चुंबकीय हिस्टैरिसीस: Difference between revisions

From Vigyanwiki
Line 11: Line 11:
{{Main|मुख्य लेख: फेरोमैग्नेटिज्म}}
{{Main|मुख्य लेख: फेरोमैग्नेटिज्म}}


लौह-चुंबकीय सामग्रियों में हिस्टैरिसीस की घटना दो प्रभावों का परिणाम है: चुंबकीयकरण का नियमित आवर्तन और [[चुंबकीय डोमेन]] के आकार या संख्या में परिवर्तन। सामान्य तौर पर, चुम्बकत्व एक चुम्बक में भिन्न होता है (दिशा में परिमाण में नहीं), लेकिन पर्याप्त रूप से छोटे चुम्बकों में, यह नहीं होता है। [[एकल डोमेन (चुंबकीय)|एकल डोमेन]] चुम्बकों में, चुंबकीयकरण घूर्णन द्वारा चुंबकीय क्षेत्र पर प्रतिक्रिया करता है। एकल-डोमेन चुंबक का उपयोग तब किया जाता है जब मजबूत, स्थिर चुंबकीयकरण की आवश्यकता होती है (उदाहरण- [[चुंबकीय रिकॉर्डिंग]])।
लौह-चुंबकीय सामग्रियों में हिस्टैरिसीस की घटना दो प्रभावों का परिणाम है: चुंबकीयकरण का नियमित आवर्तन और [[चुंबकीय डोमेन]] के आकार या संख्या में परिवर्तन। सामान्य तौर पर, चुम्बकत्व एक चुम्बक में भिन्न होता है (दिशा में परिमाण में नहीं), लेकिन पर्याप्त रूप से छोटे चुम्बकों में यह नहीं होता है। [[एकल डोमेन (चुंबकीय)|एकल डोमेन]] चुम्बकों में, चुंबकीयकरण घूर्णन द्वारा चुंबकीय क्षेत्र पर प्रतिक्रिया करता है। एकल-डोमेन चुंबक का उपयोग तब किया जाता है जब मजबूत, स्थिर चुंबकीयकरण की आवश्यकता होती है (उदाहरण- [[चुंबकीय रिकॉर्डिंग]])।


बड़े चुम्बकों को डोमेन कहे जाने वाले क्षेत्रों में विभाजित किया जाता है। प्रत्येक डोमेन के भीतर, चुंबकीयकरण भिन्न नहीं होता है लेकिन डोमेन के बीच अपेक्षाकृत पतली डोमेन दीवारें होती हैं जिसमें चुंबकीयकरण की दिशा एक डोमेन की दिशा से दूसरे डोमेन की दिशा में घूमती है। यदि चुंबकीय क्षेत्र बदलता है, तो दीवारें चलती हैं डोमेन के सापेक्ष आकार बदलते हैं, क्योंकि डोमेन एक ही दिशा में चुम्बकित नहीं होते हैं, प्रति इकाई आयतन का चुम्बकीय आघूर्ण एकल-डोमेन चुम्बक की तुलना में छोटा होता है लेकिन डोमेन दीवारों में चुंबकीयकरण के केवल एक छोटे से हिस्से का घूर्णन सम्मिलित है इसलिए चुंबकीय क्षण को बदलना बहुत आसान है। चुंबकत्व डोमेन के जोड़ या घटाव से भी बदल सकता है (जिसे न्यूक्लिएशन और डिन्यूक्लियेशन कहा जाता है)।
बड़े चुम्बकों को डोमेन कहे जाने वाले क्षेत्रों में विभाजित किया जाता है। प्रत्येक डोमेन के भीतर, चुंबकीयकरण भिन्न नहीं होता है लेकिन डोमेन के बीच अपेक्षाकृत पतली डोमेन दीवारें होती हैं जिसमें चुंबकीयकरण की दिशा एक डोमेन की दिशा से दूसरे डोमेन की दिशा में घूमती है। यदि चुंबकीय क्षेत्र बदलता है, तो दीवारें चलती हैं डोमेन के सापेक्ष आकार बदलते हैं, क्योंकि डोमेन एक ही दिशा में चुम्बकित नहीं होते हैं, प्रति इकाई आयतन का चुम्बकीय आघूर्ण एकल-डोमेन चुम्बक की तुलना में छोटा होता है लेकिन डोमेन दीवारों में चुंबकीयकरण के केवल एक छोटे से हिस्से का घूर्णन सम्मिलित है इसलिए चुंबकीय क्षण को बदलना बहुत आसान है। चुंबकत्व डोमेन के जोड़ या घटाव से भी बदल सकता है (जिसे न्यूक्लिएशन और डिन्यूक्लियेशन कहा जाता है)।
Line 17: Line 17:
== नाप ==
== नाप ==


चुंबकीय हिस्टैरिसीस को विभिन्न तरीकों से चित्रित किया जा सकता है। सामान्य तौर पर, चुंबकीय सामग्री को एक अलग लागू एच क्षेत्र में रखा जाता है, जैसा कि एक विद्युत चुंबक द्वारा प्रेरित होता है और परिणामी चुंबकीय प्रवाह घनत्व ({{math|''B''}} क्षेत्र) को सामान्य तौर पर नमूने के पास एक पिकअप कॉइल पर लगाए गए आगमनात्मक [[वैद्युतवाहक बल|इलेक्ट्रोमोटिव बल]] द्वारा मापा जाता है। यह विशेषता B-H वक्र उत्पन्न करता है क्योंकि हिस्टैरिसीस चुंबकीय सामग्री के स्मृति प्रभाव को इंगित करता है, {{math|''B''-''H''}} वक्र का आकार H में परिवर्तन के इतिहास पर निर्भर करता है।
चुंबकीय हिस्टैरिसीस को विभिन्न तरीकों से चित्रित किया जा सकता है। सामान्य तौर पर, चुंबकीय सामग्री को एक अलग लागू H क्षेत्र में रखा जाता है, जैसा कि एक विद्युत चुंबक द्वारा प्रेरित होता है और परिणामी चुंबकीय प्रवाह घनत्व ({{math|''B''}} क्षेत्र) को सामान्य तौर पर नमूने के पास एक पिकअप कॉइल पर लगाए गए आगमनात्मक [[वैद्युतवाहक बल|इलेक्ट्रोमोटिव बल]] द्वारा मापा जाता है। यह विशेषता B-H वक्र उत्पन्न करता है क्योंकि यह हिस्टैरिसीस चुंबकीय सामग्री की प्रभावित धारणा को इंगित करता है, {{math|''B''-''H''}} वक्र का आकार H में परिवर्तन के इतिहास पर निर्भर करता है।


वैकल्पिक रूप से, हिस्टैरिसीस को M-H वक्र देते हुए B के स्थान पर चुंबकीयकरण M के रूप में प्लॉट किया जा सकता हैं। ये दोनों वक्र सीधे तौर पर संबोधित हैं क्योंकि <math>B = \mu_0(H + M)</math>
वैकल्पिक रूप से, हिस्टैरिसीस को M-H वक्र देते हुए B के स्थान पर चुंबकीयकरण M के रूप में स्थापित किया जा सकता हैं। ये दोनों वक्र सीधे तौर पर संबोधित हैं <math>B = \mu_0(H + M)</math>


[[चुंबकीय सर्किट]] में चुंबकीय सामग्री को कैसे रखा जाता है, इसके अनुसार माप क्लोज-सर्किट या ओपन-सर्किट हो सकता है।
[[चुंबकीय सर्किट]] में चुंबकीय सामग्री को कैसे रखा जाता है, इसके आधार पर माप क्लोज-सर्किट या ओपन-सर्किट हो सकता है।


* ओपन-सर्किट मापन तकनीकों (जैसे [[कंपन-नमूना मैग्नेटोमीटर]]) में, नमूना एक विद्युत चुंबक के दो ध्रुवों के बीच मुक्त स्थान में निलंबित होता है। इस वजह से, एक विचुंबकीकरण क्षेत्र विकसित होता है और चुंबकीय सामग्री के लिए आंतरिक H क्षेत्र लागू H से अलग होता है। विचुंबकीकरण प्रभाव को ठीक करने के बाद सामान्य B-H वक्र प्राप्त किया जा सकता है।
* ओपन-सर्किट मापन तकनीकों (जैसे [[कंपन-नमूना मैग्नेटोमीटर]]) में, नमूना एक विद्युत चुंबक के दो ध्रुवों के बीच मुक्त स्थान में निलंबित होता है। इस वजह से, एक विचुंबकीकरण क्षेत्र विकसित होता है और चुंबकीय सामग्री के लिए आंतरिक H क्षेत्र लागू H से अलग होता है। विचुंबकीकरण प्रभाव को ठीक करने के बाद सामान्य B-H वक्र प्राप्त किया जा सकता है।
* क्लोज-सर्किट मापन (जैसे हिस्टैरिसीसग्राफ) में, नमूने के सपाट चेहरों को सीधे इलेक्ट्रोमैग्नेट के ध्रुवों के खिलाफ दबाया जाता है। चूँकि ध्रुव फलक अत्यधिक पारगम्य होते हैं, यह विचुंबकीकरण क्षेत्र को हटा देता है, इसलिए आंतरिक {{math|''H''}} क्षेत्र लागू एच क्षेत्र के बराबर होता है।
* क्लोज-सर्किट मापन (जैसे हिस्टैरिसीसग्राफ) में, नमूने के सपाट फेस को सीधे इलेक्ट्रोमैग्नेट के ध्रुवों के खिलाफ दबाया जाता है। चूँकि ध्रुव फलक अत्यधिक पारगम्य होते हैं, यह विचुंबकीकरण क्षेत्र को हटा देता है इसलिए आंतरिक {{math|''H''}} क्षेत्र लागू H क्षेत्र के बराबर होता है।


कठोर चुंबकीय सामग्री (जैसे [[नेओद्यमिउम मगनेट|निओडिमियम चुंबक]] के रूप में) के साथ, चुंबकीयकरण उत्क्रमण की विस्तृत सूक्ष्म प्रक्रिया इस बात पर निर्भर करती है कि चुंबक एक ओपन-सर्किट या क्लोज-सर्किट कॉन्फ़िगरेशन में है, क्योंकि चुंबक के आसपास का चुंबकीय माध्यम एक में डोमेन के बीच के संपर्क को प्रभावित करता है। जिस तरह से एक साधारण विचुंबकत्व कारक द्वारा पूरी तरह से कब्जा नहीं किया जा सकता है।<ref name="FliegansTosoni2020">{{cite journal|last1=Fliegans|first1=J.|last2=Tosoni|first2=O.|last3=Dempsey|first3=N. M.|last4=Delette|first4=G.|title=Modeling of demagnetization processes in permanent magnets measured in closed-circuit geometry|journal=Applied Physics Letters|volume=116|issue=6|year=2020|pages=062405|issn=0003-6951|doi=10.1063/1.5134561|bibcode=2020ApPhL.116f2405F|s2cid=214353446|url=https://hal.archives-ouvertes.fr/hal-03084028/file/2020_Fliegans_APL_116_062405_Modeling%20of%20demagnetization%20processes%20in%20permanent%20magnets%20measured%20in%20closed%20circuit%20geometry.pdf.pdf}}</ref>
कठोर चुंबकीय सामग्री (जैसे [[नेओद्यमिउम मगनेट|निओडिमियम चुंबक]] के रूप में) के साथ, चुंबकीयकरण उत्क्रमण की विस्तृत सूक्ष्म प्रक्रिया इस बात पर निर्भर करती है कि चुंबक एक ओपन-सर्किट या क्लोज-सर्किट कॉन्फ़िगरेशन में है, क्योंकि चुंबक के आसपास का चुंबकीय माध्यम एक में डोमेन के बीच के संपर्क को प्रभावित करता है। जिस तरह से एक साधारण विचुंबकत्व कारक द्वारा पूरी तरह से कब्जा नहीं किया जा सकता है।<ref name="FliegansTosoni2020">{{cite journal|last1=Fliegans|first1=J.|last2=Tosoni|first2=O.|last3=Dempsey|first3=N. M.|last4=Delette|first4=G.|title=Modeling of demagnetization processes in permanent magnets measured in closed-circuit geometry|journal=Applied Physics Letters|volume=116|issue=6|year=2020|pages=062405|issn=0003-6951|doi=10.1063/1.5134561|bibcode=2020ApPhL.116f2405F|s2cid=214353446|url=https://hal.archives-ouvertes.fr/hal-03084028/file/2020_Fliegans_APL_116_062405_Modeling%20of%20demagnetization%20processes%20in%20permanent%20magnets%20measured%20in%20closed%20circuit%20geometry.pdf.pdf}}</ref>

Revision as of 17:43, 22 February 2023

चुंबकीय क्षेत्र H के खिलाफ चुंबकीयकरण M का सैद्धांतिक मॉडल। मूल बिंदु से प्रारंभ होकर, ऊपर की ओर वक्र प्रारंभिक चुंबकीयकरण वक्र है। संतृप्ति के बाद नीचे की ओर वक्र, निचले वापसी वक्र के साथ, मुख्य पाश बनाते हैं। अन्तररोध करता है hc और mrs कोरसीव और संतृप्ति अवशेष हैं।

चुंबकीय हिस्टैरिसीस तब होता है जब एक बाहरी चुंबकीय क्षेत्र को लोहे जैसे लोह चुंबकत्व (फेरोमैग्नेट) पर लागू किया जाता है और परमाणु डिप्लोल्स खुद को इसके साथ संरेखित करते हैं। यहां तक ​​कि जब क्षेत्र हटा दिया जाता है, तब भी संरेखण का हिस्सा बरकरार रहेगा: सामग्री 'चुंबकीय' हो जाती है। एक बार चुम्बकित होने के बाद, चुम्बक अनिश्चित काल तक चुम्बकित रहेगा। इसे चुंबक की शक्ति को हटाने (डीमैग्नेटाइज़) करने के लिए विपरीत दिशा में ऊष्मा या चुंबकीय क्षेत्र की आवश्यकता होती है, यह वह प्रभाव है जो हार्ड डिस्क ड्राइव में मेमोरी का तत्व प्रदान करता है।

क्षेत्र की ताकत H और चुंबकीयकरण M के बीच संबंध ऐसी सामग्री में रैखिक नहीं है। यदि किसी चुंबक को विचुंबकित किया जाता है (H = M = 0) H और M के बीच संबंध को क्षेत्र की ताकत के बढ़ते स्तरों के लिए स्थापित किया जाता है, तो M प्रारंभिक चुंबकीयकरण वक्र का अनुसरण करता है। यह वक्र पहले तेजी से बढ़ता है और फिर संतृप्ति (चुंबकीय) नामक एक स्पर्शोन्मुख तक पहुंचता है। यदि चुंबकीय क्षेत्र एकविध रूप से कम हो जाता है, तो M एक अलग वक्र का अनुसरण करता है। शून्य क्षेत्र की ताकत पर, चुंबकीयकरण मूल से अवशेष नामक राशि से अन्तर्लम्ब (ऑफसेट) होता है। यदि लागू चुंबकीय क्षेत्र की सभी शक्तियों के लिए H-M के संबंध को स्थापित किया जाता है, तो परिणाम एक हिस्टैरिसीस लूप होता है जिसे मुख्य लूप कहा जाता है। H अक्ष के साथ मध्य खंड की चौड़ाई सामग्री की कोरसीटीविटी से दोगुनी है।[1]: Chapter 1 

चुंबकत्व वक्र को पास से देखने से आम तौर पर चुंबकीयकरण में छोटे, यादृच्छिक जमपस (jumps) की एक श्रृंखला का पता चलता है जिसे बार्कहाउज़ेन जमपस कहा जाता है। यह प्रभाव क्रिस्टलोग्राफिक दोषों जैसे विस्थापन के कारण होती है।[1]: Chapter 15 

चुंबकीय हिस्टैरिसीस लूप फेरोमैग्नेटिक ऑर्डरिंग वाली सामग्री के लिए अनन्य नहीं हैं। स्पिन ग्लास ऑर्डरिंग जैसे अन्य चुंबकीय क्रम भी इस घटना को प्रदर्शित करते हैं।[2]

भौतिक उत्पत्ति

लौह-चुंबकीय सामग्रियों में हिस्टैरिसीस की घटना दो प्रभावों का परिणाम है: चुंबकीयकरण का नियमित आवर्तन और चुंबकीय डोमेन के आकार या संख्या में परिवर्तन। सामान्य तौर पर, चुम्बकत्व एक चुम्बक में भिन्न होता है (दिशा में परिमाण में नहीं), लेकिन पर्याप्त रूप से छोटे चुम्बकों में यह नहीं होता है। एकल डोमेन चुम्बकों में, चुंबकीयकरण घूर्णन द्वारा चुंबकीय क्षेत्र पर प्रतिक्रिया करता है। एकल-डोमेन चुंबक का उपयोग तब किया जाता है जब मजबूत, स्थिर चुंबकीयकरण की आवश्यकता होती है (उदाहरण- चुंबकीय रिकॉर्डिंग)।

बड़े चुम्बकों को डोमेन कहे जाने वाले क्षेत्रों में विभाजित किया जाता है। प्रत्येक डोमेन के भीतर, चुंबकीयकरण भिन्न नहीं होता है लेकिन डोमेन के बीच अपेक्षाकृत पतली डोमेन दीवारें होती हैं जिसमें चुंबकीयकरण की दिशा एक डोमेन की दिशा से दूसरे डोमेन की दिशा में घूमती है। यदि चुंबकीय क्षेत्र बदलता है, तो दीवारें चलती हैं डोमेन के सापेक्ष आकार बदलते हैं, क्योंकि डोमेन एक ही दिशा में चुम्बकित नहीं होते हैं, प्रति इकाई आयतन का चुम्बकीय आघूर्ण एकल-डोमेन चुम्बक की तुलना में छोटा होता है लेकिन डोमेन दीवारों में चुंबकीयकरण के केवल एक छोटे से हिस्से का घूर्णन सम्मिलित है इसलिए चुंबकीय क्षण को बदलना बहुत आसान है। चुंबकत्व डोमेन के जोड़ या घटाव से भी बदल सकता है (जिसे न्यूक्लिएशन और डिन्यूक्लियेशन कहा जाता है)।

नाप

चुंबकीय हिस्टैरिसीस को विभिन्न तरीकों से चित्रित किया जा सकता है। सामान्य तौर पर, चुंबकीय सामग्री को एक अलग लागू H क्षेत्र में रखा जाता है, जैसा कि एक विद्युत चुंबक द्वारा प्रेरित होता है और परिणामी चुंबकीय प्रवाह घनत्व (B क्षेत्र) को सामान्य तौर पर नमूने के पास एक पिकअप कॉइल पर लगाए गए आगमनात्मक इलेक्ट्रोमोटिव बल द्वारा मापा जाता है। यह विशेषता B-H वक्र उत्पन्न करता है क्योंकि यह हिस्टैरिसीस चुंबकीय सामग्री की प्रभावित धारणा को इंगित करता है, B-H वक्र का आकार H में परिवर्तन के इतिहास पर निर्भर करता है।

वैकल्पिक रूप से, हिस्टैरिसीस को M-H वक्र देते हुए B के स्थान पर चुंबकीयकरण M के रूप में स्थापित किया जा सकता हैं। ये दोनों वक्र सीधे तौर पर संबोधित हैं

चुंबकीय सर्किट में चुंबकीय सामग्री को कैसे रखा जाता है, इसके आधार पर माप क्लोज-सर्किट या ओपन-सर्किट हो सकता है।

  • ओपन-सर्किट मापन तकनीकों (जैसे कंपन-नमूना मैग्नेटोमीटर) में, नमूना एक विद्युत चुंबक के दो ध्रुवों के बीच मुक्त स्थान में निलंबित होता है। इस वजह से, एक विचुंबकीकरण क्षेत्र विकसित होता है और चुंबकीय सामग्री के लिए आंतरिक H क्षेत्र लागू H से अलग होता है। विचुंबकीकरण प्रभाव को ठीक करने के बाद सामान्य B-H वक्र प्राप्त किया जा सकता है।
  • क्लोज-सर्किट मापन (जैसे हिस्टैरिसीसग्राफ) में, नमूने के सपाट फेस को सीधे इलेक्ट्रोमैग्नेट के ध्रुवों के खिलाफ दबाया जाता है। चूँकि ध्रुव फलक अत्यधिक पारगम्य होते हैं, यह विचुंबकीकरण क्षेत्र को हटा देता है इसलिए आंतरिक H क्षेत्र लागू H क्षेत्र के बराबर होता है।

कठोर चुंबकीय सामग्री (जैसे निओडिमियम चुंबक के रूप में) के साथ, चुंबकीयकरण उत्क्रमण की विस्तृत सूक्ष्म प्रक्रिया इस बात पर निर्भर करती है कि चुंबक एक ओपन-सर्किट या क्लोज-सर्किट कॉन्फ़िगरेशन में है, क्योंकि चुंबक के आसपास का चुंबकीय माध्यम एक में डोमेन के बीच के संपर्क को प्रभावित करता है। जिस तरह से एक साधारण विचुंबकत्व कारक द्वारा पूरी तरह से कब्जा नहीं किया जा सकता है।[3]


मॉडल

हिस्टैरिसीस में सबसे प्रसिद्ध अनुभवजन्य मॉडल प्रीसाच और जाइल्स-एथर्टन मॉडल हैं। ये मॉडल हिस्टैरिसीस लूप के सटीक मॉडलिंग की अनुमति देते हैं और उद्योग में व्यापक रूप से उपयोग किए जाते हैं।

हालांकि, ये मॉडल ऊष्मप्रवैगिकी के साथ संबंध खो देते हैं और ऊर्जा स्थिरता सुनिश्चित नहीं होती है। एक और हालिया मॉडल, एक अधिक सुसंगत ऊष्मप्रवैगिकी नींव के साथ, लैवेट एट अल का वेक्टरियल इंक्रीमेंटल गैर-रूढ़िवादी सुसंगत हिस्टैरिसीस (VINCH) 2011 मॉडल हैं। कीनेमेटिक सख्त कानूनों और अपरिवर्तनीय प्रक्रियाओं के ऊष्मप्रवैगिकी से प्रेरित है।[4] विशेष रूप से, एक सटीक मॉडलिंग प्रदान करने के अलावा, संग्रहीत चुंबकीय ऊर्जा और विघटित ऊर्जा हर समय ज्ञात होती है। प्राप्त वृद्धिशील सूत्रीकरण परिवर्तनशील रूप से सुसंगत है, अर्थात, सभी आंतरिक चर थर्मोडायनामिक क्षमता के न्यूनीकरण से अनुसरण करते हैं। यह आसानी से एक सदिश मॉडल प्राप्त करने की अनुमति देता है जबकि प्रीसाच और जाइल्स-एथर्टन मूल रूप से स्केलर मॉडल हैं।

स्टोनर-वोल्फ़र्थ मॉडल एक भौतिक मॉडल है जो अनिसोट्रोपिक प्रतिक्रिया (प्रत्येक क्रिस्टलीय ग्रेन के "आसान" / "कठोर" अक्ष) के संदर्भ में हिस्टैरिसीस की व्याख्या करता है।

सूक्ष्मचुंबकीय सिमुलेशन अक्सर लैंडौ-लिफ्शिट्ज-गिल्बर्ट समीकरण के आधार पर चुंबकीय डोमेन के अंतःक्रिया के अंतरिक्ष और समय के पहलुओं को विस्तार से पकड़ने और समझाने का प्रयास करते हैं।

ईज़िंग मॉडल जैसे टाय मॉडल हिस्टैरिसीस के गुणात्मक और थर्मोडायनामिक पहलुओं (जैसे पैरामैग्नेटिक व्यवहार के लिए क्यूरी बिंदु चरण संक्रमण) की व्याख्या करने में मदद कर सकते हैं, हालांकि वास्तविक चुंबक का वर्णन करने के लिए उनका उपयोग नहीं किया जाता है।

अनुप्रयोग

चुंबकीय सामग्री में हिस्टैरिसीस के सिद्धांत के अनुप्रयोगों में बहुत विविधता है। इनमें से कई धारणा को बनाए रखने की अपनी क्षमता का उपयोग करते हैं, उदाहरण के लिए चुंबकीय टेप, हार्ड डिस्क और क्रेडिट कार्ड। इन अनुप्रयोगों में, लोहे की तरह कठोर चुम्बक (उच्च कोरसिविटी) वांछनीय हैं ताकि धारणा आसानी से मिट न जाए।

सॉफ्ट मैग्नेट (कम कोरसिविटी) का उपयोग ट्रांसफार्मर और इलेक्ट्रोमैग्नेट में आन्तरक के रूप में किया जाता है। चुंबकीय क्षेत्र के चुंबकीय क्षण की प्रतिक्रिया इसके चारों ओर लिपटे कॉइल की प्रतिक्रिया को बढ़ा देती है। कम कोरसिविटी हिस्टैरिसीस से जुड़ी ऊर्जा हानि को कम करती है।

चुंबकीय हिस्टैरिसीस सामग्री (नरम गिलट-लौह छड़) का उपयोग अंतरिक्ष युग के प्रारंभ के बाद से पृथ्वी की निचली कक्षा में उपग्रहों की कोणीय गति को कम करने के लिए किया गया हैं।[5]


यह भी देखें

संदर्भ

  1. 1.0 1.1 Chikazumi, Sōshin (1997). Physics of ferromagnetism (2nd ed.). Oxford: Oxford University Press. ISBN 9780191569852.
  2. Monod, P.; Prejean, J. J.; Tissier, B. (1979). "Magnetic hysteresis of CuMn in the spin glass state". J. Appl. Phys. 50 (B11): 7324. Bibcode:1979JAP....50.7324M. doi:10.1063/1.326943.
  3. Fliegans, J.; Tosoni, O.; Dempsey, N. M.; Delette, G. (2020). "Modeling of demagnetization processes in permanent magnets measured in closed-circuit geometry" (PDF). Applied Physics Letters. 116 (6): 062405. Bibcode:2020ApPhL.116f2405F. doi:10.1063/1.5134561. ISSN 0003-6951. S2CID 214353446.
  4. François-Lavet, V.; Henrotte, F.; Stainier, L.; Noels, L.; Geuzaine, C. (2011). "Vectorial incremental nonconservative consistent hysteresis model" (PDF). Proceedings of the 5th International Conference on Advanded COmputational Methods in Engineering (ACOMEN2011). pp. 10–. hdl:2268/99208. ISBN 978-2-9601143-1-7.
  5. General Electric Spacecraft Department (16 November 1964). Magnetic Hysteresis Damping of Satellite Attitude Motion (PDF) (Technical report). U.S. Naval Weapons Laboratory, Dahlgren, Virginia. 64SD4252. Archived from the original (PDF) on October 2, 2016. Retrieved 1 October 2016.