंशिक रूप से आदेशित सेट <math>\left(S / \sim, \Leftarrow\right)</math> परिणामस्वरूप एक निर्देशित सेट भी है।
संबंधित उदाहरण के लिए लिंडेनबाम-टार्स्की बीजगणित देखें।


=== अग्रिम-आदेश और सख्त पूर्व-आदेश ===


एक प्रीऑर्डर द्वारा प्रेरित सख्त प्रीऑर्डर
<li>
<li>यह सब <math>\,\Leftarrow\,</math> कहा गया है अब तक इसके विलोम संबंध के बारे में भी <math>\,\Rightarrow.\,</math> कहा जा सकता है पहले से आदेश किया हुआ समुच्चय <math>(S, \Leftarrow)</math> निर्देशित समुच्चय है क्योंकि यदि <math>A, B \in S</math> और यदि <math>C := A \wedge B</math> [[तार्किक संयोजन]] <math>\,\wedge,\,</math> द्वारा गठित वाक्य को दर्शाता है तब <math>A \Leftarrow C</math> और <math>B \Leftarrow C</math> कहाँ <math>C \in S.</math> आंशिक रूप से आदेशित समुच्चय <math>\left(S / \sim, \Leftarrow\right)</math> परिणामस्वरूप निर्देशित समुच्चय भी है।संबंधित उदाहरण के लिए लिंडेनबाम-टार्स्की बीजगणित देखें।
=== अग्रिम-आदेश और विशुद्ध अग्रिम-आदेश ===


एक पूर्व आदेश दिया <math>\,\lesssim,</math> एक नया रिश्ता <math>\,<\,</math> घोषित करके परिभाषित किया जा सकता है <math>a < b</math> अगर और केवल अगर <math>a \lesssim b \text{ and not } b \lesssim a.</math> तुल्यता संबंध का उपयोग करना <math>\,\sim\,</math> ऊपर पेश किया गया, <math>a < b</math> अगर और केवल अगर <math>a \lesssim b \text{ and not } a \sim b;</math> और इसलिए निम्नलिखित धारण करता है
अग्रिम-आदेश द्वारा प्रेरित विशुद्ध अग्रिम-आदेश:
<math display=block>a \lesssim b \quad \text{ if and only if } \quad a < b \; \text{ or } \; a \sim b.</math>
रिश्ता <math>\,<\,</math> एक सख्त आंशिक आदेश है और {{em|every}} सख्त आंशिक आदेश इस तरह से बनाया जा सकता है।
{{em|If}} अग्रिम आदेश <math>\,\lesssim\,</math> प्रतिसममित संबंध है (और इस प्रकार एक आंशिक क्रम) तो तुल्यता <math>\,\sim\,</math> समानता है (अर्थात, <math>a \sim b</math> अगर और केवल अगर <math>a = b</math>) और इसलिए इस मामले में, की परिभाषा <math>\,<\,</math> के रूप में पुनर्स्थापित किया जा सकता है:
<math display=block>a < b \quad \text{ if and only if } \quad a \leq b \; \text{ and } \; a \neq b \quad\quad (\text{assuming } \lesssim \text{ is antisymmetric}).</math>
लेकिन खास बात यह है कि यह नई शर्त है {{em|not}} संबंध की सामान्य परिभाषा के रूप में (न ही यह समतुल्य है) उपयोग किया जाता है <math>\,<\,</math> (वह है, <math>\,<\,</math> है {{em|not}} के रूप में परिभाषित: <math>a < b</math> अगर और केवल अगर <math>a \lesssim b \text{ and } a \neq b</math>) क्योंकि अगर प्रीऑर्डर <math>\,\lesssim\,</math> प्रतिसममित नहीं है तो परिणामी संबंध <math>\,<\,</math> सकर्मक नहीं होगा (विचार करें कि समतुल्य गैर-बराबर तत्व कैसे संबंधित हैं)।
प्रतीक के प्रयोग का यही कारण है<math>\lesssim</math>प्रतीक से कम या उसके बराबर के बजाय<math>\leq</math>, जो एक ऐसे प्रीऑर्डर के लिए भ्रम पैदा कर सकता है जो एंटीसिमेट्रिक नहीं है क्योंकि यह भ्रामक रूप से सुझाव दे सकता है <math>a \leq b</math> तात्पर्य <math>a < b \text{ or } a = b.</math> सख्त प्रीऑर्डर से प्रेरित प्रीऑर्डर


उपरोक्त निर्माण का उपयोग करके, कई गैर-सख्त पूर्व-आदेश एक ही सख्त पूर्व-आदेश दे सकते हैं <math>\,<,\,</math> तो कैसे के बारे में अधिक जानकारी के बिना <math>\,<\,</math> का निर्माण किया गया था (इस तरह के तुल्यता संबंध का ज्ञान <math>\,\sim\,</math> उदाहरण के लिए), मूल गैर-सख्त प्रीऑर्डर से पुनर्निर्माण करना संभव नहीं हो सकता है <math>\,<.\,</math> संभावित (गैर-सख्त) पूर्व-आदेश जो दिए गए सख्त पूर्व-आदेश को प्रेरित करते हैं <math>\,<\,</math> निम्नलिखित को शामिल कीजिए:
अग्रिम-आदेश <math>\,\lesssim,</math> नया रिश्ता <math>\,<\,</math> घोषित करके <math>a < b</math> यदि और केवल यदि <math>a \lesssim b \text{ and not } b \lesssim a.</math>परिभाषित किया जा सकता है , तुल्यता संबंध <math>\,\sim\,</math> का उपयोग करना <math>a < b</math> यदि और केवल यदि <math>a \lesssim b \text{ and not } a \sim b;</math> पर प्रस्तुत किया गया,और इसलिए निम्नलिखित धारण करता है;<math display="block">a \lesssim b \quad \text{ if and only if } \quad a < b \; \text{ or } \; a \sim b.</math>रिश्ता <math>\,<\,</math> विशुद्ध आंशिक आदेश है और {{em|प्रत्येक}} विशुद्ध आंशिक आदेश इस तरह से बनाया जा सकता है।
* परिभाषित करना <math>a \leq b</math> जैसा <math>a < b \text{ or } a = b</math> (अर्थात, संबंध का प्रतिवर्त समापन लें)। यह सख्त आंशिक आदेश से जुड़ा आंशिक आदेश देता है<math><</math>रिफ्लेक्सिव क्लोजर के माध्यम से; इस मामले में समानता समानता है <math>\,=,</math> तो प्रतीक <math>\,\lesssim\,</math> और <math>\,\sim\,</math> जरूरत नहीं है।
* परिभाषित करना <math>a \lesssim b</math> जैसा<math>\text{ not } b < a</math>(अर्थात, संबंध का व्युत्क्रम पूरक लें), जो परिभाषित करने के अनुरूप है <math>a \sim b</math> न तो <math>a < b \text{ nor } b < a</math>; ये संबंध <math>\,\lesssim\,</math> और <math>\,\sim\,</math> सामान्य रूप से सकर्मक नहीं हैं; हालाँकि, अगर वे हैं <math>\,\sim\,</math> एक समानता है; उस मामले में<math><</math>एक [[सख्त कमजोर आदेश]] है। परिणामी प्रीऑर्डर [[जुड़ा हुआ संबंध]] है (जिसे पहले टोटल कहा जाता था); यानी कुल प्रीऑर्डर।


अगर <math>a \leq b</math> तब <math>a \lesssim b.</math> विलोम धारण करता है (अर्थात, <math>\,\lesssim\;\; = \;\;\leq\,</math>) अगर और केवल अगर जब भी <math>a \neq b</math> तब <math>a < b</math> या <math>b < a.</math>
<li>
<li>{{em|यदि}} अग्रिम आदेश <math>\,\lesssim\,</math> प्रतिसममित संबंध है (और इस प्रकार आंशिक क्रम) तो तुल्यता <math>\,\sim\,</math> समानता है (अर्थात, <math>a \sim b</math> यदि और केवल यदि <math>a = b</math>) और इसलिए इस स्थितियों में,<math>\,<\,</math> की परिभाषा के रूप में पुनर्स्थापित किया जा सकता है:<math display="block">a < b \quad \text{ if and only if } \quad a \leq b \; \text{ and } \; a \neq b \quad\quad (\text{assuming } \lesssim \text{ is antisymmetric}).</math>किन्तु खास बात यह है कि यह नई बाधा है {{em|नाट}} संबंध <math>\,<\,</math> की सामान्य परिभाषा के रूप में (न ही यह समतुल्य है) उपयोग किया जाता है (वह , <math>\,<\,</math> है {{em|नाट}} के रूप में परिभाषित: <math>a < b</math> यदि और केवल यदि <math>a \lesssim b \text{ and } a \neq b</math>) क्योंकि यदि अग्रिम-आदेश <math>\,\lesssim\,</math> प्रतिसममित नहीं है तो परिणामी संबंध <math>\,<\,</math> सकर्मक नहीं होगा (विचार करें कि समतुल्य गैर-बराबर तत्व कैसे संबंधित हैं)।
<li>
<li>प्रतीक <math>\leq</math> के "इससे कम या इसके बराबर" के अतिरिक्त प्रतीक <math>\lesssim</math> के प्रयोग का यही कारण है ''',''' जो ऐसे अग्रिम-आदेश के लिए भ्रम उत्पन्न कर सकता है जो प्रतिसममित नहीं है क्योंकि यह भ्रामक रूप से सुझाव दे सकता है कि <math>a \leq b</math> तात्पर्य <math>a < b \text{ or } a = b.</math>है। 


==== विशुद्ध अग्रिम-आदेश से प्रेरित अग्रिम-आदेश ====
उपरोक्त निर्माण का उपयोग करके, कई गैर-विशुद्ध अग्रिम-आदेश ही विशुद्ध अग्रिम-आदेश<math>\,<,\,</math> उत्पन्न कर सकते हैं इसलिए <math>\,<\,</math> के निर्माण के बारे में अधिक जानकारी के बिना (उदाहरण के लिए समकक्ष संबंध ∼ का ऐसा ज्ञान),<math>\,<.\,</math>से मूल गैर-सख्त पूर्व आदेश का पुनर्निर्माण करना संभव नहीं हो सकता है। संभावित (गैर-विशुद्ध) अग्रिम-आदेश जो दिए गए विशुद्ध अग्रिम-आदेश को प्रेरित करते हैं <math>\,<\,</math> निम्नलिखित को सम्मिलित है:
* <math>a \leq b</math> जैसा <math>a < b \text{ or } a = b</math> (अर्थात, संबंध का प्रतिवर्त समापन लें) को परिभाषित करना। यह विशुद्ध आंशिक आदेश से जुड़ा आंशिक आदेश <math><</math> देता है प्रतिवर्ती क्लोजर के माध्यम से; इस स्थितियों में समानता <math>\,=,</math> प्रतीक समानता है तो <math>\,\lesssim\,</math> और <math>\,\sim\,</math> आवश्यकता नहीं है।
* <math>a \lesssim b</math> जैसा<math>\text{ not } b < a</math>(अर्थात, संबंध का व्युत्क्रम पूरक लें) जो <math>a \sim b</math> न तो <math>a < b \text{ nor } b < a</math> परिभाषित करने के अनुरूप है; ये संबंध <math>\,\lesssim\,</math> और <math>\,\sim\,</math> सामान्य रूप से सकर्मक नहीं हैं; यद्यपि, यदि वे <math>\,\sim\,</math> समानता है; उस स्थितियों में <math><</math> [[सख्त कमजोर आदेश|विशुद्ध दुर्बल आदेश]] है। परिणामी अग्रिम-आदेश [[जुड़ा हुआ संबंध]] है (जिसे पहले टोटल कहा जाता था); अर्थात कुल अग्रिम-आदेश हैं।


== पूर्व-आदेशों की संख्या==
यदि <math>a \leq b</math> तब <math>a \lesssim b.</math> (अर्थात, <math>\,\lesssim\;\; = \;\;\leq\,</math>) यदि और केवल यदि जब भी <math>a \neq b</math> तब <math>a < b</math> या <math>b < a.</math>विलोम धारण करता है ।
== अग्रिम-आदेशों की संख्या==
{{Number of relations}}
{{Number of relations}}
जैसा कि ऊपर बताया गया है, पूर्व-आदेशों और जोड़े (विभाजन, आंशिक क्रम) के बीच 1-टू-1 पत्राचार है। इस प्रकार पूर्व-आदेशों की संख्या प्रत्येक विभाजन पर आंशिक आदेशों की संख्या का योग है। उदाहरण के लिए:
जैसा कि ऊपर बताया गया है, पूर्व-आदेशों और जोड़े (विभाजन, आंशिक क्रम) के बीच 1-टू-1 पत्राचार है। इस प्रकार पूर्व-आदेशों की संख्या प्रत्येक विभाजन पर आंशिक आदेशों की संख्या का योग है। उदाहरण के लिए:
Line 145: Line 133:
I.e., together, 355 preorders.
I.e., together, 355 preorders.
}}
}}
== अंतराल ==
<math>a \lesssim b,</math>के लिए [[अंतराल (गणित)|अंतराल]] <math>[a, b]</math> बिंदुओं का समुच्चय x <math>a \lesssim x</math> और <math>x \lesssim b,</math> के लिए संतोषजनक है जिसे <math>a \lesssim x \lesssim b.</math> भी लिख सकते है , इसमें कम से कम अंक a और b होते हैं। कोई भी परिभाषा को सभी जोड़ियों <math>(a, b)</math> तक विस्तारित कर चुन सकता है जहाँ अतिरिक्त अंतराल सभी खाली हैं।


इसी विशुद्ध संबंध <math><</math> का उपयोग कर , कोई भी अंतराल <math>(a, b)</math> को अंक x के समुच्चय के रूप में परिभाषित कर सकता है जो <math>a < x</math> और <math>x < b,</math> को संतुष्ट करता है और <math>a < x < b.</math> भी लिखा जाता है। खुला अंतराल <math>a < b.</math> तथापि खाली हो सकता है।


== अंतराल ==
के लिए <math>a \lesssim b,</math> [[अंतराल (गणित)]] <math>[a, b]</math> बिंदुओं का समुच्चय x संतोषजनक है <math>a \lesssim x</math> और <math>x \lesssim b,</math> भी लिखा <math>a \lesssim x \lesssim b.</math> इसमें कम से कम अंक a और b होते हैं। कोई भी परिभाषा को सभी जोड़ियों तक विस्तारित करना चुन सकता है <math>(a, b)</math> अतिरिक्त अंतराल सभी खाली हैं।


इसी सख्त संबंध का उपयोग करना<math><</math>, कोई भी अंतराल को परिभाषित कर सकता है <math>(a, b)</math> अंक x संतोषजनक के सेट के रूप में <math>a < x</math> और <math>x < b,</math> भी लिखा <math>a < x < b.</math> एक खुला अंतराल भले ही खाली हो सकता है <math>a < b.</math>
<li><math>[a, b)</math> और <math>(a, b]</math> को भी इसी प्रकार परिभाषित किया जा सकता है।
भी <math>[a, b)</math> और <math>(a, b]</math> इसी प्रकार परिभाषित किया जा सकता है।


== यह भी देखें ==
== यह भी देखें ==
* आंशिक रूप से आदेशित सेट - प्रीऑर्डर जो एंटीसिमेट्रिक रिलेशन है
* आंशिक रूप से आदेशित समुच्चय - अग्रिम-आदेश जो प्रतिसममित संबंध है।
* तुल्यता संबंध - पूर्वक्रम जो कि सममित संबंध है
* तुल्यता संबंध - पूर्वक्रम जो कि सममित संबंध है।
* सख्त कमजोर आदेश # कुल [[अग्रिम आदेश]] - पूर्व आदेश जो जुड़ा हुआ संबंध है
* विशुद्ध दुर्बल आदेश या कुल [[अग्रिम आदेश]] - अग्रिम-आदेश जो जुड़ा हुआ संबंध है।
* टोटल ऑर्डर - प्रीऑर्डर जो एंटीसिमेट्रिक और टोटल है
* कुल आदेश - अग्रिम-आदेश जो प्रतिसममित और कुल है।
* निर्देशित सेट
* निर्देशित समुच्चय।
* [[पहले से ऑर्डर किए गए सेट की श्रेणी]]
* [[पहले से ऑर्डर किए गए सेट की श्रेणी|पहले से आदेश किए गए समुच्चय की श्रेणी।]]
* पूर्व-आदेश देना
* अग्रिम-आदेश देना।
* अच्छी तरह से आदेश देने वाला
* अच्छी तरह से आदेश देने वाला।


== टिप्पणियाँ ==
== टिप्पणियाँ ==
<references />
<references />
==संदर्भ==
==संदर्भ==
* Schmidt, Gunther, "Relational Mathematics", Encyclopedia of Mathematics and its Applications, vol. 132, Cambridge University Press, 2011, {{isbn|978-0-521-76268-7}}
* Schmidt, Gunther, "Relational Mathematics", Encyclopedia of Mathematics and its Applications, vol. 132, Cambridge University Press, 2011, {{isbn|978-0-521-76268-7}}
* {{Citation
* {{Citation
Line 179: Line 164:
   }}
   }}


{{Order theory}}
[[Category: द्विआधारी संबंध]] [[Category: आदेश सिद्धांत]]
[[Category: Machine Translated Page]]
[[Category:Created On 16/02/2023]]
[[Category:Created On 16/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:आदेश सिद्धांत]]
[[Category:द्विआधारी संबंध]]

Latest revision as of 16:17, 28 February 2023

प्राकृतिक संख्याओं पर x//4≤y//4 द्वारा परिभाषित अग्रिम-आदेश x R y का हासे आरेख।चक्रों के कारण R प्रतिसममित नहीं है। यदि चक्र में सभी संख्याओं को समतुल्य माना जाता है, तो आंशिक, सम रैखिक, क्रम[1] प्राप्त होना। नीचे पहला उदाहरण देखें।

गणित में, विशेष रूप से क्रम सिद्धांत में, अग्रिम-आदेश या अर्ध-आदेश द्विआधारी संबंध है जो प्रतिवर्त संबंध और सकर्मक संबंध भी कहा जाता है। समतुल्य संबंधों और (गैर-विशुद्ध) आंशिक आदेशों की तुलना में सीमाएँ अधिक सामान्य हैं, दोनों अग्रिम-आदेश की विशेष स्थितियों हैं: प्रतिसममित संबंध (या कंकाल) अग्रिम-आदेश आंशिक आदेश है, और सममित संबंध अग्रिम-आदेश तुल्यता संबंध है।

यह नाम पूर्व आदेश इस विचार से आता है कि अग्रिम-आदेश (जो आंशिक आदेश नहीं हैं) 'लगभग' (आंशिक) आदेश हैं, किन्तु पूरी तरह से नहीं; वे न तो आवश्यक रूप से प्रतिसममित और न ही असममित संबंध हैं। क्योंकि अग्रिम-आदेश बाइनरी संबंध है, प्रतीक संबंध के लिए सांकेतिक उपकरण के रूप में उपयोग किया जा सकता है। यद्यपि, क्योंकि वे आवश्यक रूप से प्रतिसममित नहीं हैं, कुछ सामान्य अंतर्ज्ञान प्रतीक से जुड़े प्रयुक्त नहीं हो सकता हैं। दूसरी तरफ, आंशिक क्रम और तुल्यता संबंध को परिभाषित करने के लिए, सामान्य शैली में अग्रिम-आदेश का उपयोग किया जा सकता है। यद्यपि, ऐसा करना सदैव उपयोगी या अनुपयोगी होता है, यह अध्ययन किए जा रहे बाधा क्षेत्र पर निर्भर करता है।

शब्दों में, कब होने पर b covers a या वह a precedes b , या वह b reduces a आदि कहे जा सकते है । कभी-कभी, अंकन ← या → या के स्थान पर प्रयोग किया जाता है।

प्रत्येक अग्रिम-आदेश निर्देशित ग्राफ से मिलता हुआ होता है, समुच्चय के तत्वों के साथ कोने के अनुरूप होता है, और कोने के बीच निर्देशित किनारों के अनुरूप तत्वों के युग्म के बीचआदेश संबंध प्रदर्शित करता है। इसका विलोम सत्य नहीं है: अधिकांश निर्देशित रेखांकन न तो प्रतिवर्त और न ही सकर्मक होते हैं । सामान्यतः, संबंधित ग्राफ़ में चक्र (ग्राफ़ सिद्धांत) हो सकता है। अग्रिम-आदेश जो असममित है अब चक्र नहीं है; यह आंशिक क्रम है, और निर्देशित चक्रीय ग्राफ से मिलता हुआ होता है। अग्रिम-आदेश जो सममित है तुल्यता संबंध प्रदर्शित करता है; इसके बारे में सोचा जा सकता है कि ग्राफ़ के किनारों पर दिशा चिह्नक विलुप्त हो गए हैं। सामान्यतः, अग्रिम-आदेश के संबंधित निर्देशित ग्राफ में कई वियोजित किए गए घटक हो सकते हैं।

औपचारिक परिभाषा

सजातीय संबंध पर विचार करें तो किसी दिए गए समुच्चय पर जिससे परिभाषा के अनुसार, का कुछ उपसमुच्चय है और अंकन के स्थान पर प्रयोग किया जाता है , तब को preorder या quasiorder कहा जाता है यदि यह प्रतिवर्ती संबंध और सकर्मक संबंध है; अर्थात्, यदि यह संतुष्ट करता है:

  1. प्रतिवर्ती संबंध: सभी के लिए और
  2. सकर्मक संबंध: यदि सभी के लिए
  3. एक समुच्चय जो अग्रिम-आदेश से लैस होता है उसे अग्रिम-आदेश समुच्चय (या प्रोसेट) कहा जाता है।[2] विशुद्ध अग्रिम-आदेश पर बल या इसके विपरीत, अग्रिम-आदेश को गैर-विशुद्ध अग्रिम-आदेश के रूप में भी संदर्भित किया जा सकता है।

यदि प्रतिवर्तता को अविचलित संबंध से बदल दिया जाता है (ट्रांज़िटिविटी रखते हुए) तो परिणाम को विशुद्ध अग्रिम-आदेश कहा जाता है; स्पष्ट रूप से, पर a strict preorder सजातीय द्विआधारी संबंध है पर जो निम्नलिखित बाधाओं को पूरा करता है:

  • असंवेदनशीलता या विरोधी संवेदनशीलता संबंध: नाट सभी के लिए वह है, है false सभी के लिए और
  • सकर्मक संबंध: यदि सभी के लिए के लिए,
  • एक द्विआधारी संबंध विशुद्ध अग्रिम-आदेश है यदि और केवल यदि यह विशुद्ध आंशिक आदेश है। परिभाषा के अनुसार, विशुद्ध आंशिक आदेश असममित संबंध विशुद्ध अग्रिम-आदेश है, जहां को asymmetric कहा जाता है यदि सभी के लिए होता है , इसके विपरीत, प्रत्येक विशुद्ध अग्रिम-आदेश विशुद्ध आंशिक आदेश है क्योंकि प्रत्येक सकर्मक अपरिवर्तनीय संबंध आवश्यक रूप से असममित संबंध है।
  • चूंकि वे समतुल्य हैं, विशुद्ध आंशिक आदेश शब्द को विशेष रूप से विशुद्ध अग्रिम-आदेश पर पसंद किया जाता है और पाठकों को ऐसे संबंधों के विवरण के लिए विशुद्ध आंशिक आदेश के लिए संदर्भित किया जाता है।विशुद्ध अग्रिम-आदेश के विपरीत, कई (गैर-विशुद्ध) अग्रिम-आदेश हैं जो (गैर-विशुद्ध) आंशिक आदेश नहीं हैं।
  • यदि अग्रिम-आदेश भी प्रतिसममित संबंध है, अर्थात, और तात्पर्य तो यह आंशिक रूप से आदेशित समुच्चय है।
  • दूसरी तरफ, यदि यह सममित संबंध है, अर्थात यदि तात्पर्य तो यह तुल्यता संबंध है।
  • एक अग्रिम-आदेश कुल अग्रिम आदेश है यदि या सभी के लिए होता है।
  • पूर्वनिर्धारित समुच्चय की धारणा श्रेणी सिद्धांत में पतली श्रेणी के रूप में तैयार किया जा सकता है; अर्थात्, श्रेणी के रूप में वस्तु से दूसरी वस्तु में अधिकतम रूपवाद किया जा सकता है। यहाँ वस्तु (श्रेणी सिद्धांत) के तत्वों के अनुरूप है और संबंधित वस्तुओं के लिए आकारिकी है, अन्यथा शून्य होता है । वैकल्पिक रूप से, अग्रिम-आदेशित समुच्चय को समृद्ध श्रेणी के रूप में समझा जा सकता है, अर्थात श्रेणी से समृद्ध होता है।
  • अग्रिम-आदेशित वर्ग ऐसा वर्ग है जो अग्रिम-आदेश से सुसज्जित है। प्रत्येक समुच्चय वर्ग है और इसलिए प्रत्येक पूर्वनिर्धारित समुच्चय पूर्वनिर्धारित वर्ग है।

    उदाहरण

    ग्राफ सिद्धांत

    • (ऊपर चित्र देखें) x//4 से अभिप्राय सबसे बड़े पूर्णांक से है जो x से कम या उसके बराबर 4 से विभाजित है, इस प्रकार 1//4 0 है, जो निश्चित रूप से 0 से कम या उसके बराबर है, जो स्वयं 0//4 के रूप में समान है।
    • किसी भी निर्देशित ग्राफ़ (संभवतः चक्र युक्त) में पहुंच योग्यता संबंध अग्रिम-आदेश को जन्म देता है, जहां अग्रिम-आदेश में यदि और केवल यदि निर्देशित ग्राफ में x से y तक का रास्ता है। इसके विपरीत, प्रत्येक अग्रिम-आदेश निर्देशित ग्राफ़ का रीचैबिलिटी संबंधशिप है (उदाहरण के लिए, ग्राफ़ जिसमें प्रत्येक जोड़ी के लिए x से y तक का कोर है (x, y) साथ यद्यपि, कई अलग-अलग ग्राफ़ में एक-दूसरे के समान गम्‍यता अग्रिम-आदेश हो सकते हैं। उसी तरह, निर्देशित अचक्रीय ग्राफ़ की पुन: योग्यता, बिना चक्र वाले निर्देशित ग्राफ़, आंशिक रूप से निर्देशित किए गए समुच्चयों को जन्म देते हैं (अतिरिक्त एंटीसिमेट्री संपत्ति को संतुष्ट करने वाले अग्रिम-आदेश)।
    • ग्राफ सिद्धांत में ग्राफ-सामान्य संबंध।

    कंप्यूटर विज्ञान

    कंप्यूटर विज्ञान में, निम्नलिखित अग्रिम-आदेशों के उदाहरण मिल सकते हैं।

    • स्पर्शोन्मुख आदेश कार्यों . पर अग्रिम-आदेश का कारण बनता है संबंधित तुल्यता संबंध को स्पर्शोन्मुख तुल्यता कहा जाता है।
    • बहुपद-समय, कई-एक (मानचित्रण) और ट्यूरिंग रिडक्शन जटिलता वर्गों पर अग्रिम-आदेश हैं।
    • उप-टाइपिंग संबंध सामान्यतः अग्रिम-आदेश होते हैं।[3]
    • अनुकार अग्रिम आदेश अग्रिम आदेश (इसलिए नाम) हैं।
    • सार पुनर्लेखन प्रणालियों में संबंधों में कमी।
    • द्वारा परिभाषित परिस्थितियों के सेट पर समावेशन अग्रिम-आदेश, यदि t का सबटर्म(उपवाक्य) s का प्रतिस्थापन उदाहरण है।
    • थीटा-अवधारणा,[4] जो तब होता है जब पूर्व के लिए प्रतिस्थापन प्रयुक्त करने के बाद, वियोगात्मक प्रथम-क्रम सूत्र में शाब्दिक दूसरे द्वारा निहित होते हैं।

    अन्य

    और उदाहरण:

    • प्रत्येक परिमित सामयिक स्थान परिभाषित करके अपने बिंदुओं पर अग्रिम-आदेश को जन्म देता है यदि और केवल यदि x, y के प्रत्येक निकटतम से संबंधित है। इस तरह से सामयिक(टोपोलॉजिकल) स्थान के विशेषज्ञता अग्रिम-आदेश के रूप में हर परिमित अग्रिम-आदेश का गठन किया जा सकता है। यही है, परिमित सामयिक और परिमित सीमा के मध्य एक-से-एक पत्राचार होता है। चूंकि, अनंत सामयिक रिक्त स्थान और उनकी विशेषज्ञता की सीमाओं के बीच संबंध एक-से-एक नहीं है।
    • नेट निर्देशित समुच्चय अग्रिम-आदेश है, अर्थात तत्वों की प्रत्येक जोड़ी में ऊपरी सीमा होती है। नेट के माध्यम से अभिसरण की परिभाषा सामयिक में महत्वपूर्ण है, जहां महत्वपूर्ण विशेषताओं को खोए बिना अग्रिम-आदेशों को आंशिक रूप से आदेशित समुच्चयों द्वारा प्रतिस्थापित नहीं किया जा सकता है।
    • द्वारा परिभाषित संबंध यदि जहां f कुछ अग्रिम-आदेश में प्रकार्य है।
    • द्वारा परिभाषित संबंध यदि x से y तक कुछ अंतःक्षेपण समारोह उपस्थित है। अन्तःक्षेपण को या किसी भी प्रकार की संरचना-संरक्षण कार्य, जैसे रिंग समरूपता, या क्रमचय अनुमान से बदला जा सकता है।
    • गणनीय कुल अदेशन(ऑर्डरिंग) के लिए अंत:स्थापन संबंध।
    • श्रेणी किसी भी वस्तु x से किसी भी अन्य वस्तु y में अधिकतम रूपवाद के साथ अग्रिम-आदेश है। ऐसी श्रेणियों को पतली श्रेणी कहा जाता है। इस अर्थ में, श्रेणियां वस्तुओं के बीच से अधिक संबंधों की अनुमति देकर अग्रिम-आदेशों को सामान्यीकृत करती हैं: प्रत्येक आकारिकी विशिष्ट (नामित) अग्रिम-आदेश संबंध है।

    विशुद्ध दुर्बल अदेशन कुल अग्रिम आदेश का उदाहरण:

    • वरीयता, सामान्य मॉडल के अनुसार।

    उपयोग

    कई स्थितियों में अग्रिम-आदेश महत्वपूर्ण भूमिका निभाते हैं:

    • हर अग्रिम-आदेश को सामयिकता दी जा सकती है, अलेक्जेंडर सामयिक; और वास्तव में, समुच्चय पर प्रत्येक अग्रिम-आदेश उस समुच्चय पर अलेक्जेंड्रोव सामयिक के साथ एक-से-एक पत्राचार में है।
    • आंतरिक बीजगणित को परिभाषित करने के लिए अग्रिम-आदेशों का उपयोग किया जा सकता है।
    • अग्रिम आदेश कुछ प्रकार के मॉडल तर्क के लिए क्रिपके शब्दार्थ प्रदान करते हैं।
    • अग्रिम आदेश का उपयोग फोर्सिंग में समुच्चय सिद्धान्त में स्थिरता और स्वतंत्रता परिणामों को सिद्ध करने के लिए किया जाता है।[5]

    निर्माण

    एक समुच्चय पर प्रत्येक द्विआधारी संबंध को सकर्मक बंद और प्रतिवर्ती क्लोजर को लेकर पर अग्रिम-आदेश तक बढ़ाया जा सकता है , सकर्मक समापन में पथ कनेक्शन को इंगित करता है यदि और केवल यदि से तक कोई -पथ है।

    एक द्विआधारी संबंध दिया पूरक रचना अग्रिम-आदेश बनाता है जिसे बायाँ अवशिष्ट कहा जाता है,[6] जहाँ , के विलोम संबंध को दर्शाता है और के पूरक संबंध को दर्शाता है जबकि संबंध संरचना को दर्शाता है।

    विभाजनों पर अग्रिम आदेश और आंशिक आदेश

    पर के अग्रिम-आदेश को देखते हुए पर तुल्यता संबंध को परिभाषित कर सकता है जैसे कि:

    परिणामी संबंध प्रतिवर्ती है क्योंकि अग्रिम-आदेश प्रतिवर्त है; की संक्रामकता को दो बार प्रयुक्त करके सकर्मक और परिभाषा के अनुसार सममित को प्रदर्शित करता है ।

    इस संबंध का उपयोग करके, तुल्यता के भागफल समुच्चय पर आंशिक क्रम बनाना संभव है, जो कि सभी तुल्यता वर्गों का समुच्चय है।


  • यदि अग्रिम-आदेश द्वारा निरूपित किया जाता है तब तुल्यता वर्ग -चक्र का समुच्चय है: यदि और केवल यदि या -साइकिल के साथ किसी भी स्थितियों में है पर यदि और केवल यदि परिभाषित करना संभव है। यह अच्छी तरह से परिभाषित है, जिसका अर्थ है कि इसकी परिभाषित स्थिति किस और प्रतिनिधि पर निर्भर नहीं करती है सामान्यतः यह की परिभाषा से अनुसरण करते हैं यह आसानी से सत्यापित है कि यह आंशिक रूप सेआदेश किए गए समुच्चय का उत्पादन करता है।
  • इसके विपरीत, किसी समुच्चय के विभाजन पर किसी आंशिक क्रम से पर स्वतः अग्रिम-आदेश बनाना संभव है । अग्रिम-आदेशों और युग्म (विभाजन, आंशिक क्रम) के बीच एक-से-एक पत्राचार होता है।
  • उदाहरण: अनुमानित रूप में सिद्धांत हो, जो कुछ गुणों के साथ वाक्य का समुच्चय है (जिसका विवरण सिद्धांत में पाया जा सकता है)। उदाहरण के लिए, प्रथम-क्रम सिद्धांत (जैसे ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत) या सरल प्रस्तावक कलन अथवा शून्य-क्रम सिद्धांत हो सकता है | के अनेक गुणों में से है कि यह तार्किक परिणामों के अनुसार बंद है, उदाहरण के लिए, यदि कोई वाक्य तार्किक रूप से कुछ वाक्य का तात्पर्य है जो और हो तो आवश्यक रूप से (विधि समुच्चय करके) के रूप में भी लिखा जाएगा।
  • रिश्ता पर अग्रिम आदेश है क्योंकि सदैव धारण करता है और जब भी और दोनों धारण करते हैं तो भी होता है। इसके अतिरिक्त, किसी भी के लिए यदि और केवल यदि ; अर्थात्, दो वाक्य के संबंध में समतुल्य हैं यदि और केवल यदि वे तार्किक रूप से समतुल्य हैं। यह विशेष तुल्यता संबंध सामान्यतः अपने विशेष प्रतीक के साथ दर्शाया जाता है और इसलिए प्रतीक के स्थान पर उपयोग किया जा सकता है वाक्य का तुल्यता वर्ग द्वारा चिह्नित किया जाता है , सभी वाक्यों से मिलकर बनता है जो तार्किक रूप से समकक्ष (अर्थात सभी ऐसा है कि ) हैं।
  • द्वारा प्रेरित आंशिक आदेश जिसे उसी प्रतीक द्वारा भी दर्शाया जाएगा की विशेषता यदि और केवल यदि जहां दाहिने हाथ की स्थिति तुल्यता वर्गों के प्रतिनिधियों और की पसंद से स्वतंत्र होती है।
  • यह सब कहा गया है अब तक इसके विलोम संबंध के बारे में भी कहा जा सकता है पहले से आदेश किया हुआ समुच्चय निर्देशित समुच्चय है क्योंकि यदि और यदि तार्किक संयोजन द्वारा गठित वाक्य को दर्शाता है तब और कहाँ आंशिक रूप से आदेशित समुच्चय परिणामस्वरूप निर्देशित समुच्चय भी है।संबंधित उदाहरण के लिए लिंडेनबाम-टार्स्की बीजगणित देखें।

    अग्रिम-आदेश और विशुद्ध अग्रिम-आदेश

    अग्रिम-आदेश द्वारा प्रेरित विशुद्ध अग्रिम-आदेश:

    अग्रिम-आदेश नया रिश्ता घोषित करके यदि और केवल यदि परिभाषित किया जा सकता है , तुल्यता संबंध का उपयोग करना यदि और केवल यदि पर प्रस्तुत किया गया,और इसलिए निम्नलिखित धारण करता है;

    रिश्ता विशुद्ध आंशिक आदेश है और प्रत्येक विशुद्ध आंशिक आदेश इस तरह से बनाया जा सकता है।

  • यदि अग्रिम आदेश प्रतिसममित संबंध है (और इस प्रकार आंशिक क्रम) तो तुल्यता समानता है (अर्थात, यदि और केवल यदि ) और इसलिए इस स्थितियों में, की परिभाषा के रूप में पुनर्स्थापित किया जा सकता है:
    किन्तु खास बात यह है कि यह नई बाधा है नाट संबंध की सामान्य परिभाषा के रूप में (न ही यह समतुल्य है) उपयोग किया जाता है (वह , है नाट के रूप में परिभाषित: यदि और केवल यदि ) क्योंकि यदि अग्रिम-आदेश प्रतिसममित नहीं है तो परिणामी संबंध सकर्मक नहीं होगा (विचार करें कि समतुल्य गैर-बराबर तत्व कैसे संबंधित हैं)।
  • प्रतीक के "इससे कम या इसके बराबर" के अतिरिक्त प्रतीक के प्रयोग का यही कारण है , जो ऐसे अग्रिम-आदेश के लिए भ्रम उत्पन्न कर सकता है जो प्रतिसममित नहीं है क्योंकि यह भ्रामक रूप से सुझाव दे सकता है कि तात्पर्य है।

    विशुद्ध अग्रिम-आदेश से प्रेरित अग्रिम-आदेश

    उपरोक्त निर्माण का उपयोग करके, कई गैर-विशुद्ध अग्रिम-आदेश ही विशुद्ध अग्रिम-आदेश उत्पन्न कर सकते हैं इसलिए के निर्माण के बारे में अधिक जानकारी के बिना (उदाहरण के लिए समकक्ष संबंध ∼ का ऐसा ज्ञान),से मूल गैर-सख्त पूर्व आदेश का पुनर्निर्माण करना संभव नहीं हो सकता है। संभावित (गैर-विशुद्ध) अग्रिम-आदेश जो दिए गए विशुद्ध अग्रिम-आदेश को प्रेरित करते हैं निम्नलिखित को सम्मिलित है:

    • जैसा (अर्थात, संबंध का प्रतिवर्त समापन लें) को परिभाषित करना। यह विशुद्ध आंशिक आदेश से जुड़ा आंशिक आदेश देता है प्रतिवर्ती क्लोजर के माध्यम से; इस स्थितियों में समानता प्रतीक समानता है तो और आवश्यकता नहीं है।
    • जैसा(अर्थात, संबंध का व्युत्क्रम पूरक लें) जो न तो परिभाषित करने के अनुरूप है; ये संबंध और सामान्य रूप से सकर्मक नहीं हैं; यद्यपि, यदि वे समानता है; उस स्थितियों में विशुद्ध दुर्बल आदेश है। परिणामी अग्रिम-आदेश जुड़ा हुआ संबंध है (जिसे पहले टोटल कहा जाता था); अर्थात कुल अग्रिम-आदेश हैं।

    यदि तब (अर्थात, ) यदि और केवल यदि जब भी तब या विलोम धारण करता है ।

    अग्रिम-आदेशों की संख्या

    Number of n-element binary relations of different types
    Elem­ents Any Transitive Reflexive Symmetric Preorder Partial order Total preorder Total order Equivalence relation
    0 1 1 1 1 1 1 1 1 1
    1 2 2 1 2 1 1 1 1 1
    2 16 13 4 8 4 3 3 2 2
    3 512 171 64 64 29 19 13 6 5
    4 65,536 3,994 4,096 1,024 355 219 75 24 15
    n 2n2 2n2n 2n(n+1)/2 n!
    OEIS A002416 A006905 A053763 A006125 A000798 A001035 A000670 A000142 A000110

    Note that S(n, k) refers to Stirling numbers of the second kind. जैसा कि ऊपर बताया गया है, पूर्व-आदेशों और जोड़े (विभाजन, आंशिक क्रम) के बीच 1-टू-1 पत्राचार है। इस प्रकार पूर्व-आदेशों की संख्या प्रत्येक विभाजन पर आंशिक आदेशों की संख्या का योग है। उदाहरण के लिए:

    • for
      • 1 partition of 3, giving 1 preorder
      • 3 partitions of 2 + 1, giving preorders
      • 1 partition of 1 + 1 + 1, giving 19 preorders
      I.e., together, 29 preorders.
    • for
      • 1 partition of 4, giving 1 preorder
      • 7 partitions with two classes (4 of 3 + 1 and 3 of 2 + 2), giving preorders
      • 6 partitions of 2 + 1 + 1, giving preorders
      • 1 partition of 1 + 1 + 1 + 1, giving 219 preorders
      I.e., together, 355 preorders.

    अंतराल

    के लिए अंतराल बिंदुओं का समुच्चय x और के लिए संतोषजनक है जिसे भी लिख सकते है , इसमें कम से कम अंक a और b होते हैं। कोई भी परिभाषा को सभी जोड़ियों तक विस्तारित कर चुन सकता है जहाँ अतिरिक्त अंतराल सभी खाली हैं।

    इसी विशुद्ध संबंध का उपयोग कर , कोई भी अंतराल को अंक x के समुच्चय के रूप में परिभाषित कर सकता है जो और को संतुष्ट करता है और भी लिखा जाता है। खुला अंतराल तथापि खाली हो सकता है।


  • और को भी इसी प्रकार परिभाषित किया जा सकता है।

    यह भी देखें

    • आंशिक रूप से आदेशित समुच्चय - अग्रिम-आदेश जो प्रतिसममित संबंध है।
    • तुल्यता संबंध - पूर्वक्रम जो कि सममित संबंध है।
    • विशुद्ध दुर्बल आदेश या कुल अग्रिम आदेश - अग्रिम-आदेश जो जुड़ा हुआ संबंध है।
    • कुल आदेश - अग्रिम-आदेश जो प्रतिसममित और कुल है।
    • निर्देशित समुच्चय।
    • पहले से आदेश किए गए समुच्चय की श्रेणी।
    • अग्रिम-आदेश देना।
    • अच्छी तरह से आदेश देने वाला।

    टिप्पणियाँ

    1. on the set of numbers divisible by 4
    2. For "proset", see e.g. Eklund, Patrik; Gähler, Werner (1990), "Generalized Cauchy spaces", Mathematische Nachrichten, 147: 219–233, doi:10.1002/mana.19901470123, MR 1127325.
    3. Pierce, Benjamin C. (2002). Types and Programming Languages. Cambridge, Massachusetts/London, England: The MIT Press. pp. 182ff. ISBN 0-262-16209-1.
    4. Robinson, J. A. (1965). "A machine-oriented logic based on the resolution principle". ACM. 12 (1): 23–41. doi:10.1145/321250.321253. S2CID 14389185.
    5. Kunen, Kenneth (1980), Set Theory, An Introduction to Independence Proofs, Studies in logic and the foundation of mathematics, vol. 102, Amsterdam, The Netherlands: Elsevier.
    6. In this context, "" does not mean "set difference".

    संदर्भ

    • Schmidt, Gunther, "Relational Mathematics", Encyclopedia of Mathematics and its Applications, vol. 132, Cambridge University Press, 2011, ISBN 978-0-521-76268-7
    • Schröder, Bernd S. W. (2002), Ordered Sets: An Introduction, Boston: Birkhäuser, ISBN 0-8176-4128-9