थर्मोअकॉस्टिक हीट इंजन: Difference between revisions

From Vigyanwiki
 
(187 intermediate revisions by 6 users not shown)
Line 1: Line 1:
[[File:Thermo-acoustic_cooling_machine.png|thumb|upright=1.3|थर्मोअकॉस्टिक हॉट-एयर इंजन का एक योजनाबद्ध प्रतिनिधित्व। हीट एक्सचेंजर का गर्म पक्ष गर्म ताप भंडार से जुड़ा होता है - और ठंडा भाग ठंडे ताप भंडार से जुड़ा होता है। इलेक्ट्रो-ध्वनिक [[ट्रांसड्यूसर]], उदा। लाउडस्पीकर नहीं दिखाया गया है।]][[THERMOACOUSTICS]] इंजन (कभी-कभी टीए इंजन कहलाते हैं) थर्मोअकॉस्टिक डिवाइस होते हैं जो एक स्थान से दूसरे स्थान पर पंप को गर्म करने के लिए उच्च-आयाम वाली ध्वनि तरंगों का उपयोग करते हैं (इसके लिए काम की आवश्यकता होती है, जो लाउडस्पीकर द्वारा प्रदान किया जाता है) या ध्वनि तरंगों से उत्पादित काम को करने के लिए गर्मी के अंतर का उपयोग करते हैं (इन तरंगों को तब विद्युत धारा में उसी तरह परिवर्तित किया जा सकता है जैसे एक [[माइक्रोफ़ोन]] करता है)।
[[File:Thermo-acoustic_cooling_machine.png|thumb|upright=1.3|तापध्वनिक हॉट-एयर इंजन का एक योजनाबद्ध प्रतिनिधित्व।ताप विनिमयक का गर्म पक्ष गर्म ताप भंडार से जुड़ा होता है - और ठंडा भाग ठंडे ताप भंडार से जुड़ा होता है। इलेक्ट्रो-ध्वनिक [[ट्रांसड्यूसर]], उदा। ध्वनि-विस्तारक नहीं दिखाया गया है।]]'''थर्मोअकॉस्टिक हीट इंजन''' (कभी-कभी "टीए इंजन" कहा जाता है) तापध्वनिक उपकरण होते हैं जो ऊष्मा को एक स्थान से दूसरे स्थान पर पंप करने के लिए उच्च-आयाम वाली ध्वनि तरंगों का उपयोग करते हैं (इसके लिए कार्य की आवश्यकता होती है, जो ध्वनि-विस्तारक द्वारा प्रदान की जाती है) या ध्वनि तरंगों के रूप में कार्य उत्पन्न करने के लिए ऊष्मा के अंतर का उपयोग करते हैं (इन तरंगों को तब विद्युत धारा में उसी तरह परिवर्तित किया जा सकता है जैसे एक [[माइक्रोफ़ोन]] करता है)।


इन उपकरणों को [[खड़ी लहर]] या [[हिलाना]] का उपयोग करने के लिए डिज़ाइन किया जा सकता है।
इन उपकरणों को [[खड़ी लहर|स्थायी तरंग]] या यात्रा तरंग का उपयोग करने के लिए अभिकल्प किया जा सकता है।


[[वाष्प-संपीड़न प्रशीतन]] की तुलना में, थर्मोअकॉस्टिक रेफ्रिजरेटर में कोई शीतलक नहीं होता है और कुछ चलने वाले हिस्से (केवल लाउडस्पीकर) होते हैं, इसलिए गतिशील सीलिंग या स्नेहन की आवश्यकता नहीं होती है।<ref>{{cite journal | author=Ceperley, P. | title=एक पिस्टन रहित स्टर्लिंग इंजन - ट्रैवलिंग वेव हीट इंजन| journal=J. Acoust. Soc. Am. | year=1979 | volume=66 | issue=5 | pages=1508–1513 | doi=10.1121/1.383505|bibcode = 1979ASAJ...66.1508C }}</ref>
वाष्प-संपीड़न प्रशीतन की तुलना में, तापध्वनिक प्रशीतन में कोई शीतलक नहीं होता है और कुछ चलने वाले भाग (केवल ध्वनि-विस्तारक) होते हैं, इसलिए गतिशील सीलिंग या स्नेहन की आवश्यकता नहीं होती है।<ref>{{cite journal | author=Ceperley, P. | title=एक पिस्टन रहित स्टर्लिंग इंजन - ट्रैवलिंग वेव हीट इंजन| journal=J. Acoust. Soc. Am. | year=1979 | volume=66 | issue=5 | pages=1508–1513 | doi=10.1121/1.383505|bibcode = 1979ASAJ...66.1508C }}</ref>




== इतिहास ==
== इतिहास ==
ध्वनि उत्पन्न करने के लिए गर्मी की क्षमता सदियों पहले ग्लासब्लोअर्स द्वारा नोट की गई थी।<ref name=":0">{{Cite web|url=https://newatlas.com/soundenergy-thermoacoustic-cooling/58169/|title=बिजली मुक्त एयर कॉन: थर्मोअकॉस्टिक डिवाइस बिना किसी अतिरिक्त शक्ति का उपयोग किए बेकार गर्मी को ठंड में बदल देता है|website=newatlas.com|language=en|access-date=2019-01-26}}</ref> 1850 के दशक के प्रयोगों से पता चला कि एक तापमान अंतर ने घटना को चलाया, और ध्वनिक मात्रा और तीव्रता ट्यूब की लंबाई और बल्ब के आकार के साथ भिन्न होती है।
ध्वनि उत्पन्न करने के लिए ऊष्मा की क्षमता सदियों पहले ग्लासब्लोअर्स द्वारा नोट की गई थी।<ref name=":0">{{Cite web|url=https://newatlas.com/soundenergy-thermoacoustic-cooling/58169/|title=बिजली मुक्त एयर कॉन: थर्मोअकॉस्टिक डिवाइस बिना किसी अतिरिक्त शक्ति का उपयोग किए बेकार गर्मी को ठंड में बदल देता है|website=newatlas.com|language=en|access-date=2019-01-26}}</ref> 1850 के दशक के प्रयोगों से पता चला कि एक तापमान अंतर ने इस घटना को चलाया, और ध्वनिक मात्रा और तीव्रता ट्यूब की लंबाई और बल्ब के आकार के साथ भिन्न होती है।


[[पीटर रिच]] ने प्रदर्शित किया कि ट्यूब के एक चौथाई भाग में एक गर्म तार स्क्रीन को जोड़ने से ध्वनि बहुत बढ़ जाती है, जिससे ट्यूब में हवा को अपने सबसे अधिक दबाव के बिंदु पर ऊर्जा की आपूर्ति होती है। आगे के प्रयोगों से पता चला कि न्यूनतम दबाव के बिंदु पर हवा को ठंडा करने से भी एक समान प्रवर्धक प्रभाव उत्पन्न हुआ। एक [[अमीर ट्यूब]] ऊष्मा को [[ध्वनिक ऊर्जा]] में परिवर्तित करती है, और प्राकृतिक संवहन का उपयोग करती है।


लगभग 1887 में, जॉन स्ट्रट, तीसरे बैरन रेले ने ध्वनि के साथ गर्मी को पंप करने की संभावना पर चर्चा की।
लगभग 1887 में, जॉन स्ट्रट, तीसरे बैरन रेले ने ध्वनि के साथ ऊष्मा को पंप करने की संभावना पर चर्चा की।


1969 में, रॉट ने इस विषय को फिर से खोल दिया।<ref>{{Cite web|url=http://uw.physics.wisc.edu/~timbie/P325/Fahey_thermoacoustic_oscillations.pdf|title=तापध्वनिक दोलन, डोनाल्ड फेहे, वेव मोशन एंड ऑप्टिक्स, स्प्रिंग 2006, प्रो. पीटर टिम्बी}}</ref> तरल पदार्थों के लिए नेवियर-स्टोक्स समीकरणों का उपयोग करते हुए, उन्होंने ताप ध्वनिकी के लिए विशिष्ट समीकरणों को व्युत्पन्न किया।<ref>{{cite journal|author=Rott, N.|year=1980|title=THERMOACOUSTICS|journal=Adv. Appl. Mech.|series=Advances in Applied Mechanics|volume=20|issue=135|pages=135–175|doi=10.1016/S0065-2156(08)70233-3|isbn=9780120020201}}</ref> गणना के लिए एक बुनियादी मात्रात्मक समझ और संख्यात्मक मॉडल बनाने के लिए रैखिक थर्मोकॉस्टिक मॉडल विकसित किए गए थे।
1969 में, रॉट ने इस विषय को फिर से खोल दिया। तरल पदार्थों के लिए नेवियर-स्टोक्स समीकरणों का उपयोग करते हुए, उन्होंने ताप ध्वनिकी के लिए विशिष्ट समीकरणों को व्युत्पन्न किया। गणना के लिए संख्यात्मक प्रारूप और एक सामान्य मात्रात्मक समझ बनाने के लिए रैखिक तापध्वनिक प्रारूप विकसित किए गए थे।  


स्विफ्ट ने इन समीकरणों के साथ जारी रखा, तापध्वनिक उपकरणों में ध्वनिक शक्ति के लिए अभिव्यक्ति प्राप्त की।<ref name="Swift">{{cite journal|last1=Swift|first1=Gregory W.|date=1988|title=थर्मोअकॉस्टिक इंजन|url=http://scitation.aip.org/content/asa/journal/jasa/84/4/10.1121/1.396617|journal=The Journal of the Acoustical Society of America|volume=84|issue=4|page=1145|bibcode=1988ASAJ...84.1145S|doi=10.1121/1.396617|access-date=9 October 2015}}</ref>
स्विफ्ट ने इन समीकरणों के साथ जारी रखा,और तापध्वनिक उपकरणों में ध्वनिक शक्ति के लिए अभिव्यक्ति प्राप्त की।<ref name="Swift">{{cite journal|last1=Swift|first1=Gregory W.|date=1988|title=थर्मोअकॉस्टिक इंजन|url=http://scitation.aip.org/content/asa/journal/jasa/84/4/10.1121/1.396617|journal=The Journal of the Acoustical Society of America|volume=84|issue=4|page=1145|bibcode=1988ASAJ...84.1145S|doi=10.1121/1.396617|access-date=9 October 2015}}</ref>
1992 में [[स्पेस शटल डिस्कवरी]] पर एक समान तापध्वनिक प्रशीतन उपकरण का उपयोग किया गया था।<ref name=":0" />
1992 में [[स्पेस शटल डिस्कवरी]] पर एक समान तापध्वनिक प्रशीतन उपकरण का उपयोग किया गया था।<ref name=":0" />


[[यूटा विश्वविद्यालय]] में ऑरेस्ट सिमको ने 2005 में थर्मल ध्वनिक पीजो ऊर्जा रूपांतरण (TAPEC) नामक एक शोध परियोजना शुरू की।<ref name=":1">[http://www.physorg.com/pdf100141616.pdf physorg.com: A sound way to turn heat into electricity (pdf)] Quote: "...Symko says the devices won’t create [[noise pollution]]...Symko says the ring-shaped device is twice as efficient as cylindrical devices in converting heat into sound and electricity. That is because the pressure and speed of air in the ring-shaped device are always in sync, unlike in cylinder-shaped devices..."</ref>
[[यूटा विश्वविद्यालय]] में ऑरेस्ट सिमको ने 2005 में तापध्वनिक दाबविद्युत ऊर्जा रूपांतरण (TAPEC) नामक एक शोध परियोजना शुरू की।<ref name=":1">[http://www.physorg.com/pdf100141616.pdf physorg.com: A sound way to turn heat into electricity (pdf)] Quote: "...Symko says the devices won’t create [[noise pollution]]...Symko says the ring-shaped device is twice as efficient as cylindrical devices in converting heat into sound and electricity. That is because the pressure and speed of air in the ring-shaped device are always in sync, unlike in cylinder-shaped devices..."</ref>
आला अनुप्रयोग जैसे छोटे से मध्यम स्तर के [[क्रायोजेनिक]] अनुप्रयोग। स्कोर लिमिटेड को मार्च 2007 में खाना पकाने के चूल्हे पर शोध करने के लिए £2M से सम्मानित किया गया था जो विकासशील देशों में उपयोग के लिए बिजली और शीतलन भी प्रदान करता है।<ref name=":2">{{Cite web|url=https://arstechnica.com/uncategorized/2007/05/new-stove-generator-refrigerator-combo-aimed-at-developing-nations/|title=ध्वनि के साथ खाना बनाना: विकासशील देशों के उद्देश्य से नया स्टोव/जनरेटर/रेफ्रिजरेटर कॉम्बो|last=Lee|first=Chris|date=May 28, 2007|website=Ars Technica}}</ref><ref name=":3">[http://www.score.uk.com/ SCORE (Stove for Cooking, Refrigeration and Electricity)], [http://www.score.uk.com/index.php/research-summary/ illustration]</ref>
यह परियोजना छोटे से मध्यम स्तर के [[क्रायोजेनिक]] अनुप्रयोगों जैसे आला अनुप्रयोगों पर केंद्रित है। स्कोर लिमिटेड को मार्च 2007 में खाना पकाने के चूल्हे पर शोध करने के लिए £2M से सम्मानित किया गया था जो विकासशील देशों में उपयोग के लिए बिजली और शीतलन भी प्रदान करता है।<ref name=":2">{{Cite web|url=https://arstechnica.com/uncategorized/2007/05/new-stove-generator-refrigerator-combo-aimed-at-developing-nations/|title=ध्वनि के साथ खाना बनाना: विकासशील देशों के उद्देश्य से नया स्टोव/जनरेटर/रेफ्रिजरेटर कॉम्बो|last=Lee|first=Chris|date=May 28, 2007|website=Ars Technica}}</ref><ref name=":3">[http://www.score.uk.com/ SCORE (Stove for Cooking, Refrigeration and Electricity)], [http://www.score.uk.com/index.php/research-summary/ illustration]</ref>[[एयरबस]] द्वारा गहरे अंतरिक्ष अन्वेषण मिशनों के लिए एक रेडियोआइसोटोप-हीटेड तापध्वनिक प्रणाली को प्रस्तावित और प्रतिरूप किया गया था। मौजूदा [[थर्मोकपल]] आधारित प्रणालियों, या [[उन्नत स्टर्लिंग रेडियोआइसोटोप जनरेटर]] प्रतिरूप में उपयोग किए जाने वाले प्रस्तावित [[स्टर्लिंग इंजन]] जैसी अन्य जनरेटर प्रणालियों की तुलना में इस प्रणाली के मामूली सैद्धांतिक लाभ हैं।<ref name="Airbus">{{Cite web|url=http://pamir.sal.lv/2014/cd/container/B.7.02=DidierA_Pamir14.pdf|title=अंतरिक्ष मिशनों के लिए थर्मो-अकूस्टिक जेनरेटर}}</ref>
[[एयरबस]] द्वारा गहरे अंतरिक्ष अन्वेषण मिशनों के लिए एक रेडियोआइसोटोप-हीटेड थर्मोअकॉस्टिक सिस्टम प्रस्तावित और प्रोटोटाइप किया गया था। मौजूदा [[थर्मोकपल]] आधारित प्रणालियों, या [[उन्नत स्टर्लिंग रेडियोआइसोटोप जनरेटर]] प्रोटोटाइप में उपयोग किए जाने वाले प्रस्तावित [[स्टर्लिंग इंजन]] जैसी अन्य जनरेटर प्रणालियों की तुलना में इस प्रणाली के मामूली सैद्धांतिक लाभ हैं।<ref name="Airbus">{{Cite web|url=http://pamir.sal.lv/2014/cd/container/B.7.02=DidierA_Pamir14.pdf|title=अंतरिक्ष मिशनों के लिए थर्मो-अकूस्टिक जेनरेटर}}</ref>
ध्वनि ऊर्जा ने एक (टीएचईएसी) प्रणाली विकसित की है जो ऊष्मा, अधिकतर अपशिष्ट ऊष्मा या सौर ताप को बिना किसी अन्य ऊर्जा स्रोत के शीतलन में परिवर्तित कर सकती है। डिवाइस [[आर्गन]] गैस का उपयोग करता है। उपकरण अपशिष्ट ऊष्मा द्वारा बनाई गई ध्वनि को बढ़ाता है, परिणामी दबाव को वापस दूसरे ताप अंतर में परिवर्तित करता है और शीतलन प्रभाव उत्पन्न करने के लिए स्टर्लिंग चक्र का उपयोग करता है।
साउंडएनर्जी ने (THEAC) सिस्टम विकसित किया है जो गर्मी, अधिकतर अपशिष्ट गर्मी या सौर ताप को बिना किसी अन्य ऊर्जा स्रोत के कूलिंग में बदल देता है। डिवाइस [[आर्गन]] गैस का उपयोग करता है। उपकरण अपशिष्ट गर्मी द्वारा बनाई गई ध्वनि को बढ़ाता है, परिणामी दबाव को   वापस दूसरे ताप अंतर में परिवर्तित करता है और शीतलन प्रभाव उत्पन्न करने के लिए स्टर्लिंग चक्र का उपयोग करता है।<ref name=":0" />
 
== ऑपरेशन ==
== ऑपरेशन ==
एक थर्मोकॉस्टिक डिवाइस इस तथ्य का लाभ उठाता है कि गैस एडियाबेटिक प्रक्रिया के ध्वनि तरंग पार्सल में वैकल्पिक रूप से संपीड़ित और विस्तारित होती है, और दबाव और तापमान एक साथ बदलते हैं; जब दबाव अधिकतम या न्यूनतम तक पहुंचता है, तो तापमान भी होता है। इसमें मूल रूप से [[उष्मा का आदान प्रदान करने वाला]], एक [[गुंजयमान यंत्र]] और एक स्टैक ( स्थायी तरंग उपकरण पर) या [[पुनर्योजी हीट एक्सचेंजर]] (यात्रा तरंग उपकरण पर) होते हैं। इंजन के प्रकार के आधार पर ध्वनि तरंगें उत्पन्न करने के लिए [[स्पीकर ड्राइवर]] या [[ध्वनि-विस्तारक यंत्र]] का उपयोग किया जा सकता है।
एक तापध्वनिक उपकरण इस तथ्य का लाभ उठाता है कि एक रुद्धोष्म प्रक्रम के ध्वनि तरंग पार्सल में एक गैस संकुचित और विस्तारित होती है, और दबाव और तापमान एक साथ बदलते हैं, जब दबाव अधिकतम या न्यूनतम तक पहुंचता है, तो तापमान भी होता है। इसमें मूल रूप से [[उष्मा का आदान प्रदान करने वाला]] यंत्र, एक [[गुंजयमान यंत्र]] और एक स्टैक (स्थायी तरंग उपकरण पर) या [[पुनर्योजी हीट एक्सचेंजर]] (यात्रा तरंग उपकरण पर) होता है। इंजन के प्रकार के आधार पर ध्वनि तरंगों को उत्पन्न करने के लिए [[स्पीकर ड्राइवर]] या [[ध्वनि-विस्तारक यंत्र]] का उपयोग किया जा सकता है।


दोनों सिरों पर बंद ट्यूब में, निश्चित आवृत्तियों पर विपरीत दिशाओं में यात्रा करने वाली दो तरंगों के बीच हस्तक्षेप हो सकता है। हस्तक्षेप अनुनाद का कारण बनता है और एक स्थायी तरंग बनाता है। स्टैक में छोटे समानांतर चैनल होते हैं। जब स्टैक को एक स्थायी तरंग वाले रेज़ोनेटर में एक निश्चित स्थान पर रखा जाता है, तो स्टैक में एक तापमान अंतर विकसित होता है। स्टैक के प्रत्येक तरफ हीट एक्सचेंजर्स लगाकर, गर्मी को स्थानांतरित किया जा सकता है। विपरीत भी संभव है: स्टैक के पार तापमान अंतर एक ध्वनि तरंग उत्पन्न करता है। पहला उदाहरण एक ऊष्मा पम्प है, जबकि दूसरा एक प्रमुख प्रेरक है।
दोनों सिरों पर बंद ट्यूब में, निश्चित आवृत्तियों पर विपरीत दिशाओं में यात्रा करने वाली दो तरंगों के बीच हस्तक्षेप हो सकता है। हस्तक्षेप अनुनाद का कारण बनता है और एक स्थायी तरंग बनाता है। स्टैक में छोटे समानांतर चैनल होते हैं। जब स्टैक को एक स्थायी तरंग वाले अनुनादक में एक निश्चित स्थान में रखा जाता है, तो स्टैक में एक तापमान अंतर विकसित होता है। स्टैक के प्रत्येक तरफ ऊष्मा विनिमयक लगाकर, ऊष्मा को स्थानांतरित किया जा सकता है। स्टैक के पार तापमान अंतर एक ध्वनि तरंग उत्पन्न करता है। विपरीत भी संभव है जैसे पहला उदाहरण एक ऊष्मा पम्प है, जबकि दूसरा एक प्रमुख प्रेरक है।


=== हीट पंप ===
=== ऊष्मा पंप ===
गर्म जलाशय में ठंड से गर्मी बनाने या स्थानांतरित करने के लिए काम की आवश्यकता होती है। ध्वनिक शक्ति यह काम प्रदान करती है। स्टैक एक दबाव ड्रॉप बनाता है। आने वाली और परावर्तित ध्वनिक तरंगों के बीच हस्तक्षेप एक अपूर्ण है। आयाम में अंतर के कारण खड़ी तरंग यात्रा करती है, जिससे तरंग ध्वनिक शक्ति प्राप्त होती है।
ठंड से गर्म जलाशय में ऊष्मा बनाने या स्थानांतरित करने के लिए कार्य की आवश्यकता होती है। ध्वनिक शक्ति यह कार्य प्रदान करती है। स्टैक एक दबाव ड्रॉप बनाता है। आने वाली और परावर्तित ध्वनिक तरंगों के बीच हस्तक्षेप अब अपूर्ण है। आयाम में अंतर के कारण खड़ी तरंग यात्रा करती है, जिससे तरंग ध्वनिक शक्ति प्राप्त होती है।


खड़ी लहर उपकरण एक ढेर के साथ हीट पंपिंग [[ब्रेटन चक्र]] का अनुसरण करती है।
खड़ी लहर उपकरण में स्टैक के साथ ऊष्मा पंपिंग [[ब्रेटन चक्र]] का अनुसरण करती है।


[[रेफ़्रिजरेटर]] के लिए वामावर्त ब्रेटन चक्र में चार प्रक्रियाएँ होती हैं जो ढेर की दो प्लेटों के बीच गैस के पार्सल को प्रभावित करती हैं।
[[रेफ़्रिजरेटर]] के लिए वामावर्त ब्रेटन चक्र में चार प्रक्रियाएँ होती हैं जो स्टैक की दो प्लेटों के बीच गैस के पार्सल को प्रभावित करती हैं।


# गैस का रुद्धोष्म संपीड़न। जब गैस के एक पार्सल को उसकी सबसे दाहिनी स्थिति से उसके सबसे बाईं तरफ विस्थापित किया जाता है, तो पार्सल रूद्धोष्म रूप से संकुचित हो जाता है, जिससे उसका तापमान बढ़ जाता है। सबसे बाईं तरफ स्थित पार्सल में अब वार्म प्लेट की तुलना में अधिक तापमान होता है।[[पीटर रिच]] ने प्रदर्शित किया कि एक गर्म तार स्क्रीन को ट्यूब के ऊपर एक चौथाई हिस्से में जोड़ने से ध्वनि बहुत बढ़ जाती है, जिससे ट्यूब में हवा को ऊर्जा की आपूर्ति सबसे अधिक दबाव के बिंदु पर होती है। आगे के प्रयोगों से पता चला कि न्यूनतम दबाव के बिंदु पर हवा को ठंडा करने से एक समान प्रवर्धक प्रभाव उत्पन्न होता है।<ref name=":0" />एक [[अमीर ट्यूब]] गर्मी को [[ध्वनिक ऊर्जा]] में परिवर्तित करती है,<ref>[[Pieter Rijke|P. L. Rijke]] (1859) Philosophical Magazine, '''17''', 419–422.</ref> प्राकृतिक संवहन का उपयोग करती है।
# गैस का रुद्धोष्म संपीड़न। जब गैस के एक पार्सल को उसकी सबसे दाहिनी स्थिति से उसके सबसे बाईं ओर विस्थापित किया जाता है, तो पार्सल रूद्धोष्म रूप से संकुचित हो जाता है, जिससे उसका तापमान बढ़ जाता है। सबसे बाईं ओर स्थित पार्सल में अब वार्म प्लेट की तुलना में अधिक तापमान होता है।
#समदाबी गर्मी हस्तांतरण। पार्सल का उच्च तापमान गैस को ठंडा करने, निरंतर दबाव पर प्लेट में गर्मी स्थानांतरित करने का कारण बनता है।
#आइसोबैरिक ऊष्मा स्थानान्तरण। पार्सल का उच्च तापमान गैस को ठंडा करने, निरंतर दबाव पर प्लेट में ऊष्मा स्थानांतरित करने का कारण बनता है।
#गैस का रुद्धोष्म प्रसार। गैस को सबसे बाईं स्थिति से वापस सबसे दाईं तरफ विस्थापित किया जाता है। रूद्धोष्म विस्तार के कारण गैस ठंडी प्लेट की तुलना में कम तापमान तक ठंडी हो जाती है।
#गैस का रुद्धोष्म प्रसार। गैस को सबसे बाईं स्थिति से वापस सबसे दाईं ओर विस्थापित किया जाता है। रूद्धोष्म विस्तार के कारण गैस ठंडी प्लेट की तुलना में कम तापमान तक ठंडी हो जाती है।
#समदाबी हीट ट्रांसफर। पार्सल के कम तापमान के कारण ठंडी प्लेट से गैस में स्थिर दबाव में गर्मी स्थानांतरित हो जाती है, जिससे पार्सल का तापमान अपने मूल मूल्य पर लौट आता है।
#आइसोबैरिक ऊष्मा अन्तरण। पार्सल के कम तापमान के कारण ठंडी प्लेट से गैस में निरंतर दबाव में ऊष्मा स्थानांतरित हो जाती है, जिससे पार्सल का तापमान अपने मूल मूल्य पर लौट आता है।


यात्रा तरंग उपकरणों को [[स्टर्लिंग चक्र]] का उपयोग करके वर्णित किया जा सकता है।
यात्रा तरंग उपकरणों को [[स्टर्लिंग चक्र]] का उपयोग करके वर्णित किया जा सकता है।


=== तापमान ढाल ===
=== तापमान ढाल ===
इंजन और ताप पंप दोनों अधिकतर  स्टैक और हीट एक्सचेंजर्स का उपयोग करते हैं। प्राइम मूवर और हीट पंप के बीच की सीमा तापमान ढाल ऑपरेटर द्वारा दी जाती है, जो कि क्रांतिक तापमान ढाल द्वारा विभाजित औसत तापमान ढाल है।
इंजन और ऊष्मा पंप दोनों सामान्यतः स्टैक और ऊष्मा विनियमक का उपयोग करते हैं। प्राइम मूवर और ऊष्मा पंप के बीच की सीमा तापमान ढाल संचालक द्वारा दी जाती है, जो कि महत्वपूर्ण तापमान ढाल द्वारा विभाजित औसत तापमान ढाल है।


:<math>\Iota = \frac{\nabla T_{m}}{\nabla T_{crit}} </math>
:<math>\Iota = \frac{\nabla T_{m}}{\nabla T_{crit}} </math>
औसत तापमान ढाल स्टैक की लंबाई से विभाजित स्टैक भर में तापमान अंतर है।
औसत तापमान ढाल स्टैक की लंबाई से विभाजित स्टैक भर में तापमान अंतर है।


:<math>\nabla T_{m} = \frac{\Delta T_{m}}{\Delta x_{stack}}</math>
:<math>\nabla T_{m} = \frac{\Delta T_{m}}{\Delta x_{stack}}</math>
महत्वपूर्ण तापमान ढाल एक मान है जो डिवाइस की विशेषताओं जैसे आवृत्ति, क्रॉस-अनुभागीय क्षेत्र और गैस गुणों पर निर्भर करता है।
महत्वपूर्ण तापमान ढाल एक मान है जो उपकरण की विशेषताओं जैसे आवृत्ति, क्रॉस-अनुभागीय क्षेत्र और गैस गुणों पर निर्भर करता है।


यदि तापमान ढाल ऑपरेटर एक से अधिक है, तो औसत तापमान ढाल क्रांतिक तापमान ढाल से बड़ा होता है और स्टैक एक प्रमुख प्रस्तावक के रूप में कार्य करता है। यदि तापमान ढाल ऑपरेटर एक से कम है, तो औसत तापमान ढाल क्रांतिक  ढाल से छोटा होता है और स्टैक हीट पंप के रूप में कार्य करता है।
यदि तापमान ढाल संचालिका एक से अधिक है, तो माध्य तापमान ढाल क्रांतिक तापमान ढाल से बड़ा होता है और स्टैक एक प्रमुख प्रेरक के रूप में कार्य करता है। यदि तापमान ढाल संचालक एक से कम है, तो औसत तापमान ढाल महत्वपूर्ण ढाल से छोटा होता है और स्टैक ऊष्मा पंप के रूप में कार्य करता है।


=== सैद्धांतिक दक्षता ===
=== सैद्धांतिक दक्षता ===
ऊष्मप्रवैगिकी में उच्चतम प्राप्त करने योग्य दक्षता कार्नोट दक्षता है। थर्मोअकॉस्टिक इंजन की दक्षता की तुलना तापमान ढाल ऑपरेटर का उपयोग करके कार्नाट दक्षता से की जा सकती है।
ऊष्मप्रवैगिकी में उच्चतम प्राप्त करने योग्य दक्षता कार्नोट दक्षता है। तापमान ढाल संचालक का उपयोग करके,तापध्वनिक इंजन की दक्षता की तुलना कार्नाट दक्षता से की जा सकती है।


थर्मोअकॉस्टिक इंजन की दक्षता इसके द्वारा दी जाती है
तापध्वनिक इंजन की दक्षता किसके द्वारा दी जाती है


:<math>\eta = \frac{\eta_{c}}{\Iota}</math>
:<math>\eta = \frac{\eta_{c}}{\Iota}</math>
थर्मोअकॉस्टिक हीट पंप के प्रदर्शन का गुणांक इसके द्वारा दिया जाता है
तापध्वनिक ऊष्मा पंप के प्रदर्शन का गुणांक किसके द्वारा दिया जाता है


:<math>COP = \Iota \cdot COP_{c}</math>
:<math>COP = \Iota \cdot COP_{c}</math>
Line 63: Line 64:


== व्यावहारिक दक्षता ==
== व्यावहारिक दक्षता ==
सबसे कुशल थर्मोअकॉस्टिक उपकरणों की क्षमता कार्नो [[इंजन गर्म करें]] के 40% तक पहुंचती है# वास्तविक ताप इंजन की क्षमता की सीमा, या कुल मिलाकर लगभग 20% से 30% (हीट इंजन के तापमान पर निर्भर करता है)<ref>web archive backup: [https://web.archive.org/web/20080801212651/http://www.lanl.gov/mst/engine/ lanl.gov: More Efficient than Other No-Moving-Parts Heat Engines]</ref>
यदि कार्नो [[इंजन गर्म करें]] तब सबसे कुशल तापध्वनिक उपकरणों की क्षमता, वास्तविक ताप इंजन की क्षमता की सीमा के 40% या समग्र रूप से लगभग 20% से 30% (ऊष्मा इंजन के तापमान पर निर्भर करता है) तक पहुंचती है।<ref>web archive backup: [https://web.archive.org/web/20080801212651/http://www.lanl.gov/mst/engine/ lanl.gov: More Efficient than Other No-Moving-Parts Heat Engines]</ref> तापध्वनिक उपकरणों के साथ उच्च गर्म-अंत तापमान संभव हो सकता है क्योंकि उनके पास कोई हिलने वाला भाग नहीं होता है, इस प्रकार कार्नाट दक्षता को उच्च होने की अनुमति देता है। यह कार्नोट के प्रतिशत के रूप में पारंपरिक ऊष्मा इंजनों की तुलना में उनकी कम दक्षता को आंशिक रूप से प्रतिसंतुलन कर सकता है।  
थर्मोअकॉस्टिक उपकरणों के साथ उच्च गर्म-अंत तापमान संभव हो सकता है क्योंकि उनके पास कोई हिलने वाला भाग नहीं होता है, इसलिए कार्नाट दक्षता अधिक होने की अनुमति देता है। यह कार्नाट के प्रतिशत के रूप में पारंपरिक ताप इंजनों की तुलना में उनकी कम दक्षता को आंशिक रूप से ऑफसेट कर सकता है।
 
यात्रा तरंग उपकरणों द्वारा अनुमानित आदर्श स्टर्लिंग चक्र, स्थायी तरंग उपकरणों द्वारा अनुमानित आदर्श ब्रेटन चक्र की तुलना में स्वाभाविक रूप से अधिक कुशल है। चूंकि, एक स्थायी तरंग स्टैक की तुलना में एक यात्रा तरंग उपकरण में अच्छा तापीय संपर्क देने के लिए आवश्यक संकीर्ण छिद्र, व्यावहारिक दक्षता को कम करते हुए, अधिक घर्षण नुकसान को भी जन्म देता है जिसके लिए निश्चयपूर्वक अपूर्ण तापीय संपर्क की आवश्यकता होती है। टॉरॉयडल ज्यामिति अधिकतर यात्रा तरंग उपकरणों में उपयोग होती है, लेकिन स्थायी तरंग उपकरणों के लिए जरूरी नहीं है, लूप के चारों ओर गेडॉन स्ट्रीमिंग के कारण होने वाले नुकसान को बढ़ा भी सकती है।{{elucidate|date=July 2015}}


यात्रा तरंग उपकरणों द्वारा अनुमानित आदर्श स्टर्लिंग चक्र, स्थायी तरंग उपकरणों द्वारा अनुमानित आदर्श ब्रेटन चक्र की तुलना में स्वाभाविक रूप से अधिक कुशल है। हालांकि, एक स्थायी तरंग स्टैक की तुलना में एक यात्रा तरंग डिवाइस में अच्छा थर्मल संपर्क देने के लिए आवश्यक संकीर्ण छिद्र, जिसके लिए जानबूझकर अपूर्ण थर्मल संपर्क की आवश्यकता होती है, व्यावहारिक दक्षता को कम करते हुए, अधिक घर्षण नुकसान को भी जन्म देता है। टॉरॉयडल ज्योमेट्री अधिकतर यात्रा तरंग डिवाइसेस में इस्तेमाल होती है, लेकिन स्थायी तरंग डिवाइसेस के लिए जरूरी नहीं है, लूप के चारों ओर गेडॉन स्ट्रीमिंग के कारण होने वाले नुकसान को भी बढ़ा सकता है।{{elucidate|date=July 2015}}




Line 76: Line 77:




== आगे की पढाई ==
== अग्रिम पठन ==
{{Refbegin}}
{{Refbegin}}
* {{cite journal | last1=Gardner |first1=D. |last2=Swift |first2=G. | title=A cascade thermoacoustic engine | journal=J. Acoust. Soc. Am. | year=2003 | volume=114 | issue=4 | pages=1905–1919 | doi=10.1121/1.1612483 | pmid=14587591|bibcode = 2003ASAJ..114.1905G }}
* {{cite journal | last1=गार्डनर |first1=D. |last2=स्विफ्ट |first2=G. | title=एक कैस्केड थर्मोकॉस्टिक इंजन | journal=जे. ध्वनिक. समाज. पूर्वाह्न | year=2003 | volume=114 | issue=4 | pages=1905–1919 | doi=10.1121/1.1612483 | pmid=14587591|bibcode = 2003ASAJ..114.1905G }}
* {{cite journal |last1=Garrett |first1=Steven |last2=Backaus |first2=Scott |title=The Power of Sound |journal=American Scientist |volume=88 |page=561 |date=November 2000 |issue=6 |doi=10.1511/2000.6.516 |url=http://www.americanscientist.org/issues/pub/the-power-of-sound/1}} Semipopular introduction to thermoacoustic effects and devices.
* {{cite journal |last1=गैरेट |first1=स्टीवन |last2=बैकौस |first2=स्कॉट |title=ध्वनि की शक्ति |journal=अमेरिकी वैज्ञानिक |volume=88 |page=561 |date=November 2000 |issue=6 |doi=10.1511/2000.6.516 |url=http://www.americanscientist.org/issues/pub/the-power-of-sound/1}} थर्मोकॉस्टिक प्रभावों और उपकरणों का अर्धलोकप्रिय परिचय।
* Frank Wighard "Double Acting Pulse Tube Electroacoustic System" US Patent 5,813,234
* फ्रैंक विगार्ड "डबल एक्टिंग पल्स ट्यूब इलेक्ट्रोकॉस्टिक सिस्टम" यूएस पेटेंट 5,813,234
* {{cite conference |last1=de Blok |first1=Kees |date=February 2013 |url=http://www.aster-thermoacoustics.com/wp-content/uploads/2013/02/Multi-stage-traveling-wave-feedback-thermoacoustics-in-practice-Kees-de-Blok.pdf |title=Multi-stage traveling wave thermoacoustics in practice |book-title=19th International Congress on Sound and Vibration 2012 |conference=ICSV 19 |volume=2 |place=[[Red Hook, New York]] |publisher=Curran Associates |pages=1573-1580 |citeseerx=10.1.1.454.1398 |isbn=978-1-62276-465-5 |access-date=2021-12-08}}
* {{cite conference |last1=द ब्लॉक |first1=कीस |date=February 2013 |url=http://www.aster-thermoacoustics.com/wp-content/uploads/2013/02/Multi-stage-traveling-wave-feedback-thermoacoustics-in-practice-Kees-de-Blok.pdf |title=अभ्यास में मल्टी-स्टेज ट्रैवलिंग वेव थर्मोअकॉस्टिक्स |book-title=ध्वनि और कंपन पर 19वीं अंतर्राष्ट्रीय कांग्रेस 2012 |conference=ICSV 19 |volume=2 |place=[[रेड हुक, न्यूयॉर्क]] |publisher=कुरेन एसोसिएट्स |pages=1573-1580 |citeseerx=10.1.1.454.1398 |isbn=978-1-62276-465-5 |access-date=2021-12-08}}
{{Refend}}
{{Refend}}




==इस पेज में लापता आंतरिक लिंक की सूची==
*गर्मी पंप
*गूंज
*प्रदर्शन के गुणांक
*toroid
*चलित पुर्ज़े
*विकिरण के उत्तेजित उत्सर्जन द्वारा ध्वनि प्रवर्धन
== बाहरी कड़ियाँ ==
== बाहरी कड़ियाँ ==
{{Commons category|Thermoacoustic heat engines}}
* [http://www.lanl.gov/thermoacoustics/ लॉस एलामोस नेशनल लेबोरेटरी, न्यू मैक्सिको, यूएसए]
{{wikibooks|1=Engineering Acoustics|2=Thermoacoustics}}
* [http://www.mecheng.adelaide.edu.au/avc/thermoacoustics/ थर्मोअकॉस्टिक ऑस्ट्रेलिया के एडिलेड विश्वविद्यालय में], वेब संग्रह बैकअप: [https://web.archive.org/web/20080723204600/http://www.mecheng.adelaide.edu.au/anvc/thermoacoustics/forum/ चर्चा मंच]
* [http://www.lanl.gov/thermoacoustics/ Los Alamos National Laboratory, New Mexico, USA]
*[http://www.mecheng.adelaide.edu.au/avc/publications/public_papers/2005/preprint_bamman_aas2005.pdf एडिलेड विश्वविद्यालय]
* [http://www.mecheng.adelaide.edu.au/avc/thermoacoustics/ Thermoacoustics at the University of Adelaide, Australia], web archive backup: [https://web.archive.org/web/20080723204600/http://www.mecheng.adelaide.edu.au/anvc/thermoacoustics/forum/ Discussion Forum]
* [https://www.wired.com/science/discoveries/news/2003/01/57063 एडिलेड विश्वविद्यालय], [[Wired Magazine|वायर्ड पत्रिका]] लेख
*[http://www.mecheng.adelaide.edu.au/avc/publications/public_papers/2005/preprint_bamman_aas2005.pdf Adelaide University]
* [https://www.wired.com/science/discoveries/news/2003/01/57063 Hear That? The Fridge Is Chilling], [[Wired Magazine]] article


{{Heat engines}}
{{Heat engines}}
{{Emerging technologies|other=yes}}
{{Emerging technologies|other=yes}}


{{DEFAULTSORT:Thermoacoustic Hot Air Engine}}[[श्रेणी:गर्म हवा के इंजन| ]]
{{DEFAULTSORT:Thermoacoustic Hot Air Engine}}
[[श्रेणी:शीतलन प्रौद्योगिकी]]
[[श्रेणी: हीट पंप]]
[[श्रेणी:ध्वनिकी]]
 


[[Category: Machine Translated Page]]
[[Category:Articles with invalid date parameter in template|Thermoacoustic Hot Air Engine]]
[[Category:Created On 26/12/2022]]
[[Category:CS1 English-language sources (en)|Thermoacoustic Hot Air Engine]]
[[Category:Collapse templates|Thermoacoustic Hot Air Engine]]
[[Category:Created On 26/12/2022|Thermoacoustic Hot Air Engine]]
[[Category:Engine navigational boxes|Thermoacoustic Hot Air Engine]]
[[Category:Machine Translated Page|Thermoacoustic Hot Air Engine]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Thermoacoustic Hot Air Engine]]
[[Category:Pages with script errors|Thermoacoustic Hot Air Engine]]
[[Category:Sidebars with styles needing conversion|Thermoacoustic Hot Air Engine]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi|Thermoacoustic Hot Air Engine]]
[[Category:Templates Vigyan Ready|Thermoacoustic Hot Air Engine]]
[[Category:Templates generating microformats|Thermoacoustic Hot Air Engine]]
[[Category:Templates that are not mobile friendly|Thermoacoustic Hot Air Engine]]
[[Category:Templates using TemplateData|Thermoacoustic Hot Air Engine]]
[[Category:Wikipedia articles needing clarification from July 2015|Thermoacoustic Hot Air Engine]]
[[Category:Wikipedia metatemplates|Thermoacoustic Hot Air Engine]]

Latest revision as of 17:20, 12 September 2023

तापध्वनिक हॉट-एयर इंजन का एक योजनाबद्ध प्रतिनिधित्व।ताप विनिमयक का गर्म पक्ष गर्म ताप भंडार से जुड़ा होता है - और ठंडा भाग ठंडे ताप भंडार से जुड़ा होता है। इलेक्ट्रो-ध्वनिक ट्रांसड्यूसर, उदा। ध्वनि-विस्तारक नहीं दिखाया गया है।

थर्मोअकॉस्टिक हीट इंजन (कभी-कभी "टीए इंजन" कहा जाता है) तापध्वनिक उपकरण होते हैं जो ऊष्मा को एक स्थान से दूसरे स्थान पर पंप करने के लिए उच्च-आयाम वाली ध्वनि तरंगों का उपयोग करते हैं (इसके लिए कार्य की आवश्यकता होती है, जो ध्वनि-विस्तारक द्वारा प्रदान की जाती है) या ध्वनि तरंगों के रूप में कार्य उत्पन्न करने के लिए ऊष्मा के अंतर का उपयोग करते हैं (इन तरंगों को तब विद्युत धारा में उसी तरह परिवर्तित किया जा सकता है जैसे एक माइक्रोफ़ोन करता है)।

इन उपकरणों को स्थायी तरंग या यात्रा तरंग का उपयोग करने के लिए अभिकल्प किया जा सकता है।

वाष्प-संपीड़न प्रशीतन की तुलना में, तापध्वनिक प्रशीतन में कोई शीतलक नहीं होता है और कुछ चलने वाले भाग (केवल ध्वनि-विस्तारक) होते हैं, इसलिए गतिशील सीलिंग या स्नेहन की आवश्यकता नहीं होती है।[1]


इतिहास

ध्वनि उत्पन्न करने के लिए ऊष्मा की क्षमता सदियों पहले ग्लासब्लोअर्स द्वारा नोट की गई थी।[2] 1850 के दशक के प्रयोगों से पता चला कि एक तापमान अंतर ने इस घटना को चलाया, और ध्वनिक मात्रा और तीव्रता ट्यूब की लंबाई और बल्ब के आकार के साथ भिन्न होती है।

पीटर रिच ने प्रदर्शित किया कि ट्यूब के एक चौथाई भाग में एक गर्म तार स्क्रीन को जोड़ने से ध्वनि बहुत बढ़ जाती है, जिससे ट्यूब में हवा को अपने सबसे अधिक दबाव के बिंदु पर ऊर्जा की आपूर्ति होती है। आगे के प्रयोगों से पता चला कि न्यूनतम दबाव के बिंदु पर हवा को ठंडा करने से भी एक समान प्रवर्धक प्रभाव उत्पन्न हुआ। एक अमीर ट्यूब ऊष्मा को ध्वनिक ऊर्जा में परिवर्तित करती है, और प्राकृतिक संवहन का उपयोग करती है।

लगभग 1887 में, जॉन स्ट्रट, तीसरे बैरन रेले ने ध्वनि के साथ ऊष्मा को पंप करने की संभावना पर चर्चा की।

1969 में, रॉट ने इस विषय को फिर से खोल दिया। तरल पदार्थों के लिए नेवियर-स्टोक्स समीकरणों का उपयोग करते हुए, उन्होंने ताप ध्वनिकी के लिए विशिष्ट समीकरणों को व्युत्पन्न किया। गणना के लिए संख्यात्मक प्रारूप और एक सामान्य मात्रात्मक समझ बनाने के लिए रैखिक तापध्वनिक प्रारूप विकसित किए गए थे।

स्विफ्ट ने इन समीकरणों के साथ जारी रखा,और तापध्वनिक उपकरणों में ध्वनिक शक्ति के लिए अभिव्यक्ति प्राप्त की।[3] 1992 में स्पेस शटल डिस्कवरी पर एक समान तापध्वनिक प्रशीतन उपकरण का उपयोग किया गया था।[2]

यूटा विश्वविद्यालय में ऑरेस्ट सिमको ने 2005 में तापध्वनिक दाबविद्युत ऊर्जा रूपांतरण (TAPEC) नामक एक शोध परियोजना शुरू की।[4] यह परियोजना छोटे से मध्यम स्तर के क्रायोजेनिक अनुप्रयोगों जैसे आला अनुप्रयोगों पर केंद्रित है। स्कोर लिमिटेड को मार्च 2007 में खाना पकाने के चूल्हे पर शोध करने के लिए £2M से सम्मानित किया गया था जो विकासशील देशों में उपयोग के लिए बिजली और शीतलन भी प्रदान करता है।[5][6]एयरबस द्वारा गहरे अंतरिक्ष अन्वेषण मिशनों के लिए एक रेडियोआइसोटोप-हीटेड तापध्वनिक प्रणाली को प्रस्तावित और प्रतिरूप किया गया था। मौजूदा थर्मोकपल आधारित प्रणालियों, या उन्नत स्टर्लिंग रेडियोआइसोटोप जनरेटर प्रतिरूप में उपयोग किए जाने वाले प्रस्तावित स्टर्लिंग इंजन जैसी अन्य जनरेटर प्रणालियों की तुलना में इस प्रणाली के मामूली सैद्धांतिक लाभ हैं।[7] ध्वनि ऊर्जा ने एक (टीएचईएसी) प्रणाली विकसित की है जो ऊष्मा, अधिकतर अपशिष्ट ऊष्मा या सौर ताप को बिना किसी अन्य ऊर्जा स्रोत के शीतलन में परिवर्तित कर सकती है। डिवाइस आर्गन गैस का उपयोग करता है। उपकरण अपशिष्ट ऊष्मा द्वारा बनाई गई ध्वनि को बढ़ाता है, परिणामी दबाव को वापस दूसरे ताप अंतर में परिवर्तित करता है और शीतलन प्रभाव उत्पन्न करने के लिए स्टर्लिंग चक्र का उपयोग करता है।

ऑपरेशन

एक तापध्वनिक उपकरण इस तथ्य का लाभ उठाता है कि एक रुद्धोष्म प्रक्रम के ध्वनि तरंग पार्सल में एक गैस संकुचित और विस्तारित होती है, और दबाव और तापमान एक साथ बदलते हैं, जब दबाव अधिकतम या न्यूनतम तक पहुंचता है, तो तापमान भी होता है। इसमें मूल रूप से उष्मा का आदान प्रदान करने वाला यंत्र, एक गुंजयमान यंत्र और एक स्टैक (स्थायी तरंग उपकरण पर) या पुनर्योजी हीट एक्सचेंजर (यात्रा तरंग उपकरण पर) होता है। इंजन के प्रकार के आधार पर ध्वनि तरंगों को उत्पन्न करने के लिए स्पीकर ड्राइवर या ध्वनि-विस्तारक यंत्र का उपयोग किया जा सकता है।

दोनों सिरों पर बंद ट्यूब में, निश्चित आवृत्तियों पर विपरीत दिशाओं में यात्रा करने वाली दो तरंगों के बीच हस्तक्षेप हो सकता है। हस्तक्षेप अनुनाद का कारण बनता है और एक स्थायी तरंग बनाता है। स्टैक में छोटे समानांतर चैनल होते हैं। जब स्टैक को एक स्थायी तरंग वाले अनुनादक में एक निश्चित स्थान में रखा जाता है, तो स्टैक में एक तापमान अंतर विकसित होता है। स्टैक के प्रत्येक तरफ ऊष्मा विनिमयक लगाकर, ऊष्मा को स्थानांतरित किया जा सकता है। स्टैक के पार तापमान अंतर एक ध्वनि तरंग उत्पन्न करता है। विपरीत भी संभव है जैसे पहला उदाहरण एक ऊष्मा पम्प है, जबकि दूसरा एक प्रमुख प्रेरक है।

ऊष्मा पंप

ठंड से गर्म जलाशय में ऊष्मा बनाने या स्थानांतरित करने के लिए कार्य की आवश्यकता होती है। ध्वनिक शक्ति यह कार्य प्रदान करती है। स्टैक एक दबाव ड्रॉप बनाता है। आने वाली और परावर्तित ध्वनिक तरंगों के बीच हस्तक्षेप अब अपूर्ण है। आयाम में अंतर के कारण खड़ी तरंग यात्रा करती है, जिससे तरंग ध्वनिक शक्ति प्राप्त होती है।

खड़ी लहर उपकरण में स्टैक के साथ ऊष्मा पंपिंग ब्रेटन चक्र का अनुसरण करती है।

रेफ़्रिजरेटर के लिए वामावर्त ब्रेटन चक्र में चार प्रक्रियाएँ होती हैं जो स्टैक की दो प्लेटों के बीच गैस के पार्सल को प्रभावित करती हैं।

  1. गैस का रुद्धोष्म संपीड़न। जब गैस के एक पार्सल को उसकी सबसे दाहिनी स्थिति से उसके सबसे बाईं ओर विस्थापित किया जाता है, तो पार्सल रूद्धोष्म रूप से संकुचित हो जाता है, जिससे उसका तापमान बढ़ जाता है। सबसे बाईं ओर स्थित पार्सल में अब वार्म प्लेट की तुलना में अधिक तापमान होता है।
  2. आइसोबैरिक ऊष्मा स्थानान्तरण। पार्सल का उच्च तापमान गैस को ठंडा करने, निरंतर दबाव पर प्लेट में ऊष्मा स्थानांतरित करने का कारण बनता है।
  3. गैस का रुद्धोष्म प्रसार। गैस को सबसे बाईं स्थिति से वापस सबसे दाईं ओर विस्थापित किया जाता है। रूद्धोष्म विस्तार के कारण गैस ठंडी प्लेट की तुलना में कम तापमान तक ठंडी हो जाती है।
  4. आइसोबैरिक ऊष्मा अन्तरण। पार्सल के कम तापमान के कारण ठंडी प्लेट से गैस में निरंतर दबाव में ऊष्मा स्थानांतरित हो जाती है, जिससे पार्सल का तापमान अपने मूल मूल्य पर लौट आता है।

यात्रा तरंग उपकरणों को स्टर्लिंग चक्र का उपयोग करके वर्णित किया जा सकता है।

तापमान ढाल

इंजन और ऊष्मा पंप दोनों सामान्यतः स्टैक और ऊष्मा विनियमक का उपयोग करते हैं। प्राइम मूवर और ऊष्मा पंप के बीच की सीमा तापमान ढाल संचालक द्वारा दी जाती है, जो कि महत्वपूर्ण तापमान ढाल द्वारा विभाजित औसत तापमान ढाल है।

औसत तापमान ढाल स्टैक की लंबाई से विभाजित स्टैक भर में तापमान अंतर है।

महत्वपूर्ण तापमान ढाल एक मान है जो उपकरण की विशेषताओं जैसे आवृत्ति, क्रॉस-अनुभागीय क्षेत्र और गैस गुणों पर निर्भर करता है।

यदि तापमान ढाल संचालिका एक से अधिक है, तो माध्य तापमान ढाल क्रांतिक तापमान ढाल से बड़ा होता है और स्टैक एक प्रमुख प्रेरक के रूप में कार्य करता है। यदि तापमान ढाल संचालक एक से कम है, तो औसत तापमान ढाल महत्वपूर्ण ढाल से छोटा होता है और स्टैक ऊष्मा पंप के रूप में कार्य करता है।

सैद्धांतिक दक्षता

ऊष्मप्रवैगिकी में उच्चतम प्राप्त करने योग्य दक्षता कार्नोट दक्षता है। तापमान ढाल संचालक का उपयोग करके,तापध्वनिक इंजन की दक्षता की तुलना कार्नाट दक्षता से की जा सकती है।

तापध्वनिक इंजन की दक्षता किसके द्वारा दी जाती है

तापध्वनिक ऊष्मा पंप के प्रदर्शन का गुणांक किसके द्वारा दिया जाता है


व्यावहारिक दक्षता

यदि कार्नो इंजन गर्म करें तब सबसे कुशल तापध्वनिक उपकरणों की क्षमता, वास्तविक ताप इंजन की क्षमता की सीमा के 40% या समग्र रूप से लगभग 20% से 30% (ऊष्मा इंजन के तापमान पर निर्भर करता है) तक पहुंचती है।[8] तापध्वनिक उपकरणों के साथ उच्च गर्म-अंत तापमान संभव हो सकता है क्योंकि उनके पास कोई हिलने वाला भाग नहीं होता है, इस प्रकार कार्नाट दक्षता को उच्च होने की अनुमति देता है। यह कार्नोट के प्रतिशत के रूप में पारंपरिक ऊष्मा इंजनों की तुलना में उनकी कम दक्षता को आंशिक रूप से प्रतिसंतुलन कर सकता है।

यात्रा तरंग उपकरणों द्वारा अनुमानित आदर्श स्टर्लिंग चक्र, स्थायी तरंग उपकरणों द्वारा अनुमानित आदर्श ब्रेटन चक्र की तुलना में स्वाभाविक रूप से अधिक कुशल है। चूंकि, एक स्थायी तरंग स्टैक की तुलना में एक यात्रा तरंग उपकरण में अच्छा तापीय संपर्क देने के लिए आवश्यक संकीर्ण छिद्र, व्यावहारिक दक्षता को कम करते हुए, अधिक घर्षण नुकसान को भी जन्म देता है जिसके लिए निश्चयपूर्वक अपूर्ण तापीय संपर्क की आवश्यकता होती है। टॉरॉयडल ज्यामिति अधिकतर यात्रा तरंग उपकरणों में उपयोग होती है, लेकिन स्थायी तरंग उपकरणों के लिए जरूरी नहीं है, लूप के चारों ओर गेडॉन स्ट्रीमिंग के कारण होने वाले नुकसान को बढ़ा भी सकती है।[further explanation needed]


यह भी देखें

  • विकिरण के उद्दीप्त उत्सर्जन द्वारा ध्वनि प्रवर्धन (एसएएसईआर)

संदर्भ

  1. Ceperley, P. (1979). "एक पिस्टन रहित स्टर्लिंग इंजन - ट्रैवलिंग वेव हीट इंजन". J. Acoust. Soc. Am. 66 (5): 1508–1513. Bibcode:1979ASAJ...66.1508C. doi:10.1121/1.383505.
  2. 2.0 2.1 "बिजली मुक्त एयर कॉन: थर्मोअकॉस्टिक डिवाइस बिना किसी अतिरिक्त शक्ति का उपयोग किए बेकार गर्मी को ठंड में बदल देता है". newatlas.com (in English). Retrieved 2019-01-26.
  3. Swift, Gregory W. (1988). "थर्मोअकॉस्टिक इंजन". The Journal of the Acoustical Society of America. 84 (4): 1145. Bibcode:1988ASAJ...84.1145S. doi:10.1121/1.396617. Retrieved 9 October 2015.
  4. physorg.com: A sound way to turn heat into electricity (pdf) Quote: "...Symko says the devices won’t create noise pollution...Symko says the ring-shaped device is twice as efficient as cylindrical devices in converting heat into sound and electricity. That is because the pressure and speed of air in the ring-shaped device are always in sync, unlike in cylinder-shaped devices..."
  5. Lee, Chris (May 28, 2007). "ध्वनि के साथ खाना बनाना: विकासशील देशों के उद्देश्य से नया स्टोव/जनरेटर/रेफ्रिजरेटर कॉम्बो". Ars Technica.
  6. SCORE (Stove for Cooking, Refrigeration and Electricity), illustration
  7. "अंतरिक्ष मिशनों के लिए थर्मो-अकूस्टिक जेनरेटर" (PDF).
  8. web archive backup: lanl.gov: More Efficient than Other No-Moving-Parts Heat Engines


अग्रिम पठन


बाहरी कड़ियाँ