एमओएक्स ईंधन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(22 intermediate revisions by 3 users not shown)
Line 2: Line 2:
मिश्रित [[ऑक्साइड]] ईंधन [[परमाणु ईंधन|परमाणु ईंधन है]]। जिसे सामान्यतः '''एमओएक्स ईंधन''' के रूप में संदर्भित किया जाता है। जिसमें [[विखंडनीय सामग्री]] के एक से अधिक ऑक्साइड होते हैं और जिसमें सामान्यतः [[प्राकृतिक यूरेनियम]], [[पुनर्संसाधित यूरेनियम]] या कम यूरेनियम के साथ मिश्रित [[प्लूटोनियम]] सम्मिलित होता है। एमओएक्स ईंधन [[कम समृद्ध यूरेनियम]] (एलईयू) ईंधन का एक विकल्प है। जिसका उपयोग हल्के-पानी रिएक्टरों में किया जाता है। जो परमाणु ऊर्जा उत्पादन को प्रबल और तीव्र करता है।
मिश्रित [[ऑक्साइड]] ईंधन [[परमाणु ईंधन|परमाणु ईंधन है]]। जिसे सामान्यतः '''एमओएक्स ईंधन''' के रूप में संदर्भित किया जाता है। जिसमें [[विखंडनीय सामग्री]] के एक से अधिक ऑक्साइड होते हैं और जिसमें सामान्यतः [[प्राकृतिक यूरेनियम]], [[पुनर्संसाधित यूरेनियम]] या कम यूरेनियम के साथ मिश्रित [[प्लूटोनियम]] सम्मिलित होता है। एमओएक्स ईंधन [[कम समृद्ध यूरेनियम]] (एलईयू) ईंधन का एक विकल्प है। जिसका उपयोग हल्के-पानी रिएक्टरों में किया जाता है। जो परमाणु ऊर्जा उत्पादन को प्रबल और तीव्र करता है।


उदाहरण के लिए 7% प्लूटोनियम और 93% प्राकृतिक यूरेनियम का मिश्रण समान रूप से प्रतिक्रिया करता है। चूंकि एलईयू ईंधन (3 से 5% यूरेनियम -235) के लिए एमओएक्स में सामान्यतः दो चरण होते हैं: पहला UO<sub>2</sub> और दूसरा PuO<sub>2</sub> और एक एकल चरण ठोस समाधान (U,Pu)O<sub>2</sub> की सामग्री परमाणु रिएक्टर के प्रकार के आधार पर  PuO<sub>2</sub>1.5 wt.% से 25–30 wt.% तक भिन्न हो सकता है।
उदाप्रत्येकण के लिए 7% प्लूटोनियम और 93% प्राकृतिक यूरेनियम का मिश्रण समान रूप से प्रतिक्रिया करता है। चूंकि एलईयू ईंधन (3 से 5% यूरेनियम -235) के लिए एमओएक्स में सामान्यतः दो चरण होते हैं: पहला UO<sub>2</sub> और दूसरा PuO<sub>2</sub> और एक एकल चरण ठोस समाधान (U,Pu)O<sub>2</sub> की सामग्री परमाणु रिएक्टर के प्रकार के आधार पर  PuO<sub>2</sub>1.5 wt.% से 25–30 wt.% तक भिन्न हो सकता है।


एमओएक्स ईंधन का एक आकर्षण यह है कि यह अधिशेष [[हथियार-ग्रेड परमाणु सामग्री]] का उपयोग करने का एक प्रकार है| हथियार-ग्रेड प्लूटोनियम, अधिशेष प्लूटोनियम के भंडारण का एकमात्र विकल्प है। जिसे [[परमाणु हथियार|परमाणु हथियारों]] में उपयोग के लिए चोरी के हानि से सुरक्षित करने की आवश्यकता होगी।<ref>{{cite web|url=http://www.world-nuclear.org/info/inf13.html|title=Military Warheads as a Source of Nuclear Fuel - Megatons to MegaWatts - World Nuclear Association|website=www.world-nuclear.org}}</ref><ref>{{cite web|url=http://fissilematerials.org/blog/2011/04/us_mox_program_wanted_rel.html|title=U.S. MOX program wanted relaxed security at the weapon-grade plutonium facility|date=11 April 2011}}</ref> दूसरी ओर कुछ अध्ययनों ने चेतावनी दी है कि एमओएक्स ईंधन के वैश्विक व्यावसायिक उपयोग को सामान्य करने और [[परमाणु पुनर्संसाधन]] के संबंधित विस्तार से [[परमाणु प्रसार]] के हानि को कम करने के अतिरिक्त असैन्य परमाणु में खर्च किए गए ईंधन चक्र से प्लूटोनियम के बढ़ते पृथक्करण को प्रोत्साहित करके वृद्धि होगी।<ref>{{cite web|url=http://www.armscontrol.org/act/2005_09/Fetter-VonHippel|title=Is U.S. Reprocessing Worth The Risk? - Arms Control Association|website=www.armscontrol.org}}</ref><ref>{{cite web|url=http://www.nirs.org/factsheets/moxproliferation.htm|title=Factsheets on West Valley · NIRS|date=1 March 2015}}</ref><ref>{{cite web|last=Podvig|first=Pavel|title=U.S. plutonium disposition program: Uncertainties of the MOX route|url=http://fissilematerials.org/blog/2011/03/us_plutonium_disposition_.html|publisher=International Panel on Fissile Materials|access-date=13 February 2012|date=10 March 2011}}</ref>
एमओएक्स ईंधन का एक आकर्षण यह है कि यह अधिशेष [[हथियार-ग्रेड परमाणु सामग्री]] का उपयोग करने का एक प्रकार है| हथियार-ग्रेड प्लूटोनियम, अधिशेष प्लूटोनियम के भंडारण का एकमात्र विकल्प है। जिसे [[परमाणु हथियार|परमाणु हथियारों]] में उपयोग के लिए चोरी के हानि से सुरक्षित करने की आवश्यकता होगी।<ref>{{cite web|url=http://www.world-nuclear.org/info/inf13.html|title=Military Warheads as a Source of Nuclear Fuel - Megatons to MegaWatts - World Nuclear Association|website=www.world-nuclear.org}}</ref><ref>{{cite web|url=http://fissilematerials.org/blog/2011/04/us_mox_program_wanted_rel.html|title=U.S. MOX program wanted relaxed security at the weapon-grade plutonium facility|date=11 April 2011}}</ref> दूसरी ओर कुछ अध्ययनों ने चेतावनी दी है कि एमओएक्स ईंधन के वैश्विक व्यावसायिक उपयोग को सामान्य करने और [[परमाणु पुनर्संसाधन]] के संबंधित विस्तार से [[परमाणु प्रसार]] के हानि को कम करने के अतिरिक्त असैन्य परमाणु में व्ययकिए गए ईंधन चक्र से प्लूटोनियम के बढ़ते पृथक्करण को प्रोत्साहित करके वृद्धि होगी।<ref>{{cite web|url=http://www.armscontrol.org/act/2005_09/Fetter-VonHippel|title=Is U.S. Reprocessing Worth The Risk? - Arms Control Association|website=www.armscontrol.org}}</ref><ref>{{cite web|url=http://www.nirs.org/factsheets/moxproliferation.htm|title=Factsheets on West Valley · NIRS|date=1 March 2015}}</ref><ref>{{cite web|last=Podvig|first=Pavel|title=U.S. plutonium disposition program: Uncertainties of the MOX route|url=http://fissilematerials.org/blog/2011/03/us_plutonium_disposition_.html|publisher=International Panel on Fissile Materials|access-date=13 February 2012|date=10 March 2011}}</ref>




== सिंहावलोकन ==
== निरीक्षण ==
प्रत्येक यूरेनियम आधारित [[परमाणु रिएक्टर कोर]] में यूरेनियम -235 जैसे यूरेनियम समस्थानिकों का [[परमाणु विखंडन]] होता है, और [[न्यूट्रॉन कैप्चर]] के कारण नए, भारी समस्थानिकों का निर्माण होता है, मुख्य रूप से यूरेनियम -238 द्वारा। रिएक्टर में अधिकांश ईंधन द्रव्यमान यूरेनियम -238 है। न्यूट्रॉन कैप्चर और दो क्रमिक [[बीटा क्षय]] से, यूरेनियम -238 [[प्लूटोनियम -239]] बन जाता है, जो क्रमिक न्यूट्रॉन कैप्चर द्वारा [[प्लूटोनियम -240]], प्लूटोनियम -241, [[प्लूटोनियम -242]], और (आगे बीटा क्षय के बाद) अन्य [[ट्रांसयूरानिक]] या [[एक्टिनाइड]] न्यूक्लाइड बन जाता है। प्लूटोनियम-239 और [[प्लूटोनियम 241]] विखंडनीय पदार्थ हैं, जैसे [[[[यूरेनियम-238]]]]। इसी प्रकार यूरेनियम-235 से [[यूरेनियम-236]], [[नैप्टुनियम-237]] तथा [[प्लूटोनियम -238]] की अल्प मात्राएँ बनती हैं।
प्रत्येक यूरेनियम आधारित [[परमाणु रिएक्टर कोर]] में यूरेनियम-235 जैसे यूरेनियम समस्थानिकों का [[परमाणु विखंडन]] होता है और [[न्यूट्रॉन कैप्चर]] के कारण नए और भारी समस्थानिकों का निर्माण होता है। मुख्य रूप से यूरेनियम-238 द्वारा रिएक्टर में अधिकांश ईंधन द्रव्यमान यूरेनियम-238 है। न्यूट्रॉन कैप्चर और दो क्रमिक [[बीटा क्षय]] से यूरेनियम-238 [[प्लूटोनियम -239|प्लूटोनियम-239]] बन जाता है। जो क्रमिक न्यूट्रॉन कैप्चर द्वारा [[प्लूटोनियम -240|प्लूटोनियम-240]], प्लूटोनियम-241, [[प्लूटोनियम -242|प्लूटोनियम-242]], और (आगे बीटा क्षय के बाद) अन्य [[ट्रांसयूरानिक]] या [[एक्टिनाइड]] न्यूक्लाइड बन जाता है। प्लूटोनियम-239 और [[प्लूटोनियम 241|प्लूटोनियम-241]] विखंडनीय पदार्थ हैं। जैसे [[यूरेनियम-238]]। इसी प्रकार यूरेनियम-235 से [[यूरेनियम-236]], [[नैप्टुनियम-237]] तथा [[प्लूटोनियम -238]] की अल्प मात्राएँ बनती हैं।
{{clear}}
आम तौर पर, एलईयू ईंधन को हर पांच साल में बदल दिया जाता है, रिएक्टर में अधिकांश प्लूटोनियम -239 जल जाता है। यह यूरेनियम -235 की तरह व्यवहार करता है, विखंडन के लिए थोड़ा अधिक [[परमाणु क्रॉस सेक्शन]] होता है, और इसका विखंडन समान मात्रा में [[ऊर्जा]] जारी करता है। सामान्यतः, एक रिएक्टर से निकलने वाले प्रयुक्त परमाणु ईंधन का लगभग एक प्रतिशत प्लूटोनियम होता है, और प्लूटोनियम का लगभग दो-तिहाई प्लूटोनियम -239 होता है। दुनिया भर में, हर साल लगभग 100 टन प्लूटोनियम खर्च किए गए ईंधन में पैदा होता है।


उपयोग करने योग्य ईंधन में प्लूटोनियम को पुन: संसाधित करने से मूल यूरेनियम से प्राप्त ऊर्जा में लगभग 12% की वृद्धि होती है, और यदि यूरेनियम -235 को भी पुन: संवर्धन द्वारा पुनर्नवीनीकरण किया जाता है, तो यह लगभग 20% हो जाता है।<ref name=WNAMOX>{{cite web|url=http://www.world-nuclear.org/info/inf29.html|title=Information from the World Nuclear Association about MOX}}</ref> वर्तमान में प्लूटोनियम को केवल पुनर्संसाधित किया जाता है और एक बार MOX ईंधन के रूप में उपयोग किया जाता है; [[मामूली एक्टिनाइड]]्स और प्लूटोनियम आइसोटोप के उच्च अनुपात के साथ खर्च किए गए एमओएक्स ईंधन को अपशिष्ट के रूप में संग्रहीत किया जाता है।
सामान्यतः एलईयू ईंधन को प्रत्येक पांच वर्ष में बदल दिया जाता है। रिएक्टर में अधिकांश प्लूटोनियम-239 जल जाता है। यह यूरेनियम-235 की प्रकार व्यवहार करता है। विखंडन के लिए थोड़ा अधिक [[परमाणु क्रॉस सेक्शन]] होता है और इसका विखंडन समान मात्रा में [[ऊर्जा]] जारी करता है। सामान्यतः एक रिएक्टर से निकलने वाले प्रयुक्त परमाणु ईंधन का लगभग एक प्रतिशत प्लूटोनियम होता है और प्लूटोनियम का लगभग दो-तिहाई प्लूटोनियम-239 होता है। विश्न में प्रत्येक वर्ष लगभग 100 टन प्लूटोनियम व्ययकिए गए ईंधन में उत्पन्न होता है।
{{clear}}
एमओएक्स ईंधन को पेश करने से पहले मौजूदा परमाणु रिएक्टरों को फिर से लाइसेंस दिया जाना चाहिए क्योंकि इसका उपयोग करने से रिएक्टर की परिचालन विशेषताओं में परिवर्तन होता है, और इसे लेने के लिए संयंत्र को थोड़ा डिजाइन या अनुकूलित किया जाना चाहिए; उदाहरण के लिए, अधिक [[नियंत्रण छड़]]ों की आवश्यकता होती है। अक्सर ईंधन लोड का केवल एक तिहाई से आधा एमओएक्स पर स्विच किया जाता है, लेकिन 50% से अधिक एमओएक्स लोडिंग के लिए महत्वपूर्ण परिवर्तन आवश्यक होते हैं और एक रिएक्टर को तदनुसार डिजाइन करने की आवश्यकता होती है। सिस्टम [[बीएन-800 रिएक्टर]] डिज़ाइन, विशेष रूप से फीनिक्स, एरिजोना के पास यूएस [[पालो वर्डे न्यूक्लियर जनरेटिंग स्टेशन]] पर तैनात, 100% एमओएक्स कोर संगतता के लिए डिज़ाइन किया गया था, लेकिन अभी तक हमेशा ताजा कम समृद्ध यूरेनियम पर संचालित होता है। सिद्धांत रूप में, तीन पालो वर्डे रिएक्टर प्रत्येक वर्ष सात पारंपरिक ईंधन वाले रिएक्टरों से उत्पन्न होने वाले एमओएक्स का उपयोग कर सकते हैं और अब ताजा यूरेनियम ईंधन की आवश्यकता नहीं होगी।


फास्ट न्यूट्रॉन [[बीएन-600 रिएक्टर]] | BN-600 और BN-800 रिएक्टरों को 100% MOX लोडिंग के लिए डिज़ाइन किया गया है। 2022 में, BN-800 को पहली बार MOX ईंधन से पूरी तरह लोड किया गया था।<ref>[https://strana-rosatom.ru/2022/09/09/reaktor-bn-800-polnostju-pereshel-na-moks/ Реактор БН-800 полностью перешел на МОКС-топливо]</ref>
उपयोग करने योग्य ईंधन में प्लूटोनियम को पुन: संसाधित करने से मूल यूरेनियम से प्राप्त ऊर्जा में लगभग 12% की वृद्धि होती है और यदि यूरेनियम-235 को भी पुन: संवर्धन द्वारा पुनर्नवीनीकरण किया जाता है। तो यह लगभग 20% हो जाता है।<ref name=WNAMOX>{{cite web|url=http://www.world-nuclear.org/info/inf29.html|title=Information from the World Nuclear Association about MOX}}</ref> वर्तमान में प्लूटोनियम को केवल पुनर्संसाधित किया जाता है और एक बार एमओएक्स ईंधन के रूप में उपयोग किया जाता है; [[मामूली एक्टिनाइड|सामान्यत एक्टिनाइड्स]] और प्लूटोनियम आइसोटोप के उच्च अनुपात के साथ व्ययकिए गए एमओएक्स ईंधन को अपशिष्ट के रूप में संग्रहीत किया जाता है।
[[कनाडा लिमिटेड की परमाणु ऊर्जा]] (AECL) के अनुसार, CANDU रिएक्टर बिना भौतिक संशोधन के 100% MOX कोर का उपयोग कर सकते हैं।<ref>{{cite news|url=http://www.candu.com/en/home/news/mediareleases/canduworkswithuknucleardecommissioningauthoritytos.aspx|title=Candu works with UK Nuclear Decommissioning Authority to study deployment of EC6 reactors|date= June 27, 2012|publisher=Candu press-release|access-date=5 December 2013|location=Mississauga}}</ref><ref>[http://cns.miis.edu/pubs/ionp/swords.htm "Swords into Ploughshares: Canada Could Play Key Role in Transforming Nuclear Arms Material into Electricity,"] {{webarchive|url=https://web.archive.org/web/20131003024753/http://cns.miis.edu/pubs/ionp/swords.htm |date=2013-10-03 }} in The Ottawa Citizen (22 August 1994): "CANDU ... reactor design inherently allows for the handling of full-MOX cores"</ref> एईसीएल ने प्लूटोनियम डिस्पोजल पर [[यूनाइटेड स्टेट्स नेशनल एकेडमी ऑफ साइंसेज]] कमेटी को बताया कि 0.5 से 3% प्लूटोनियम युक्त एमओएक्स ईंधन के उपयोग के परीक्षण में इसका व्यापक अनुभव है।{{Citation needed|date=March 2011}}


एमओएक्स ईंधन को प्रस्तुत करने से पहले उपस्थित परमाणु रिएक्टरों को फिर से लाइसेंस दिया जाना चाहिए क्योंकि इसका उपयोग करने से रिएक्टर की परिचालन विशेषताओं में परिवर्तन होता है और इसे लेने के लिए संयंत्र को थोड़ा डिजाइन या अनुकूलित किया जाना चाहिए। उदाहरण प्रत्येक कण के लिए अधिक [[नियंत्रण छड़|नियंत्रण छड़ों]] की आवश्यकता होती है। प्रायः ईंधन लोड का केवल एक तिहाई से आधा एमओएक्स पर स्विच किया जाता है। किन्तु50% से अधिक एमओएक्स लोडिंग के लिए महत्वपूर्ण परिवर्तन आवश्यक होते हैं और एक रिएक्टर को उसी के अनुसार डिजाइन करने की आवश्यकता होती है। प्रणाली[[बीएन-800 रिएक्टर]] डिज़ाइन विशेष रूप से फीनिक्स एरिजोना के पास यूएस [[पालो वर्डे न्यूक्लियर जनरेटिंग स्टेशन]] पर लगे हुए 100% एमओएक्स कोर संगतता के लिए डिज़ाइन किया गया था। किन्तुअभी तक सदैव ताजा कम समृद्ध यूरेनियम पर संचालित होता है। सिद्धांत रूप में तीन पालो वर्डे रिएक्टर प्रत्येक वर्ष सात ईंधन वाले रिएक्टरों से उत्पन्न होने वाले एमओएक्स का उपयोग कर सकते हैं और अब नये यूरेनियम ईंधन की आवश्यकता नहीं होगी।


== MOX ईंधन खर्च किया ==
फास्ट न्यूट्रॉन [[बीएन-600 रिएक्टर]] बीएन-600 और बीएन-800 रिएक्टरों को 100% मॉक्स लोडिंग के लिए डिज़ाइन किया गया है। 2022 में बीएन-800 को पहली बार मॉक्स ईंधन से पूरी प्रकार लोड किया गया था।<ref>[https://strana-rosatom.ru/2022/09/09/reaktor-bn-800-polnostju-pereshel-na-moks/ Реактор БН-800 полностью перешел на МОКС-топливо]</ref> [[कनाडा लिमिटेड की परमाणु ऊर्जा]] (एईसीएल) के अनुसार कैनडू रिएक्टर बिना भौतिक संशोधन के 100% मॉक्स कोर का उपयोग कर सकते हैं।<ref>{{cite news|url=http://www.candu.com/en/home/news/mediareleases/canduworkswithuknucleardecommissioningauthoritytos.aspx|title=Candu works with UK Nuclear Decommissioning Authority to study deployment of EC6 reactors|date= June 27, 2012|publisher=Candu press-release|access-date=5 December 2013|location=Mississauga}}</ref><ref>[http://cns.miis.edu/pubs/ionp/swords.htm "Swords into Ploughshares: Canada Could Play Key Role in Transforming Nuclear Arms Material into Electricity,"] {{webarchive|url=https://web.archive.org/web/20131003024753/http://cns.miis.edu/pubs/ionp/swords.htm |date=2013-10-03 }} in The Ottawa Citizen (22 August 1994): "CANDU ... reactor design inherently allows for the handling of full-MOX cores"</ref> एईसीएल ने प्लूटोनियम डिस्पोजल पर [[यूनाइटेड स्टेट्स नेशनल एकेडमी ऑफ साइंसेज]] कमेटी को बताया कि 0.5 से 3% प्लूटोनियम युक्त एमओएक्स ईंधन के उपयोग के परीक्षण में इसका व्यापक अनुभव है।
रिएक्टर-ग्रेड प्लूटोनियम की सामग्री # रिएक्टरों में पुन: उपयोग | थर्मल रिएक्टरों से खर्च किए गए एमओएक्स ईंधन में अन-बर्न प्लूटोनियम महत्वपूर्ण है - प्रारंभिक प्लूटोनियम लोडिंग के 50% से अधिक। चूंकि, एमओएक्स के जलने के दौरान फिशाइल (विषम संख्या वाले) आइसोटोप का नॉन-फिशाइल (ईवन) से अनुपात बर्न अप के आधार पर लगभग 65% से 20% तक गिर जाता है। यह विखंडनीय समस्थानिकों को पुनर्प्राप्त करने के किसी भी प्रयास को कठिन बना देता है और किसी भी बल्क पु को पुनर्प्राप्त करने के लिए किसी भी दूसरी पीढ़ी के एमओएक्स में पु के इतने उच्च अंश की आवश्यकता होगी कि यह अव्यावहारिक होगा।{{why|date=January 2022}} इसका मतलब यह है कि इस तरह के खर्च किए गए ईंधन को प्लूटोनियम के पुन: उपयोग (जलने) के लिए पुन: संसाधित करना मुश्किल होगा। पुओ की कम घुलनशीलता के कारण [[चरण (पदार्थ)]] खर्च किए गए एमओएक्स का नियमित पुनर्संसाधन मुश्किल है<sub>2</sub> नाइट्रिक एसिड में।<ref name="Burakov">{{cite book |last1=Burakov |first1=B. E. |last2=Ojovan |first2=M. I. |last3=Lee |first3=W. E. |title=Crystalline Materials for Actinide Immobilisation |publisher=Imperial College Press |location=London |page=58 |year=2010}}</ref>
 
2015 तक, फेनिक्स फास्ट रिएक्टर में दो बार-पुनर्नवीनीकरण, उच्च-बर्नअप ईंधन का एकमात्र प्रदर्शन हुआ।<ref>{{cite journal|title= Reprocessing of spent fast reactor nuclear fuels, Natarajan |doi=10.1016/B978-1-78242-212-9.00009-5 | year=2015|journal=Reprocessing and Recycling of Spent Nuclear Fuel|pages=213–243 | last1 = Natarajan | first1 = R.}}</ref>
 
 
== एमओएक्स ईंधन का उपयोग ==
थर्मल रिएक्टरों से व्ययकिए गए एमओएक्स ईंधन में बिना जले प्लूटोनियम की सामग्री महत्वपूर्ण है। जिसकी मात्रा प्रारंभिक प्लूटोनियम लोडिंग के 50% से अधिक हैं। चूंकि एमओएक्स के जलने के समय फिशाइल (विषम संख्या वाले) आइसोटोप का नॉन-फिशाइल (ईवन) से अनुपात बर्न अप के आधार पर लगभग 65% से 20% तक गिर जाता है। यह विखंडनीय समस्थानिकों को पुनर्प्राप्त करने के किसी भी प्रयास को कठिन बना देता है और किसी भी बल्क Pu को पुनर्प्राप्त करने के लिए किसी भी दूसरी पीढ़ी के एमओएक्स में Pu के इतने उच्च अंश की आवश्यकता होगी कि यह अव्यावहारिक होगा। इसका अर्थ यह है कि इस प्रकार से व्यय किए गए ईंधन को प्लूटोनियम के पुन: उपयोग (जलने) के लिए पुन: संसाधित करना कठिन होगा। Pu की कम घुलनशीलता के कारण [[चरण (पदार्थ)]] व्यय किए गए नाइट्रिक एसिड में एमओएक्स का नियमित पुनर्संसाधन कठिन है।<ref name="Burakov">{{cite book |last1=Burakov |first1=B. E. |last2=Ojovan |first2=M. I. |last3=Lee |first3=W. E. |title=Crystalline Materials for Actinide Immobilisation |publisher=Imperial College Press |location=London |page=58 |year=2010}}</ref> 2015 तक फेनिक्स फास्ट रिएक्टर में दो बार-पुनर्नवीनीकरण उच्च-बर्नअप ईंधन का एकमात्र प्रदर्शन हुआ।<ref>{{cite journal|title= Reprocessing of spent fast reactor nuclear fuels, Natarajan |doi=10.1016/B978-1-78242-212-9.00009-5 | year=2015|journal=Reprocessing and Recycling of Spent Nuclear Fuel|pages=213–243 | last1 = Natarajan | first1 = R.}}</ref>




== वर्तमान अनुप्रयोग ==
== वर्तमान अनुप्रयोग ==
[[File:SEMofusedMOX.jpg|thumb|340px|एक प्रयुक्त एमओएक्स, जिसमें 63 जीडब्ल्यू दिन (थर्मल) बर्नअप है और इलेक्ट्रॉन माइक्रोप्रोब अटैचमेंट का उपयोग करके [[स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप]] के साथ जांच की गई है। दाहिने हाथ में पिक्सेल जितना हल्का होगा उस स्थान पर सामग्री की प्लूटोनियम सामग्री उतनी ही अधिक होगी]]एमओएक्स बनाने के लिए वाणिज्यिक परमाणु ईंधन का परमाणु पुनर्संसाधन [[फ्रांस]] में और कुछ हद तक [[रूस]], [[भारत]] और [[जापान]] में किया जाता है। यूके में [[THORP]] 1994 से 2018 तक संचालित हुआ। [[चीन]] ने [[फास्ट ब्रीडर रिएक्टर]] और पुनर्संसाधन विकसित करने की योजना बनाई है। अप्रसार संबंधी विचारों के कारण संयुक्त राज्य अमेरिका में खर्च किए गए वाणिज्यिक-रिएक्टर परमाणु ईंधन के पुनर्संसाधन की अनुमति नहीं है। जर्मनी के पास [[वैकर्सडॉर्फ]] में एक पुनर्संसाधन संयंत्र की योजना थी, लेकिन जैसा कि यह अमल में लाने में विफल रहा, इसके अतिरिक्त 2005 में पुनर्प्रसंस्करण के लिए जर्मन खर्च किए गए ईंधन के परिवहन को कानूनी रूप से गैरकानूनी घोषित करने तक फ्रांसीसी परमाणु पुनर्संसाधन क्षमताओं पर निर्भर रहा।<ref>[https://rueckfuehrung.bgz.de/ Rücknahme radioaktiver Abfälle aus der Wiederaufarbeitung (In German)]</ref>
[[File:SEMofusedMOX.jpg|thumb|340px|एक प्रयुक्त एमओएक्स, जिसमें 63 जीडब्ल्यू दिन (थर्मल) बर्नअप है और इलेक्ट्रॉन माइक्रोप्रोब अटैचमेंट का उपयोग करके [[स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप]] के साथ जांच की गई है। दाहिने हाथ में पिक्सेल जितना हल्का होगा। उस स्थान पर सामग्री की प्लूटोनियम सामग्री उतनी ही अधिक होगी।]]एमओएक्स बनाने के लिए वाणिज्यिक परमाणु ईंधन का परमाणु पुनर्संसाधन [[फ्रांस]] में और कुछ समय तक [[रूस]], [[भारत]] और [[जापान]] में किया जाता है। यूके में [[THORP|टीएचओआरपी]] 1994 से 2018 तक संचालित हुआ। [[चीन]] ने [[फास्ट ब्रीडर रिएक्टर]] और पुनर्संसाधन विकसित करने की योजना बनाई है। अप्रसार संबंधी विचारों के कारण संयुक्त राज्य अमेरिका में व्यय किए गए वाणिज्यिक-रिएक्टर परमाणु ईंधन के पुनर्संसाधन की अनुमति नहीं है। जर्मनी के पास [[वैकर्सडॉर्फ]] में एक पुनर्संसाधन संयंत्र की योजना थी। किन्तुजैसा कि यह प्रचलन में लाने में विफल रहा। इसके अतिरिक्त 2005 में पुनर्प्रसंस्करण के लिए जर्मन में व्यय किए गए ईंधन के परिवहन को प्रशासनिक रूप से गैर प्रशासनिक घोषित करने तक फ्रांसीसी परमाणु पुनर्संसाधन क्षमताओं पर निर्भर रहा।<ref>[https://rueckfuehrung.bgz.de/ Rücknahme radioaktiver Abfälle aus der Wiederaufarbeitung (In German)]</ref>
संयुक्त राज्य अमेरिका दक्षिण कैरोलिना में [[सवाना नदी साइट]] पर एक एमओएक्स ईंधन संयंत्र का निर्माण कर रहा था। चूंकि [[टेनेसी घाटी प्राधिकरण]] (टीवीए) और [[ड्यूक एनर्जी]] ने हथियार-ग्रेड प्लूटोनियम के रूपांतरण से एमओएक्स रिएक्टर ईंधन का उपयोग करने में रुचि व्यक्त की,<ref>[http://chronicle.augusta.com/stories/2009/06/10/met_527123.shtml TVA might use MOX fuels from SRS], June 10, 2009</ref> TVA (वर्तमान में सबसे संभावित ग्राहक) ने अप्रैल 2011 में कहा था कि यह तब तक निर्णय लेने में देरी करेगा जब तक कि यह नहीं देख पाता कि [[फुकुशिमा दाइची]] में परमाणु दुर्घटना में MOX ईंधन ने कैसा प्रदर्शन किया।<ref>[https://www.nytimes.com/2011/04/11/us/11mox.html?_r=1 New Doubts About Turning Plutonium Into a Fuel], April 10, 2011</ref> मई 2018 में, ऊर्जा विभाग ने बताया कि संयंत्र को पूरा करने के लिए और $48 बिलियन की आवश्यकता होगी, जो पहले से खर्च किए गए $7.6 बिलियन से अधिक है। निर्माण रद्द कर दिया गया था।<ref>{{cite news |url=https://www.reuters.com/article/us-usa-plutonium-mox/trump-administration-kills-contract-for-plutonium-to-fuel-plant-idUSKCN1MM2N0 |title=Trump administration kills contract for plutonium-to-fuel plant |first=Timothy |last=Gardner |newspaper=Reuters |date=12 October 2018}}</ref>
संयुक्त राज्य अमेरिका दक्षिण कैरोलिना में [[सवाना नदी साइट]] पर एक एमओएक्स ईंधन संयंत्र का निर्माण कर रहा था। चूंकि [[टेनेसी घाटी प्राधिकरण]] (टीवीए) और [[ड्यूक एनर्जी]] ने हथियार-ग्रेड प्लूटोनियम के रूपांतरण से एमओएक्स रिएक्टर ईंधन का उपयोग करने में रुचि व्यक्त की।<ref>[http://chronicle.augusta.com/stories/2009/06/10/met_527123.shtml TVA might use MOX fuels from SRS], June 10, 2009</ref> टीवीए (वर्तमान में सबसे संभावित ग्राहक) ने अप्रैल 2011 में कहा था कि यह तब तक निर्णय लेने में देरी करेगा। जब तक कि यह नहीं समझ पाता कि [[फुकुशिमा दाइची]] में परमाणु दुर्घटना में एमओएक्स ईंधन ने कैसा प्रदर्शन किया।<ref>[https://www.nytimes.com/2011/04/11/us/11mox.html?_r=1 New Doubts About Turning Plutonium Into a Fuel], April 10, 2011</ref> मई 2018 में ऊर्जा विभाग ने बताया कि संयंत्र को पूरा करने के लिए और $48 बिलियन की आवश्यकता होगी। जो पहले से व्यय किए गए $7.6 बिलियन से अधिक है और बाद में इसका निर्माण बन्द कर दिया गया था।<ref>{{cite news |url=https://www.reuters.com/article/us-usa-plutonium-mox/trump-administration-kills-contract-for-plutonium-to-fuel-plant-idUSKCN1MM2N0 |title=Trump administration kills contract for plutonium-to-fuel plant |first=Timothy |last=Gardner |newspaper=Reuters |date=12 October 2018}}</ref>




=== थर्मल रिएक्टर ===
=== थर्मल रिएक्टर ===
उच्च बर्न अप यूरेनियम ऑक्साइड ईंधन का उपयोग करने वाले अधिकांश आधुनिक थर्मल रिएक्टर कोर के जीवन में पहले यूरेनियम 238 में न्यूट्रॉन कैप्चर द्वारा उत्पादित प्लूटोनियम के विखंडन से कोर जीवन के अंत में उनके उत्पादन का काफी महत्वपूर्ण अनुपात उत्पन्न करते हैं, इसलिए कुछ प्लूटोनियम ऑक्साइड को जोड़ते हैं। निर्माण में ईंधन सिद्धांत रूप में एक बहुत ही कट्टरपंथी कदम नहीं है। यूरोप (बेल्जियम, नीदरलैंड, स्विट्जरलैंड, जर्मनी और फ्रांस) में लगभग 30 थर्मल रिएक्टर एमओएक्स का उपयोग कर रहे हैं<ref name=NDA-options>{{Cite journal|url=http://www.nda.gov.uk/documents/upload/Plutonium-Options-for-Comment-August-2008.pdf |title=NDA Plutonium Options |date=August 2008 |publisher=[[Nuclear Decommissioning Authority]] |access-date=2008-09-07  |url-status=dead |archive-url=https://web.archive.org/web/20110525233310/http://www.nda.gov.uk/documents/upload/Plutonium-Options-for-Comment-August-2008.pdf |archive-date=2011-05-25 }}</ref> और अतिरिक्त 20 को ऐसा करने के लिए लाइसेंस दिया गया है। अधिकांश रिएक्टर इसे अपने कोर के लगभग एक तिहाई के रूप में उपयोग करते हैं, लेकिन कुछ 50% एमओएक्स असेंबली तक स्वीकार करेंगे। फ़्रांस में, EDF का लक्ष्य अपने सभी 900 MWe श्रृंखला के रिएक्टरों को कम से कम एक-तिहाई MOX के साथ चलाना है। जापान ने 2010 तक अपने एक तिहाई रिएक्टरों को एमओएक्स का उपयोग करने का लक्ष्य रखा था, और उसने एमओएक्स के पूर्ण ईंधन लोडिंग के साथ एक नए रिएक्टर के निर्माण को मंजूरी दे दी है। आज उपयोग किए जाने वाले कुल परमाणु ईंधन में से, एमओएक्स 2% प्रदान करता है।<ref name=WNAMOX />
उच्च बर्न अप यूरेनियम ऑक्साइड ईंधन का उपयोग करने वाले अधिकांश आधुनिक थर्मल रिएक्टर कोर के जीवन में पहले यूरेनियम 238 में न्यूट्रॉन कैप्चर द्वारा उत्पादित प्लूटोनियम के विखंडन से कोर जीवन के अंत में उनके उत्पादन का अत्यधिक महत्वपूर्ण अनुपात उत्पन्न करते हैं। इसलिए कुछ प्लूटोनियम ऑक्साइड को जोड़ते हैं। निर्माण में ईंधन सिद्धांत रूप में एक बहुत ही कठोर कार्य नहीं है। यूरोप (बेल्जियम, नीदरलैंड, स्विट्जरलैंड, जर्मनी और फ्रांस) में लगभग 30 थर्मल रिएक्टर एमओएक्स का उपयोग कर रहे हैं<ref name=NDA-options>{{Cite journal|url=http://www.nda.gov.uk/documents/upload/Plutonium-Options-for-Comment-August-2008.pdf |title=NDA Plutonium Options |date=August 2008 |publisher=[[Nuclear Decommissioning Authority]] |access-date=2008-09-07  |url-status=dead |archive-url=https://web.archive.org/web/20110525233310/http://www.nda.gov.uk/documents/upload/Plutonium-Options-for-Comment-August-2008.pdf |archive-date=2011-05-25 }}</ref> और अतिरिक्त 20 को ऐसा करने के लिए लाइसेंस दिया गया है। अधिकांश रिएक्टर इसे अपने कोर के लगभग एक तिहाई के रूप में उपयोग करते हैं। किन्तुकुछ 50% एमओएक्स असेंबली तक स्वीकार करेंगे। फ़्रांस में ईडीएफ का लक्ष्य अपने सभी 900 एमडब्लूई श्रृंखला के रिएक्टरों को कम से कम एक-तिहाई एमओएक्स के साथ चलाना है। जापान ने 2010 तक अपने एक तिहाई रिएक्टरों को एमओएक्स का उपयोग करने का लक्ष्य रखा था और उसने एमओएक्स के पूर्ण ईंधन लोडिंग के साथ एक नए रिएक्टर के निर्माण को सहमति दे दी है। आज उपयोग किए जाने वाले कुल परमाणु ईंधन में से एमओएक्स 2% प्रदान करता है।<ref name=WNAMOX />
 
एमओएक्स ईंधन का उपयोग करने के लाइसेंसिंग और सुरक्षा स्थितियां सम्मिलित हैं।<ref name=NDA-options /> प्लूटोनियम ऑक्साइड यूरेनियम ऑक्साइड की तुलना में अधिक विषैला होता है। जिससे ईंधन निर्माण अधिक कठिन और महंगा हो जाता है।
* चूंकि प्लूटोनियम समस्थानिक यूरेनियम ईंधन की तुलना में अधिक न्यूट्रॉन अवशोषित करते हैं। इसलिए रिएक्टर नियंत्रण प्रणाली में संशोधन की आवश्यकता हो सकती है।
* एमओएक्स ईंधन कम तापीय चालकता के कारण अधिक गर्म होता है। जो कुछ रिएक्टर डिज़ाइनों में एक समस्या हो सकती है।
* एमओएक्स ईंधन असेंबलियों में विखंडन गैस की रिहाई एमओएक्स ईंधन के अधिकतम बर्न-अप समय को सीमित कर सकती है।


MOX ईंधन का उपयोग करने के लाइसेंसिंग और सुरक्षा मुद्दों में सम्मिलित हैं:<ref name=NDA-options />* प्लूटोनियम ऑक्साइड यूरेनियम ऑक्साइड की तुलना में काफी अधिक विषैला होता है, जिससे ईंधन निर्माण अधिक कठिन और महंगा हो जाता है।
मूल रूप से एमओएक्स ईंधन में लोड किए गए प्लूटोनियम का लगभग 30% थर्मल रिएक्टर में उपयोग से क्रयमूल्य होता है। सिद्धांत रूप में यदि कोर ईंधन भार का एक तिहाई एमओएक्स और दो तिहाई यूरेनियम ईंधन है। तो व्यय किए गए परमाणु ईंधन में प्लूटोनियम के द्रव्यमान में शून्य शुद्ध परिवर्तन होता है और चक्र को दो बार प्रयोग किया जा सकता है। चूंकि व्यय किए गए एमओएक्स ईंधन के पुनर्संसाधन में कई कठिनाइयाँ बनी हुई हैं। 2010 तक प्लूटोनियम को केवल एक बार थर्मल रिएक्टरों में पुनर्नवीनीकरण किया जाता है और व्यय किए गए एमओएक्स ईंधन को शेष व्यय किए गए ईंधन से कचरे के रूप में संग्रहीत करने के लिए अलग किया जाता है।<ref name=NDA-options />
* चूंकि प्लूटोनियम समस्थानिक यूरेनियम ईंधन की तुलना में अधिक न्यूट्रॉन अवशोषित करते हैं, इसलिए रिएक्टर नियंत्रण प्रणाली में संशोधन की आवश्यकता हो सकती है।
* MOX ईंधन कम तापीय चालकता के कारण अधिक गर्म होता है, जो कुछ रिएक्टर डिज़ाइनों में एक समस्या हो सकती है।
* MOX ईंधन असेंबलियों में विखंडन गैस की रिहाई MOX ईंधन के अधिकतम बर्न-अप समय को सीमित कर सकती है।


मूल रूप से एमओएक्स ईंधन में लोड किए गए प्लूटोनियम का लगभग 30% थर्मल रिएक्टर में उपयोग से खपत होता है। सिद्धांत रूप में, यदि कोर ईंधन भार का एक तिहाई एमओएक्स और दो तिहाई यूरेनियम ईंधन है, तो खर्च किए गए परमाणु ईंधन में प्लूटोनियम के द्रव्यमान में शून्य शुद्ध परिवर्तन होता है और चक्र को दोहराया जा सकता है; हालाँकि, खर्च किए गए MOX ईंधन के पुनर्संसाधन में कई कठिनाइयाँ बनी हुई हैं। 2010 तक, प्लूटोनियम को केवल एक बार थर्मल रिएक्टरों में पुनर्नवीनीकरण किया जाता है, और खर्च किए गए एमओएक्स ईंधन को शेष खर्च किए गए ईंधन से कचरे के रूप में संग्रहीत करने के लिए अलग किया जाता है।<ref name=NDA-options />
सभी प्लूटोनियम समस्थानिक या तो विखंडनीय या उर्वर होते हैं। चूंकि प्लूटोनियम-242 को विखंडनीय [[कोर्ट]]-245 बनने से पहले 3 न्यूट्रॉन को अवशोषित करने की आवश्यकता होती है। थर्मल रिएक्टरों में समस्थानिक क्षरण प्लूटोनियम रीसायकल क्षमता को सीमित करता है। वर्तमान [[LWR|एलडब्लूआरएस]] से व्यय किए गए परमाणु ईंधन का लगभग 1% प्लूटोनियम है। जब ईंधन को पहली बार रिएक्टर से निकाला जाता है।<ref name="NDA-options" /> जिसकी अनुमानित समस्थानिक संरचना 52% है: {{nuclide|Plutonium|239|link=yes}}, 24% {{nuclide|Plutonium|240|link=yes}}, 15% {{nuclide|Plutonium|241|link=yes}}, 6% {{nuclide|Plutonium|242|link=yes}} और 2% {{nuclide|Plutonium|238|link=yes}}.


सभी प्लूटोनियम समस्थानिक या तो विखंडनीय या उर्वर होते हैं, चूंकि प्लूटोनियम-242 को विखंडनीय [[कोर्ट]]-245 बनने से पहले 3 न्यूट्रॉन को अवशोषित करने की आवश्यकता होती है; थर्मल रिएक्टरों में समस्थानिक क्षरण प्लूटोनियम रीसायकल क्षमता को सीमित करता है। वर्तमान [[LWR]]s से खर्च किए गए परमाणु ईंधन का लगभग 1% प्लूटोनियम है, जिसकी अनुमानित समस्थानिक संरचना 52% है {{nuclide|Plutonium|239|link=yes}}, 24% {{nuclide|Plutonium|240|link=yes}}, 15% {{nuclide|Plutonium|241|link=yes}}, 6% {{nuclide|Plutonium|242|link=yes}} और 2% {{nuclide|Plutonium|238|link=yes}} जब ईंधन को पहली बार रिएक्टर से निकाला जाता है।<ref name=NDA-options />




=== तेज रिएक्टर ===
=== तेज रिएक्टर ===
{{See also|BN-800 reactor}}
{{See also|बीएन-800 रिएक्टर}}
क्योंकि उच्च ऊर्जा या तेज़ न्यूट्रॉन का विखंडन-से-संग्रहण अनुपात लगभग सभी [[एक्टिनाइड्स]] के लिए परमाणु विखंडन के पक्ष में बदल जाता है, जिसमें सम्मिलित हैं {{nuclide|Uranium|238}}, [[तेज रिएक्टर]] उन सभी का उपयोग ईंधन के लिए कर सकते हैं। सभी एक्टिनाइड्स अनमॉडर्ड या फास्ट न्यूट्रॉन के साथ न्यूट्रॉन प्रेरित विखंडन से गुजर सकते हैं। इसलिए प्लूटोनियम और उच्च एक्टिनाइड्स को ईंधन के रूप में उपयोग करने के लिए एक तेज़ रिएक्टर एक थर्मल रिएक्टर की तुलना में अधिक कुशल है।
 
उच्च ऊर्जा या तेज़ न्यूट्रॉन का विखंडन-से-संग्रहण अनुपात लगभग सभी [[एक्टिनाइड्स]] के लिए परमाणु विखंडन के पक्ष में बदल जाता है। जिसमें सम्मिलित {{nuclide|Uranium|238}} हैं। उन सभी का उपयोग [[तेज रिएक्टर]] ईंधन के लिए कर सकते हैं। सभी एक्टिनाइड्स अनमॉडर्ड या फास्ट न्यूट्रॉन के साथ न्यूट्रॉन प्रेरित विखंडन से गुजर सकते हैं। इसलिए प्लूटोनियम और उच्च एक्टिनाइड्स को ईंधन के रूप में उपयोग करने के लिए एक तेज़ रिएक्टर एक थर्मल रिएक्टर की तुलना में अधिक कुशल है।


ये तेज़ रिएक्टर थर्मल रिएक्टरों की तुलना में अन्य एक्टिनाइड्स के परमाणु प्रसारण के लिए बेहतर अनुकूल हैं। क्योंकि थर्मल रिएक्टर धीमे या मध्यम न्यूट्रॉन का उपयोग करते हैं, एक्टिनाइड्स जो [[थर्मल न्यूट्रॉन]] के साथ विखंडन योग्य नहीं होते हैं, वे विखंडन के अतिरिक्त न्यूट्रॉन को अवशोषित करते हैं। इससे भारी एक्टिनाइड्स का निर्माण होता है और श्रृंखला प्रतिक्रिया को जारी रखने के लिए उपलब्ध थर्मल न्यूट्रॉन की संख्या कम हो जाती है। बाहरी [[न्यूट्रॉन स्रोत]] के साथ एक उप-महत्वपूर्ण रिएक्टर या तो तेजी से न्यूट्रॉन स्पेक्ट्रम में चलाया जा सकता है (अत्यधिक समृद्ध ईंधन की आवश्यकता के बिना, जैसा कि तेजी से रिएक्टरों में आम है) या प्रवाह को बढ़ाकर न्यूट्रॉन के नुकसान की भरपाई करने के लिए तापीय न्यूट्रॉन का इस्तेमाल करते हैं। न्यूट्रॉन स्रोत से।
ये तेज़ रिएक्टर थर्मल रिएक्टरों की तुलना में अन्य एक्टिनाइड्स के परमाणु प्रसारण के लिए अच्छे अनुकूल हैं क्योंकि थर्मल रिएक्टर धीमे या मध्यम न्यूट्रॉन का उपयोग करते हैं। एक्टिनाइड्स जो [[थर्मल न्यूट्रॉन]] के साथ विखंडन योग्य नहीं होते हैं। वे विखंडन के अतिरिक्त न्यूट्रॉन को अवशोषित करते हैं। इससे भारी एक्टिनाइड्स का निर्माण होता है और श्रृंखला प्रतिक्रिया को जारी रखने के लिए उपलब्ध थर्मल न्यूट्रॉन की संख्या कम हो जाती है। बाह्य प्रयेक [[न्यूट्रॉन स्रोत]] के साथ एक उप-महत्वपूर्ण रिएक्टर या तो तेजी से न्यूट्रॉन स्पेक्ट्रम में चलाया जा सकता है (अत्यधिक समृद्ध ईंधन की आवश्यकता के बिना, जैसा कि तेजी से रिएक्टरों में सामान्य है) या न्यूट्रॉन स्रोत से प्रवाह को बढ़ाकर न्यूट्रॉन के हानि की भरपाई करने के लिए तापीय न्यूट्रॉन का प्रयोग करते हैं।  


== निर्माण ==
== निर्माण ==


=== प्लूटोनियम पृथक्करण ===
=== प्लूटोनियम पृथक्करण ===
पहला कदम [[प्योरेक्स]] प्रक्रिया का उपयोग करके प्लूटोनियम को शेष यूरेनियम (लगभग 96% खर्च किए गए ईंधन) और विखंडन उत्पादों को अन्य कचरे (एक साथ लगभग 3%) से अलग करना है।
पहला प्रयास [[प्योरेक्स]] प्रक्रिया का उपयोग करके प्लूटोनियम को शेष यूरेनियम (लगभग 96% व्यय किए गए ईंधन) और विखंडन उत्पादों को अन्य कचरे (एक साथ लगभग 3%) से अलग करना है।


===सूखा मिश्रण===
===सूखा मिश्रण===
यूरेनियम ऑक्साइड (यूओ<sub>2</sub>) और प्लूटोनियम ऑक्साइड (PuO<sub>2</sub>) मिश्रित ऑक्साइड को छर्रों में दबाने से पहले, लेकिन इस प्रक्रिया में बहुत अधिक रेडियोधर्मी धूल बनने का नुकसान होता है।
यूरेनियम ऑक्साइड (UO<sub>2</sub>) और प्लूटोनियम ऑक्साइड (PuO<sub>2</sub>) मिश्रित ऑक्साइड को छर्रों में दबाने से पहले किन्तुइस प्रक्रिया में बहुत अधिक रेडियोधर्मी धूल बनने का हानि होता है।


=== अवक्षेपण ===
=== अवक्षेपण ===
[[नाइट्रिक एसिड]] में [[यूरेनिल नाइट्रेट]] और प्लूटोनियम नाइट्रेट के मिश्रण को अमोनिया जैसे बेस के साथ उपचार करके [[अमोनियम डाइयुरेनेट]] और प्लूटोनियम हाइड्रॉक्साइड का मिश्रण बनाया जाता है। 5% [[हाइड्रोजन]] और 95% [[आर्गन]] के मिश्रण में गर्म करने पर [[यूरेनियम डाइऑक्साइड]] और [[प्लूटोनियम डाइऑक्साइड]] का मिश्रण बनेगा। [[बाइंडर (सामग्री)]] का उपयोग करके, परिणामी पाउडर को [[मशीन प्रेस]] के माध्यम से चलाया जा सकता है और छर्रों में परिवर्तित किया जा सकता है। छर्रों को मिश्रित यूरेनियम और प्लूटोनियम ऑक्साइड में पाप किया जा सकता है।
[[नाइट्रिक एसिड]] में [[यूरेनिल नाइट्रेट]] और प्लूटोनियम नाइट्रेट के मिश्रण को अमोनिया जैसे आधार के साथ उपचार करके [[अमोनियम डाइयुरेनेट]] और प्लूटोनियम हाइड्रॉक्साइड का मिश्रण बनाया जाता है। 5% [[हाइड्रोजन]] और 95% [[आर्गन]] के मिश्रण में गर्म करने पर [[यूरेनियम डाइऑक्साइड]] और [[प्लूटोनियम डाइऑक्साइड]] का मिश्रण बनेगा। [[बाइंडर (सामग्री)]] का उपयोग करके परिणामी पाउडर को [[मशीन प्रेस]] के माध्यम से चलाया जा सकता है और छर्रों में परिवर्तित किया जा सकता है। छर्रों को मिश्रित यूरेनियम और प्लूटोनियम ऑक्साइड में परिवर्तन किया जा सकता है।


== अमेरिका की सामग्री ==
== अमेरिका की सामग्री ==
प्लूटोनियम के अल्पकालिक [[आइसोटोप]] के [[रेडियोधर्मी क्षय]] से उत्पन्न अशुद्धियों से उत्पन्न होने वाली समस्याओं से बचने के लिए पुन: संसाधित ईंधन से प्लूटोनियम सामान्यतः इसके उत्पादन के पांच साल से कम समय के भीतर एमओएक्स में निर्मित होता है। विशेष रूप से, प्लूटोनियम -241 का 14 साल के आधे जीवन के साथ अमेरिका -241 में क्षय होता है। क्योंकि [[अमेरिकियम-241]] एक [[गामा किरण]] उत्सर्जक है,{{citation needed|date=February 2022}} इसकी उपस्थिति एक संभावित [[व्यावसायिक सुरक्षा और स्वास्थ्य]] के लिए खतरा है। चूंकि, रासायनिक पृथक्करण प्रक्रिया द्वारा प्लूटोनियम से [[रेडियोऐक्टिव]] को निकालना संभव है। यहां तक ​​कि सबसे खराब परिस्थितियों में भी, एमरिकियम/प्लूटोनियम मिश्रण खर्च-ईंधन विघटन शराब की तुलना में कम रेडियोधर्मी है, इसलिए यह प्यूरेक्स या अन्य जलीय पुनर्संसाधन विधि द्वारा प्लूटोनियम को पुनर्प्राप्त करने के लिए अपेक्षाकृत सरल होना चाहिए।{{Citation needed|date=January 2021|reason=The claim about PUREX sounds speculative; a reliable source is needed.}}
प्लूटोनियम के अल्पकालिक [[आइसोटोप]] के [[रेडियोधर्मी क्षय]] से उत्पन्न अशुद्धियों से उत्पन्न होने वाली समस्याओं से बचने के लिए पुन: संसाधित ईंधन से प्लूटोनियम सामान्यतः इसके उत्पादन के पांच वर्ष से कम समय के अन्दर एमओएक्स में निर्मित होता है। विशेष रूप से प्लूटोनियम-241 का 14 वर्ष के आधे जीवन के साथ अमेरिका -241 में क्षय होता है क्योंकि [[अमेरिकियम-241]] एक [[गामा किरण]] उत्सर्जक है। इसकी उपस्थिति एक संभावित [[व्यावसायिक सुरक्षा और स्वास्थ्य]] के लिए भय है। चूंकि रासायनिक पृथक्करण प्रक्रिया द्वारा प्लूटोनियम से [[रेडियोऐक्टिव]] को निकालना संभव है। यहां तक ​​कि सबसे खराब परिस्थितियों में भी एमरिकियम या प्लूटोनियम मिश्रण व्यय-ईंधन विघटन एल्कोहल की तुलना में कम रेडियोधर्मी है। इसलिए यह प्यूरेक्स या अन्य जलीय पुनर्संसाधन विधि द्वारा प्लूटोनियम को पुनर्प्राप्त करने के लिए अपेक्षाकृत सरल होना चाहिए।
 




== क्यूरियम सामग्री ==
== क्यूरियम सामग्री ==
यह संभव है कि एमरिकियम और क्यूरियम दोनों को एक यू/पु एमओएक्स ईंधन में जोड़ा जा सकता है, इससे पहले कि इसे एक तेज रिएक्टर या एक्टिनाइड बर्नर मोड में चलने वाले सबक्रिटिकल रिएक्टर में लोड किया जाए। यह रूपांतरण का एक साधन है। क्यूरियम के साथ काम करना एमेरिकियम की तुलना में बहुत कठिन है क्योंकि क्यूरियम एक [[न्यूट्रॉन]] उत्सर्जक है, श्रमिकों की सुरक्षा के लिए एमओएक्स उत्पादन लाइन को सीसा और [[पानी]] दोनों से परिरक्षित करने की आवश्यकता होगी।
यह संभव है कि एमरिकियम और क्यूरियम दोनों को एक U/Pu एमओएक्स ईंधन में जोड़ा जा सकता है। इससे पहले कि इसे एक तेज रिएक्टर या एक्टिनाइड बर्नर मोड में चलने वाले सबक्रिटिकल रिएक्टर में लोड किया जाए। यह रूपांतरण का एक साधन है। क्यूरियम के साथ काम करना एमेरिकियम की तुलना में बहुत कठिन है क्योंकि क्यूरियम एक [[न्यूट्रॉन]] उत्सर्जक है। श्रमिकों की सुरक्षा के लिए एमओएक्स उत्पादन लाइन को सीसा और [[पानी]] दोनों से परिरक्षित करने की आवश्यकता होगी।


इसके अलावा, क्यूरियम का न्यूट्रॉन विकिरण उच्च एक्टिनाइड्स उत्पन्न करता है, जैसे कि [[कलिफ़ोरनियम]], जो प्रयुक्त परमाणु ईंधन से जुड़े न्यूट्रॉन खुराक को बढ़ाता है; इसमें मजबूत न्यूट्रॉन उत्सर्जकों के साथ ईंधन चक्र को प्रदूषित करने की क्षमता है। नतीजतन, यह संभावना है कि क्यूरियम को अधिकांश एमओएक्स ईंधन से बाहर रखा जाएगा। एक सबक्रिटिकल रिएक्टर जैसे एक्सीलरेटर संचालित सबक्रिटिकल रिएक्टर ऐसे ईंधन को जला सकता है यदि उनकी हैंडलिंग और परिवहन से जुड़ी समस्याएं हल हो जाएं। चूंकि, अनपेक्षित क्रांतिकता के कारण बिजली के भ्रमण से बचने के लिए, [[न्यूट्रॉनिक्स]] को समय पर किसी भी बिंदु पर सटीक रूप से जाना जाना चाहिए, जिसमें न्यूट्रॉन उत्सर्जक न्यूक्लाइड्स के साथ-साथ न्यूट्रॉन जहरों के निर्माण या खपत का प्रभाव भी सम्मिलित है।
इसके अतिरिक्त क्यूरियम का न्यूट्रॉन विकिरण उच्च एक्टिनाइड्स उत्पन्न करता है। जैसे कि [[कलिफ़ोरनियम]], जो प्रयुक्त परमाणु ईंधन से जुड़े न्यूट्रॉन खाद्य सामग्री को बढ़ाता है। इसमें मजबूत न्यूट्रॉन उत्सर्जकों के साथ ईंधन चक्र को प्रदूषित करने की क्षमता है। परिणाम स्वरुप  यह संभावना है कि क्यूरियम को अधिकांश एमओएक्स ईंधन से प्रत्येक बार रखा जाएगा। एक सबक्रिटिकल रिएक्टर जैसे एक्सीलरेटर संचालित सबक्रिटिकल रिएक्टर ऐसे ईंधन को जला सकता है। यदि उनकी हैंडलिंग और परिवहन से जुड़ी समस्याएं हल हो जाएं। चूंकि अनपेक्षित क्रांतिकता के कारण विद्युत के भ्रमण से बचने के लिए [[न्यूट्रॉनिक्स]] को समय पर किसी भी बिंदु पर त्रुटिहीन होना चाहिए। जिसमें न्यूट्रॉन उत्सर्जक न्यूक्लाइड्स के साथ-साथ न्यूट्रॉन उत्पेरकों के निर्माण या क्रयमूल्य का प्रभाव भी सम्मिलित है।


== थोरियम एमओएक्स ==
== थोरियम एमओएक्स ==
{{See also|Thorium fuel cycle}}
{{See also|थोरियम ईंधन चक्र}}
[[थोरियम]] और प्लूटोनियम ऑक्साइड युक्त एमओएक्स ईंधन का भी परीक्षण किया जा रहा है।<ref name=wnn-20130621>{{cite news |url=http://www.world-nuclear-news.org/ENF_Thorium_test_begins_2106131.html |title=Thorium test begins |publisher=World Nuclear News |date=21 June 2013 |access-date=21 July 2013}}</ref> नार्वेजियन अध्ययन के मुताबिक, थोरियम-प्लूटोनियम ईंधन का [[शून्य गुणांक]] 21% तक प्लूटोनियम सामग्री के लिए नकारात्मक है, जबकि एमओएक्स ईंधन के लिए संक्रमण 16% पर है।<ref name="Bjork">{{cite document|last1=Björk|first1=Klara Insulander|last2=Fhager|first2=Valentin|title=Comparison of thorium-plutonium fuel and MOX fuel for PWRs|date=June 2009|url=https://inis.iaea.org/search/search.aspx?orig_q=RN:40093823|access-date=11 October 2017|page=487}}</ref> लेखकों ने निष्कर्ष निकाला, थोरियम-प्लूटोनियम ईंधन नियंत्रण रॉड और परमाणु जहर#घुलनशील जहर के मूल्य, सीवीआर और प्लूटोनियम की खपत के संबंध में एमओएक्स ईंधन पर कुछ लाभ प्रदान करता है।<ref name="Bjork" />
[[थोरियम]] और प्लूटोनियम ऑक्साइड युक्त एमओएक्स ईंधन का भी परीक्षण किया जा रहा है।<ref name=wnn-20130621>{{cite news |url=http://www.world-nuclear-news.org/ENF_Thorium_test_begins_2106131.html |title=Thorium test begins |publisher=World Nuclear News |date=21 June 2013 |access-date=21 July 2013}}</ref> नार्वेजियन अध्ययन के अनुसार थोरियम-प्लूटोनियम ईंधन का [[शून्य गुणांक]] 21% तक प्लूटोनियम सामग्री के लिए नकारात्मक है। जबकि एमओएक्स ईंधन के लिए संक्रमण 16% पर है।<ref name="Bjork">{{cite document|last1=Björk|first1=Klara Insulander|last2=Fhager|first2=Valentin|title=Comparison of thorium-plutonium fuel and MOX fuel for PWRs|date=June 2009|url=https://inis.iaea.org/search/search.aspx?orig_q=RN:40093823|access-date=11 October 2017|page=487}}</ref> लेखकों ने निष्कर्ष निकाला कि थोरियम-प्लूटोनियम ईंधन नियंत्रण रॉड और परमाणु प्रत्येक घुलनशील और प्रत्येक के मूल्य सीवीआर और प्लूटोनियम की क्रयमूल्य के संबंध में एमओएक्स ईंधन पर कुछ लाभ प्रदान करता है।<ref name="Bjork" />




Line 84: Line 86:
* [[परमाणु ऊर्जा संयंत्र]]
* [[परमाणु ऊर्जा संयंत्र]]
* [[रीमिक्स ईंधन]]
* [[रीमिक्स ईंधन]]
* [[खर्च किए गए परमाणु ईंधन शिपिंग पीपा]]
* [[खर्च किए गए परमाणु ईंधन शिपिंग]]
{{div col end}}
{{div col end}}


Line 92: Line 94:




==बाहरी कड़ियाँ==
==बाप्रत्येकी कड़ियाँ==
* [http://www.ieer.org/sdafiles/vol_5/5-4/moxmain4.html Technical Aspects of the Use of Weapons Plutonium as Reactor Fuel]
* [http://www.ieer.org/sdafiles/vol_5/5-4/moxmain4.html Technical Aspects of the Use of Weapons Plutonium as Reactor Fuel]
* [https://web.archive.org/web/20060203091748/http://canteach.candu.org/library/20054702.pdf Synergistic Nuclear Fuel Cycles of the Future]
* [https://web.archive.org/web/20060203091748/http://canteach.candu.org/library/20054702.pdf Synergistic Nuclear Fuel Cycles of the Future]
Line 102: Line 104:
{{Uranium compounds}}
{{Uranium compounds}}
{{Authority control}}
{{Authority control}}
[[Category: परमाणु ईंधन]] [[Category: परमाणु पुनर्संसाधन]] [[Category: प्लूटोनियम यौगिक]] [[Category: यूरेनियम यौगिक]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:CS1 errors]]
[[Category:Collapse templates]]
[[Category:Created On 30/01/2023]]
[[Category:Created On 30/01/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with broken file links]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal templates with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Webarchive template wayback links]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates]]
[[Category:परमाणु ईंधन]]
[[Category:परमाणु पुनर्संसाधन]]
[[Category:प्लूटोनियम यौगिक]]
[[Category:यूरेनियम यौगिक]]

Latest revision as of 10:27, 7 March 2023

मिश्रित ऑक्साइड ईंधन परमाणु ईंधन है। जिसे सामान्यतः एमओएक्स ईंधन के रूप में संदर्भित किया जाता है। जिसमें विखंडनीय सामग्री के एक से अधिक ऑक्साइड होते हैं और जिसमें सामान्यतः प्राकृतिक यूरेनियम, पुनर्संसाधित यूरेनियम या कम यूरेनियम के साथ मिश्रित प्लूटोनियम सम्मिलित होता है। एमओएक्स ईंधन कम समृद्ध यूरेनियम (एलईयू) ईंधन का एक विकल्प है। जिसका उपयोग हल्के-पानी रिएक्टरों में किया जाता है। जो परमाणु ऊर्जा उत्पादन को प्रबल और तीव्र करता है।

उदाप्रत्येकण के लिए 7% प्लूटोनियम और 93% प्राकृतिक यूरेनियम का मिश्रण समान रूप से प्रतिक्रिया करता है। चूंकि एलईयू ईंधन (3 से 5% यूरेनियम -235) के लिए एमओएक्स में सामान्यतः दो चरण होते हैं: पहला UO2 और दूसरा PuO2 और एक एकल चरण ठोस समाधान (U,Pu)O2 की सामग्री परमाणु रिएक्टर के प्रकार के आधार पर PuO21.5 wt.% से 25–30 wt.% तक भिन्न हो सकता है।

एमओएक्स ईंधन का एक आकर्षण यह है कि यह अधिशेष हथियार-ग्रेड परमाणु सामग्री का उपयोग करने का एक प्रकार है| हथियार-ग्रेड प्लूटोनियम, अधिशेष प्लूटोनियम के भंडारण का एकमात्र विकल्प है। जिसे परमाणु हथियारों में उपयोग के लिए चोरी के हानि से सुरक्षित करने की आवश्यकता होगी।[1][2] दूसरी ओर कुछ अध्ययनों ने चेतावनी दी है कि एमओएक्स ईंधन के वैश्विक व्यावसायिक उपयोग को सामान्य करने और परमाणु पुनर्संसाधन के संबंधित विस्तार से परमाणु प्रसार के हानि को कम करने के अतिरिक्त असैन्य परमाणु में व्ययकिए गए ईंधन चक्र से प्लूटोनियम के बढ़ते पृथक्करण को प्रोत्साहित करके वृद्धि होगी।[3][4][5]


निरीक्षण

प्रत्येक यूरेनियम आधारित परमाणु रिएक्टर कोर में यूरेनियम-235 जैसे यूरेनियम समस्थानिकों का परमाणु विखंडन होता है और न्यूट्रॉन कैप्चर के कारण नए और भारी समस्थानिकों का निर्माण होता है। मुख्य रूप से यूरेनियम-238 द्वारा रिएक्टर में अधिकांश ईंधन द्रव्यमान यूरेनियम-238 है। न्यूट्रॉन कैप्चर और दो क्रमिक बीटा क्षय से यूरेनियम-238 प्लूटोनियम-239 बन जाता है। जो क्रमिक न्यूट्रॉन कैप्चर द्वारा प्लूटोनियम-240, प्लूटोनियम-241, प्लूटोनियम-242, और (आगे बीटा क्षय के बाद) अन्य ट्रांसयूरानिक या एक्टिनाइड न्यूक्लाइड बन जाता है। प्लूटोनियम-239 और प्लूटोनियम-241 विखंडनीय पदार्थ हैं। जैसे यूरेनियम-238। इसी प्रकार यूरेनियम-235 से यूरेनियम-236, नैप्टुनियम-237 तथा प्लूटोनियम -238 की अल्प मात्राएँ बनती हैं।

सामान्यतः एलईयू ईंधन को प्रत्येक पांच वर्ष में बदल दिया जाता है। रिएक्टर में अधिकांश प्लूटोनियम-239 जल जाता है। यह यूरेनियम-235 की प्रकार व्यवहार करता है। विखंडन के लिए थोड़ा अधिक परमाणु क्रॉस सेक्शन होता है और इसका विखंडन समान मात्रा में ऊर्जा जारी करता है। सामान्यतः एक रिएक्टर से निकलने वाले प्रयुक्त परमाणु ईंधन का लगभग एक प्रतिशत प्लूटोनियम होता है और प्लूटोनियम का लगभग दो-तिहाई प्लूटोनियम-239 होता है। विश्न में प्रत्येक वर्ष लगभग 100 टन प्लूटोनियम व्ययकिए गए ईंधन में उत्पन्न होता है।

उपयोग करने योग्य ईंधन में प्लूटोनियम को पुन: संसाधित करने से मूल यूरेनियम से प्राप्त ऊर्जा में लगभग 12% की वृद्धि होती है और यदि यूरेनियम-235 को भी पुन: संवर्धन द्वारा पुनर्नवीनीकरण किया जाता है। तो यह लगभग 20% हो जाता है।[6] वर्तमान में प्लूटोनियम को केवल पुनर्संसाधित किया जाता है और एक बार एमओएक्स ईंधन के रूप में उपयोग किया जाता है; सामान्यत एक्टिनाइड्स और प्लूटोनियम आइसोटोप के उच्च अनुपात के साथ व्ययकिए गए एमओएक्स ईंधन को अपशिष्ट के रूप में संग्रहीत किया जाता है।

एमओएक्स ईंधन को प्रस्तुत करने से पहले उपस्थित परमाणु रिएक्टरों को फिर से लाइसेंस दिया जाना चाहिए क्योंकि इसका उपयोग करने से रिएक्टर की परिचालन विशेषताओं में परिवर्तन होता है और इसे लेने के लिए संयंत्र को थोड़ा डिजाइन या अनुकूलित किया जाना चाहिए। उदाहरण प्रत्येक कण के लिए अधिक नियंत्रण छड़ों की आवश्यकता होती है। प्रायः ईंधन लोड का केवल एक तिहाई से आधा एमओएक्स पर स्विच किया जाता है। किन्तु50% से अधिक एमओएक्स लोडिंग के लिए महत्वपूर्ण परिवर्तन आवश्यक होते हैं और एक रिएक्टर को उसी के अनुसार डिजाइन करने की आवश्यकता होती है। प्रणालीबीएन-800 रिएक्टर डिज़ाइन विशेष रूप से फीनिक्स एरिजोना के पास यूएस पालो वर्डे न्यूक्लियर जनरेटिंग स्टेशन पर लगे हुए 100% एमओएक्स कोर संगतता के लिए डिज़ाइन किया गया था। किन्तुअभी तक सदैव ताजा कम समृद्ध यूरेनियम पर संचालित होता है। सिद्धांत रूप में तीन पालो वर्डे रिएक्टर प्रत्येक वर्ष सात ईंधन वाले रिएक्टरों से उत्पन्न होने वाले एमओएक्स का उपयोग कर सकते हैं और अब नये यूरेनियम ईंधन की आवश्यकता नहीं होगी।

फास्ट न्यूट्रॉन बीएन-600 रिएक्टर बीएन-600 और बीएन-800 रिएक्टरों को 100% मॉक्स लोडिंग के लिए डिज़ाइन किया गया है। 2022 में बीएन-800 को पहली बार मॉक्स ईंधन से पूरी प्रकार लोड किया गया था।[7] कनाडा लिमिटेड की परमाणु ऊर्जा (एईसीएल) के अनुसार कैनडू रिएक्टर बिना भौतिक संशोधन के 100% मॉक्स कोर का उपयोग कर सकते हैं।[8][9] एईसीएल ने प्लूटोनियम डिस्पोजल पर यूनाइटेड स्टेट्स नेशनल एकेडमी ऑफ साइंसेज कमेटी को बताया कि 0.5 से 3% प्लूटोनियम युक्त एमओएक्स ईंधन के उपयोग के परीक्षण में इसका व्यापक अनुभव है।


एमओएक्स ईंधन का उपयोग

थर्मल रिएक्टरों से व्ययकिए गए एमओएक्स ईंधन में बिना जले प्लूटोनियम की सामग्री महत्वपूर्ण है। जिसकी मात्रा प्रारंभिक प्लूटोनियम लोडिंग के 50% से अधिक हैं। चूंकि एमओएक्स के जलने के समय फिशाइल (विषम संख्या वाले) आइसोटोप का नॉन-फिशाइल (ईवन) से अनुपात बर्न अप के आधार पर लगभग 65% से 20% तक गिर जाता है। यह विखंडनीय समस्थानिकों को पुनर्प्राप्त करने के किसी भी प्रयास को कठिन बना देता है और किसी भी बल्क Pu को पुनर्प्राप्त करने के लिए किसी भी दूसरी पीढ़ी के एमओएक्स में Pu के इतने उच्च अंश की आवश्यकता होगी कि यह अव्यावहारिक होगा। इसका अर्थ यह है कि इस प्रकार से व्यय किए गए ईंधन को प्लूटोनियम के पुन: उपयोग (जलने) के लिए पुन: संसाधित करना कठिन होगा। Pu की कम घुलनशीलता के कारण चरण (पदार्थ) व्यय किए गए नाइट्रिक एसिड में एमओएक्स का नियमित पुनर्संसाधन कठिन है।[10] 2015 तक फेनिक्स फास्ट रिएक्टर में दो बार-पुनर्नवीनीकरण उच्च-बर्नअप ईंधन का एकमात्र प्रदर्शन हुआ।[11]


वर्तमान अनुप्रयोग

File:SEMofusedMOX.jpg
एक प्रयुक्त एमओएक्स, जिसमें 63 जीडब्ल्यू दिन (थर्मल) बर्नअप है और इलेक्ट्रॉन माइक्रोप्रोब अटैचमेंट का उपयोग करके स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप के साथ जांच की गई है। दाहिने हाथ में पिक्सेल जितना हल्का होगा। उस स्थान पर सामग्री की प्लूटोनियम सामग्री उतनी ही अधिक होगी।

एमओएक्स बनाने के लिए वाणिज्यिक परमाणु ईंधन का परमाणु पुनर्संसाधन फ्रांस में और कुछ समय तक रूस, भारत और जापान में किया जाता है। यूके में टीएचओआरपी 1994 से 2018 तक संचालित हुआ। चीन ने फास्ट ब्रीडर रिएक्टर और पुनर्संसाधन विकसित करने की योजना बनाई है। अप्रसार संबंधी विचारों के कारण संयुक्त राज्य अमेरिका में व्यय किए गए वाणिज्यिक-रिएक्टर परमाणु ईंधन के पुनर्संसाधन की अनुमति नहीं है। जर्मनी के पास वैकर्सडॉर्फ में एक पुनर्संसाधन संयंत्र की योजना थी। किन्तुजैसा कि यह प्रचलन में लाने में विफल रहा। इसके अतिरिक्त 2005 में पुनर्प्रसंस्करण के लिए जर्मन में व्यय किए गए ईंधन के परिवहन को प्रशासनिक रूप से गैर प्रशासनिक घोषित करने तक फ्रांसीसी परमाणु पुनर्संसाधन क्षमताओं पर निर्भर रहा।[12]

संयुक्त राज्य अमेरिका दक्षिण कैरोलिना में सवाना नदी साइट पर एक एमओएक्स ईंधन संयंत्र का निर्माण कर रहा था। चूंकि टेनेसी घाटी प्राधिकरण (टीवीए) और ड्यूक एनर्जी ने हथियार-ग्रेड प्लूटोनियम के रूपांतरण से एमओएक्स रिएक्टर ईंधन का उपयोग करने में रुचि व्यक्त की।[13] टीवीए (वर्तमान में सबसे संभावित ग्राहक) ने अप्रैल 2011 में कहा था कि यह तब तक निर्णय लेने में देरी करेगा। जब तक कि यह नहीं समझ पाता कि फुकुशिमा दाइची में परमाणु दुर्घटना में एमओएक्स ईंधन ने कैसा प्रदर्शन किया।[14] मई 2018 में ऊर्जा विभाग ने बताया कि संयंत्र को पूरा करने के लिए और $48 बिलियन की आवश्यकता होगी। जो पहले से व्यय किए गए $7.6 बिलियन से अधिक है और बाद में इसका निर्माण बन्द कर दिया गया था।[15]


थर्मल रिएक्टर

उच्च बर्न अप यूरेनियम ऑक्साइड ईंधन का उपयोग करने वाले अधिकांश आधुनिक थर्मल रिएक्टर कोर के जीवन में पहले यूरेनियम 238 में न्यूट्रॉन कैप्चर द्वारा उत्पादित प्लूटोनियम के विखंडन से कोर जीवन के अंत में उनके उत्पादन का अत्यधिक महत्वपूर्ण अनुपात उत्पन्न करते हैं। इसलिए कुछ प्लूटोनियम ऑक्साइड को जोड़ते हैं। निर्माण में ईंधन सिद्धांत रूप में एक बहुत ही कठोर कार्य नहीं है। यूरोप (बेल्जियम, नीदरलैंड, स्विट्जरलैंड, जर्मनी और फ्रांस) में लगभग 30 थर्मल रिएक्टर एमओएक्स का उपयोग कर रहे हैं[16] और अतिरिक्त 20 को ऐसा करने के लिए लाइसेंस दिया गया है। अधिकांश रिएक्टर इसे अपने कोर के लगभग एक तिहाई के रूप में उपयोग करते हैं। किन्तुकुछ 50% एमओएक्स असेंबली तक स्वीकार करेंगे। फ़्रांस में ईडीएफ का लक्ष्य अपने सभी 900 एमडब्लूई श्रृंखला के रिएक्टरों को कम से कम एक-तिहाई एमओएक्स के साथ चलाना है। जापान ने 2010 तक अपने एक तिहाई रिएक्टरों को एमओएक्स का उपयोग करने का लक्ष्य रखा था और उसने एमओएक्स के पूर्ण ईंधन लोडिंग के साथ एक नए रिएक्टर के निर्माण को सहमति दे दी है। आज उपयोग किए जाने वाले कुल परमाणु ईंधन में से एमओएक्स 2% प्रदान करता है।[6]

एमओएक्स ईंधन का उपयोग करने के लाइसेंसिंग और सुरक्षा स्थितियां सम्मिलित हैं।[16] प्लूटोनियम ऑक्साइड यूरेनियम ऑक्साइड की तुलना में अधिक विषैला होता है। जिससे ईंधन निर्माण अधिक कठिन और महंगा हो जाता है।

  • चूंकि प्लूटोनियम समस्थानिक यूरेनियम ईंधन की तुलना में अधिक न्यूट्रॉन अवशोषित करते हैं। इसलिए रिएक्टर नियंत्रण प्रणाली में संशोधन की आवश्यकता हो सकती है।
  • एमओएक्स ईंधन कम तापीय चालकता के कारण अधिक गर्म होता है। जो कुछ रिएक्टर डिज़ाइनों में एक समस्या हो सकती है।
  • एमओएक्स ईंधन असेंबलियों में विखंडन गैस की रिहाई एमओएक्स ईंधन के अधिकतम बर्न-अप समय को सीमित कर सकती है।

मूल रूप से एमओएक्स ईंधन में लोड किए गए प्लूटोनियम का लगभग 30% थर्मल रिएक्टर में उपयोग से क्रयमूल्य होता है। सिद्धांत रूप में यदि कोर ईंधन भार का एक तिहाई एमओएक्स और दो तिहाई यूरेनियम ईंधन है। तो व्यय किए गए परमाणु ईंधन में प्लूटोनियम के द्रव्यमान में शून्य शुद्ध परिवर्तन होता है और चक्र को दो बार प्रयोग किया जा सकता है। चूंकि व्यय किए गए एमओएक्स ईंधन के पुनर्संसाधन में कई कठिनाइयाँ बनी हुई हैं। 2010 तक प्लूटोनियम को केवल एक बार थर्मल रिएक्टरों में पुनर्नवीनीकरण किया जाता है और व्यय किए गए एमओएक्स ईंधन को शेष व्यय किए गए ईंधन से कचरे के रूप में संग्रहीत करने के लिए अलग किया जाता है।[16]

सभी प्लूटोनियम समस्थानिक या तो विखंडनीय या उर्वर होते हैं। चूंकि प्लूटोनियम-242 को विखंडनीय कोर्ट-245 बनने से पहले 3 न्यूट्रॉन को अवशोषित करने की आवश्यकता होती है। थर्मल रिएक्टरों में समस्थानिक क्षरण प्लूटोनियम रीसायकल क्षमता को सीमित करता है। वर्तमान एलडब्लूआरएस से व्यय किए गए परमाणु ईंधन का लगभग 1% प्लूटोनियम है। जब ईंधन को पहली बार रिएक्टर से निकाला जाता है।[16] जिसकी अनुमानित समस्थानिक संरचना 52% है: 239
94
Pu
, 24% 240
94
Pu
, 15% 241
94
Pu
, 6% 242
94
Pu
और 2% 238
94
Pu
.


तेज रिएक्टर

उच्च ऊर्जा या तेज़ न्यूट्रॉन का विखंडन-से-संग्रहण अनुपात लगभग सभी एक्टिनाइड्स के लिए परमाणु विखंडन के पक्ष में बदल जाता है। जिसमें सम्मिलित 238
92
U
हैं। उन सभी का उपयोग तेज रिएक्टर ईंधन के लिए कर सकते हैं। सभी एक्टिनाइड्स अनमॉडर्ड या फास्ट न्यूट्रॉन के साथ न्यूट्रॉन प्रेरित विखंडन से गुजर सकते हैं। इसलिए प्लूटोनियम और उच्च एक्टिनाइड्स को ईंधन के रूप में उपयोग करने के लिए एक तेज़ रिएक्टर एक थर्मल रिएक्टर की तुलना में अधिक कुशल है।

ये तेज़ रिएक्टर थर्मल रिएक्टरों की तुलना में अन्य एक्टिनाइड्स के परमाणु प्रसारण के लिए अच्छे अनुकूल हैं क्योंकि थर्मल रिएक्टर धीमे या मध्यम न्यूट्रॉन का उपयोग करते हैं। एक्टिनाइड्स जो थर्मल न्यूट्रॉन के साथ विखंडन योग्य नहीं होते हैं। वे विखंडन के अतिरिक्त न्यूट्रॉन को अवशोषित करते हैं। इससे भारी एक्टिनाइड्स का निर्माण होता है और श्रृंखला प्रतिक्रिया को जारी रखने के लिए उपलब्ध थर्मल न्यूट्रॉन की संख्या कम हो जाती है। बाह्य प्रयेक न्यूट्रॉन स्रोत के साथ एक उप-महत्वपूर्ण रिएक्टर या तो तेजी से न्यूट्रॉन स्पेक्ट्रम में चलाया जा सकता है (अत्यधिक समृद्ध ईंधन की आवश्यकता के बिना, जैसा कि तेजी से रिएक्टरों में सामान्य है) या न्यूट्रॉन स्रोत से प्रवाह को बढ़ाकर न्यूट्रॉन के हानि की भरपाई करने के लिए तापीय न्यूट्रॉन का प्रयोग करते हैं।

निर्माण

प्लूटोनियम पृथक्करण

पहला प्रयास प्योरेक्स प्रक्रिया का उपयोग करके प्लूटोनियम को शेष यूरेनियम (लगभग 96% व्यय किए गए ईंधन) और विखंडन उत्पादों को अन्य कचरे (एक साथ लगभग 3%) से अलग करना है।

सूखा मिश्रण

यूरेनियम ऑक्साइड (UO2) और प्लूटोनियम ऑक्साइड (PuO2) मिश्रित ऑक्साइड को छर्रों में दबाने से पहले किन्तुइस प्रक्रिया में बहुत अधिक रेडियोधर्मी धूल बनने का हानि होता है।

अवक्षेपण

नाइट्रिक एसिड में यूरेनिल नाइट्रेट और प्लूटोनियम नाइट्रेट के मिश्रण को अमोनिया जैसे आधार के साथ उपचार करके अमोनियम डाइयुरेनेट और प्लूटोनियम हाइड्रॉक्साइड का मिश्रण बनाया जाता है। 5% हाइड्रोजन और 95% आर्गन के मिश्रण में गर्म करने पर यूरेनियम डाइऑक्साइड और प्लूटोनियम डाइऑक्साइड का मिश्रण बनेगा। बाइंडर (सामग्री) का उपयोग करके परिणामी पाउडर को मशीन प्रेस के माध्यम से चलाया जा सकता है और छर्रों में परिवर्तित किया जा सकता है। छर्रों को मिश्रित यूरेनियम और प्लूटोनियम ऑक्साइड में परिवर्तन किया जा सकता है।

अमेरिका की सामग्री

प्लूटोनियम के अल्पकालिक आइसोटोप के रेडियोधर्मी क्षय से उत्पन्न अशुद्धियों से उत्पन्न होने वाली समस्याओं से बचने के लिए पुन: संसाधित ईंधन से प्लूटोनियम सामान्यतः इसके उत्पादन के पांच वर्ष से कम समय के अन्दर एमओएक्स में निर्मित होता है। विशेष रूप से प्लूटोनियम-241 का 14 वर्ष के आधे जीवन के साथ अमेरिका -241 में क्षय होता है क्योंकि अमेरिकियम-241 एक गामा किरण उत्सर्जक है। इसकी उपस्थिति एक संभावित व्यावसायिक सुरक्षा और स्वास्थ्य के लिए भय है। चूंकि रासायनिक पृथक्करण प्रक्रिया द्वारा प्लूटोनियम से रेडियोऐक्टिव को निकालना संभव है। यहां तक ​​कि सबसे खराब परिस्थितियों में भी एमरिकियम या प्लूटोनियम मिश्रण व्यय-ईंधन विघटन एल्कोहल की तुलना में कम रेडियोधर्मी है। इसलिए यह प्यूरेक्स या अन्य जलीय पुनर्संसाधन विधि द्वारा प्लूटोनियम को पुनर्प्राप्त करने के लिए अपेक्षाकृत सरल होना चाहिए।


क्यूरियम सामग्री

यह संभव है कि एमरिकियम और क्यूरियम दोनों को एक U/Pu एमओएक्स ईंधन में जोड़ा जा सकता है। इससे पहले कि इसे एक तेज रिएक्टर या एक्टिनाइड बर्नर मोड में चलने वाले सबक्रिटिकल रिएक्टर में लोड किया जाए। यह रूपांतरण का एक साधन है। क्यूरियम के साथ काम करना एमेरिकियम की तुलना में बहुत कठिन है क्योंकि क्यूरियम एक न्यूट्रॉन उत्सर्जक है। श्रमिकों की सुरक्षा के लिए एमओएक्स उत्पादन लाइन को सीसा और पानी दोनों से परिरक्षित करने की आवश्यकता होगी।

इसके अतिरिक्त क्यूरियम का न्यूट्रॉन विकिरण उच्च एक्टिनाइड्स उत्पन्न करता है। जैसे कि कलिफ़ोरनियम, जो प्रयुक्त परमाणु ईंधन से जुड़े न्यूट्रॉन खाद्य सामग्री को बढ़ाता है। इसमें मजबूत न्यूट्रॉन उत्सर्जकों के साथ ईंधन चक्र को प्रदूषित करने की क्षमता है। परिणाम स्वरुप यह संभावना है कि क्यूरियम को अधिकांश एमओएक्स ईंधन से प्रत्येक बार रखा जाएगा। एक सबक्रिटिकल रिएक्टर जैसे एक्सीलरेटर संचालित सबक्रिटिकल रिएक्टर ऐसे ईंधन को जला सकता है। यदि उनकी हैंडलिंग और परिवहन से जुड़ी समस्याएं हल हो जाएं। चूंकि अनपेक्षित क्रांतिकता के कारण विद्युत के भ्रमण से बचने के लिए न्यूट्रॉनिक्स को समय पर किसी भी बिंदु पर त्रुटिहीन होना चाहिए। जिसमें न्यूट्रॉन उत्सर्जक न्यूक्लाइड्स के साथ-साथ न्यूट्रॉन उत्पेरकों के निर्माण या क्रयमूल्य का प्रभाव भी सम्मिलित है।

थोरियम एमओएक्स

थोरियम और प्लूटोनियम ऑक्साइड युक्त एमओएक्स ईंधन का भी परीक्षण किया जा रहा है।[17] नार्वेजियन अध्ययन के अनुसार थोरियम-प्लूटोनियम ईंधन का शून्य गुणांक 21% तक प्लूटोनियम सामग्री के लिए नकारात्मक है। जबकि एमओएक्स ईंधन के लिए संक्रमण 16% पर है।[18] लेखकों ने निष्कर्ष निकाला कि थोरियम-प्लूटोनियम ईंधन नियंत्रण रॉड और परमाणु प्रत्येक घुलनशील और प्रत्येक के मूल्य सीवीआर और प्लूटोनियम की क्रयमूल्य के संबंध में एमओएक्स ईंधन पर कुछ लाभ प्रदान करता है।[18]


यह भी देखें


संदर्भ

  1. "Military Warheads as a Source of Nuclear Fuel - Megatons to MegaWatts - World Nuclear Association". www.world-nuclear.org.
  2. "U.S. MOX program wanted relaxed security at the weapon-grade plutonium facility". 11 April 2011.
  3. "Is U.S. Reprocessing Worth The Risk? - Arms Control Association". www.armscontrol.org.
  4. "Factsheets on West Valley · NIRS". 1 March 2015.
  5. Podvig, Pavel (10 March 2011). "U.S. plutonium disposition program: Uncertainties of the MOX route". International Panel on Fissile Materials. Retrieved 13 February 2012.
  6. 6.0 6.1 "Information from the World Nuclear Association about MOX".
  7. Реактор БН-800 полностью перешел на МОКС-топливо
  8. "Candu works with UK Nuclear Decommissioning Authority to study deployment of EC6 reactors". Mississauga: Candu press-release. June 27, 2012. Retrieved 5 December 2013.
  9. "Swords into Ploughshares: Canada Could Play Key Role in Transforming Nuclear Arms Material into Electricity," Archived 2013-10-03 at the Wayback Machine in The Ottawa Citizen (22 August 1994): "CANDU ... reactor design inherently allows for the handling of full-MOX cores"
  10. Burakov, B. E.; Ojovan, M. I.; Lee, W. E. (2010). Crystalline Materials for Actinide Immobilisation. London: Imperial College Press. p. 58.
  11. Natarajan, R. (2015). "Reprocessing of spent fast reactor nuclear fuels, Natarajan". Reprocessing and Recycling of Spent Nuclear Fuel: 213–243. doi:10.1016/B978-1-78242-212-9.00009-5.
  12. Rücknahme radioaktiver Abfälle aus der Wiederaufarbeitung (In German)
  13. TVA might use MOX fuels from SRS, June 10, 2009
  14. New Doubts About Turning Plutonium Into a Fuel, April 10, 2011
  15. Gardner, Timothy (12 October 2018). "Trump administration kills contract for plutonium-to-fuel plant". Reuters.
  16. 16.0 16.1 16.2 16.3 "NDA Plutonium Options" (PDF). Nuclear Decommissioning Authority. August 2008. Archived from the original (PDF) on 2011-05-25. Retrieved 2008-09-07. {{cite journal}}: Cite journal requires |journal= (help)
  17. "Thorium test begins". World Nuclear News. 21 June 2013. Retrieved 21 July 2013.
  18. 18.0 18.1 Björk, Klara Insulander; Fhager, Valentin (June 2009). "Comparison of thorium-plutonium fuel and MOX fuel for PWRs": 487. Retrieved 11 October 2017. {{cite journal}}: Cite journal requires |journal= (help)


बाप्रत्येकी कड़ियाँ