परिचालित मैट्रिक्स: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Linear algebra matrix}}
{{short description|Linear algebra matrix}}रैखिक बीजगणित में, एक [[स्क्वायर मैट्रिक्स|स्क्वायर आव्यूह]] एक वर्ग आव्यूह होता है, जिसमें सभी पंक्ति वैक्टर समान तत्वों से बने होते हैं और प्रत्येक [[पंक्ति वेक्टर]] पूर्ववर्ती पंक्ति वेक्टर के सापेक्ष एक तत्व को दाहिनी ओर घुमाया जाता है। यह एक विशेष प्रकार का टोपलिट्ज़ आव्यूह के रुप में होता है।
{{For|the symmetric graphs|Circulant graph}}


रैखिक बीजगणित में, एक [[स्क्वायर मैट्रिक्स]] एक वर्ग मैट्रिक्स होता है जिसमें सभी पंक्ति वैक्टर समान तत्वों से बने होते हैं और प्रत्येक [[पंक्ति वेक्टर]] पूर्ववर्ती पंक्ति वेक्टर के सापेक्ष एक तत्व को दाहिनी ओर घुमाया जाता है। यह एक विशेष प्रकार का Toeplitz मैट्रिक्स है।
[[संख्यात्मक विश्लेषण]] में, चक्रीय आव्यूह महत्वपूर्ण होती है, क्योंकि वे [[असतत फूरियर रूपांतरण]] द्वारा विकर्णित होते हैं और इसलिए उन्हें सम्मलित करने वाले [[रैखिक समीकरणों]] को तेजी से फूरियर रूपांतरण का उपयोग करके हल किया जा सकता है। [1] उन्हें विश्लेषणात्मक रूप से [[चक्रीय समूह]] <math>C_n</math> पर एक [[कनवल्शन ऑपरेटर]] के [[अभिन्न कर्नेल]] के रूप में व्याख्या किया जा सकता है और इसलिए अधिकांशतः स्थानिक रूप से अपरिवर्तनीय रैखिक संचालन के औपचारिक विवरण में दिखाई देते हैं। यह गुणधर्म आधुनिक सॉफ्टवेयर परिभाषित रेडियो में भी महत्वपूर्ण होते है, जो [[चक्रीय उपसर्ग]] का उपयोग करके [[प्रतीकों]] बिट्स को फैलाने के लिए [[ समकोणकार आवृति विभाजन बहुसंकेतन |समकोणकार आवृति विभाजन बहुसंकेतन]] का उपयोग करती है। यह चैनल को एक चक्रीय आव्यूह द्वारा प्रदर्शित करने में सक्षम बनाता है, [[आवृत्ति डोमेन]] में चैनल समानता को सरल करता है।


[[संख्यात्मक विश्लेषण]] में, सर्कुलेंट मैट्रिसेस महत्वपूर्ण हैं क्योंकि वे [[असतत फूरियर रूपांतरण]] द्वारा डायगोनलाइज़ेबल_मैट्रिक्स # डायगोनलाइज़ेशन हैं, और इसलिए [[रेखीय समीकरण]] जिनमें वे सम्मलित  हैं, एक तेज़ फूरियर रूपांतरण का उपयोग करके जल्दी से हल किए जा सकते हैं।<ref>[[Philip J. Davis|Davis, Philip J.]], Circulant Matrices, Wiley, New York, 1970 {{ISBN|0471057711}}</ref> वे [[चक्रीय समूह]] पर एक [[कनवल्शन ऑपरेटर]] के [[अभिन्न कर्नेल]] के रूप में # विश्लेषणात्मक व्याख्या हो सकते हैं <math>C_n</math> और इसलिए अधिकांशतः  स्थानिक रूप से अपरिवर्तनीय रैखिक संचालन के औपचारिक विवरण में दिखाई देते हैं। यह संपत्ति आधुनिक सॉफ्टवेयर परिभाषित रेडियो में भी महत्वपूर्ण है, जो [[चक्रीय उपसर्ग]] का उपयोग करके [[प्रतीकों]] (बिट्स) को फैलाने के लिए [[ समकोणकार आवृति विभाजन बहुसंकेतन ]] का उपयोग करती है। यह चैनल को एक सर्कुलेंट मैट्रिक्स द्वारा प्रदर्शित करने में सक्षम बनाता है, [[आवृत्ति डोमेन]] में चैनल समानता को सरल करता है।
[[क्रिप्टोग्राफी]] में, उन्नत एन्क्रिप्शन मानक के [[रिजेंडेल मिक्स कॉलम]] चरण में एक चक्रीय आव्यूह का उपयोग किया जाता है।
 
[[क्रिप्टोग्राफी]] में, उन्नत एन्क्रिप्शन मानक के [[रिजेंडेल मिक्स कॉलम]] चरण में एक सर्कुलेंट मैट्रिक्स का उपयोग किया जाता है।


== परिभाषा ==
== परिभाषा ==


एक <math>n\times n</math> मैट्रिक्स की परिक्रमा <math>C</math> रूप धारण कर लेता है
एक <math>n\times n</math> आव्यूह की परिक्रमा <math>C</math> रूप धारण कर लेता है
<math display="block">C = \begin{bmatrix}
<math display="block">C = \begin{bmatrix}
c_0      & c_{n-1} & \cdots  & c_2    & c_1    \\
c_0      & c_{n-1} & \cdots  & c_2    & c_1    \\
Line 18: Line 15:
c_{n-1}  & c_{n-2} & \cdots  & c_1    & c_0    \\
c_{n-1}  & c_{n-2} & \cdots  & c_1    & c_0    \\
\end{bmatrix}</math>
\end{bmatrix}</math>
या इस रूप का स्थानान्तरण (संकेतन के विकल्प द्वारा)। जब पद <math>c_i</math> एक है <math>p\times p</math> स्क्वायर मैट्रिक्स, फिर <math>np\times np</math> आव्यूह <math>C</math> एक ब्लॉक-परिसंचारी मैट्रिक्स कहा जाता है।
या इस रूप का स्थानान्तरण (संकेतन के विकल्प द्वारा)। जब पद <math>c_i</math> एक है <math>p\times p</math> स्क्वायर आव्यूह, फिर <math>np\times np</math> आव्यूह <math>C</math> एक ब्लॉक-चक्रीय आव्यूह कहा जाता है।


एक सर्कुलेंट मैट्रिक्स पूरी प्रकार से एक वेक्टर द्वारा निर्दिष्ट होता है, <math>c</math>, जो के पहले कॉलम (या पंक्ति) के रूप में दिखाई देता है <math>C</math>. के शेष स्तंभ (और पंक्तियाँ, क्रमशः)। <math>C</math> वेक्टर के प्रत्येक [[चक्रीय क्रमपरिवर्तन]] हैं <math>c</math> कॉलम (या पंक्ति, सम्मान) इंडेक्स के बराबर ऑफ़सेट के साथ, यदि लाइनों को 0 से अनुक्रमित किया जाता है <math>n-1</math>. (पंक्तियों के चक्रीय क्रमपरिवर्तन का वही प्रभाव होता है जो स्तंभों के चक्रीय क्रमपरिवर्तन का होता है।) की अंतिम पंक्ति <math>C</math> सदिश है <math>c</math> एक के बाद एक उलटफेर किया।
एक चक्रीय आव्यूह पूरी प्रकार से एक वेक्टर द्वारा निर्दिष्ट होता है, <math>c</math>, जो के पहले कॉलम (या पंक्ति) के रूप में दिखाई देता है <math>C</math>. के शेष स्तंभ (और पंक्तियाँ, क्रमशः)। <math>C</math> वेक्टर के प्रत्येक [[चक्रीय क्रमपरिवर्तन]] हैं <math>c</math> कॉलम (या पंक्ति, सम्मान) इंडेक्स के बराबर ऑफ़समूह के साथ, यदि लाइनों को 0 से अनुक्रमित किया जाता है <math>n-1</math>. (पंक्तियों के चक्रीय क्रमपरिवर्तन का वही प्रभाव होता है जो स्तंभों के चक्रीय क्रमपरिवर्तन का होता है।) की अंतिम पंक्ति <math>C</math> सदिश है <math>c</math> एक के बाद एक उलटफेर किया।


अलग-अलग स्रोत सर्कुलेंट मैट्रिक्स को अलग-अलग विधियों से परिभाषित करते हैं, उदाहरण के लिए ऊपर, या वेक्टर के साथ <math>c</math> मैट्रिक्स के पहले कॉलम के अतिरिक्त पहली पंक्ति के अनुरूप; और संभवतः शिफ्ट की एक अलग दिशा के साथ (जिसे कभी-कभी एंटी-सर्कुलेंट मैट्रिक्स कहा जाता है)।
अलग-अलग स्रोत चक्रीय आव्यूह को अलग-अलग विधियों से परिभाषित करते हैं, उदाहरण के लिए ऊपर, या वेक्टर के साथ <math>c</math> आव्यूह के पहले कॉलम के अतिरिक्त पहली पंक्ति के अनुरूप; और संभवतः शिफ्ट की एक अलग दिशा के साथ (जिसे कभी-कभी एंटी-चक्रीय आव्यूह कहा जाता है)।


[[बहुपद]] <math>f(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}</math> मैट्रिक्स का संबद्ध बहुपद कहा जाता है <math>C</math>.
[[बहुपद]] <math>f(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}</math> आव्यूह का संबद्ध बहुपद कहा जाता है <math>C</math>.


== गुण ==
== गुण ==


=== ईजेनवेक्टर और ईजेनवैल्यू ===
=== अभिलक्षणिक सदिश और अभिलक्षणिक मान ===


एक सर्कुलेंट मैट्रिक्स के सामान्यीकृत [[eigenvector]]s फूरियर मोड हैं, अर्थात्,
एक चक्रीय आव्यूह के सामान्यीकृत [[eigenvector|अभिलक्षणिक सदिश]] फूरियर मोड के रुप में होते है, अर्थात्,
<math display="block">v_j=\frac{1}{\sqrt{n}} \left(1, \omega^j, \omega^{2j}, \ldots, \omega^{(n-1)j}\right),\quad j = 0, 1, \ldots, n-1,</math>
<math display="block">v_j=\frac{1}{\sqrt{n}} \left(1, \omega^j, \omega^{2j}, \ldots, \omega^{(n-1)j}\right),\quad j = 0, 1, \ldots, n-1,</math>
कहाँ <math>\omega=\exp \left(\tfrac{2\pi i}{n}\right)</math> आदिम है <math>n</math>-[[एकता की जड़]] और <math>i</math> [[काल्पनिक इकाई]] है।
जहाँ <math>\omega=\exp \left(\tfrac{2\pi i}{n}\right)</math> प्रिमिटिव रुप में होता है <math>n</math>-[[एकता की जड़|एकता की रुट]] और <math>i</math> [[काल्पनिक इकाई]] है।
 
(यह समझने से समझा जा सकता है कि एक सर्कुलेंट मैट्रिक्स के साथ गुणा एक कनवल्शन को लागू करता है। फूरियर स्पेस में, कनवल्शन मल्टीप्लिकेशन बन जाता है। इसलिए फूरियर मोड के साथ एक सर्कुलेंट मैट्रिक्स का उत्पाद उस फूरियर मोड का एक मल्टीपल देता है, अर्थात  यह एक ईजेनवेक्टर है। )
 
इसी [[eigenvalue]]s ​​द्वारा दिया जाता है
<math display="block">\lambda_j = c_0+c_{n-1} \omega^j + c_{n-2} \omega^{2j} + \dots + c_{1} \omega^{(n-1)j},\quad j = 0, 1, \dots, n-1.</math>


यह समझ कर समझा जा सकता है कि एक चक्रीय आव्यूह के साथ गुणन एक कनवल्शन को लागू करता है। फूरियर स्पेस में कनवल्शन मल्टीप्लिकेशन बन जाते हैं। इसलिए एक फूरियर मोड के साथ एक चक्रीय आव्यूह का उत्पाद उस फूरियर मोड के एक से अधिक का उत्पादन करता है यानी यह एक अभिलक्षणिक सदिश के रुप में होता है।


इसी [[eigenvalue|अभिलक्षणिक सदिश]] ​​द्वारा दिया जाता है
<math display="block">\lambda_j = c_0+c_{n-1} \omega^j + c_{n-2} \omega^{2j} + \dots + c_{1} \omega^{(n-1)j},\quad j = 0, 1, \dots, n-1.</math><br />
=== निर्धारक ===
=== निर्धारक ===


ऊपर दिए गए आइगेनमानों के स्पष्ट सूत्र के परिणामस्वरूप,
ऊपर दिए गए अभिलक्षणिक मान के स्पष्ट सूत्र के परिणामस्वरूप, एक चक्रीय आव्यूह के निर्धारक की गणना इस प्रकार की जाती है
एक सर्कुलेंट मैट्रिक्स के निर्धारक की गणना इस प्रकार की जा सकती है:
<math display="block">
<math display="block">
\det(C)  
\det(C)  
= \prod_{j=0}^{n-1} (c_0 + c_{n-1} \omega^j + c_{n-2} \omega^{2j} + \dots + c_1\omega^{(n-1)j}).</math>
= \prod_{j=0}^{n-1} (c_0 + c_{n-1} \omega^j + c_{n-2} \omega^{2j} + \dots + c_1\omega^{(n-1)j}).</math>
चूंकि ट्रांसपोज़ लेने से मैट्रिक्स के ईगेनवेल्यूज़ नहीं बदलते हैं, एक समकक्ष फॉर्मूलेशन है
चूंकि ट्रांसपोज़ लेने से आव्यूह के अभिलक्षणिक मान नहीं बदलते हैं, यह एक समकक्ष फॉर्मूलेशन है
<math display="block">
<math display="block">
\det(C)
\det(C)
= \prod_{j=0}^{n-1} (c_0 + c_1 \omega^j + c_2 \omega^{2j} + \dots + c_{n-1}\omega^{(n-1)j})
= \prod_{j=0}^{n-1} (c_0 + c_1 \omega^j + c_2 \omega^{2j} + \dots + c_{n-1}\omega^{(n-1)j})
= \prod_{j=0}^{n-1} f(\omega^j).
= \prod_{j=0}^{n-1} f(\omega^j).
</math>
</math><br />
 
 
=== रैंक ===
=== रैंक ===


सर्कुलेंट मैट्रिक्स का [[रैंक (रैखिक बीजगणित)]]<math> C </math> के बराबर है <math> n - d </math>, कहाँ <math> d </math> बहुपद के बहुपद की घात है <math> \gcd( f(x), x^n - 1) </math>.<ref>{{cite journal |author=A. W. Ingleton |title=सर्कुलेंट मैट्रिसेस की रैंक|journal=J. London Math. Soc. |year=1956 |volume=s1-31 |issue=4 |pages=445–460 |doi=10.1112/jlms/s1-31.4.445}}</ref>
चक्रीय आव्यूह का [[रैंक (रैखिक बीजगणित)]] <math> C </math> के बराबर होता है, <math> n - d </math>, जहाँ <math> d </math> बहुपद की घात है <math> \gcd( f(x), x^n - 1) </math>.<ref>{{cite journal |author=A. W. Ingleton |title=सर्कुलेंट मैट्रिसेस की रैंक|journal=J. London Math. Soc. |year=1956 |volume=s1-31 |issue=4 |pages=445–460 |doi=10.1112/jlms/s1-31.4.445}}</ref>




=== अन्य गुण ===
=== अन्य गुण ===


* चक्रीय क्रमचय मैट्रिक्स में कोई भी सर्कुलेंट एक मैट्रिक्स बहुपद (अर्थात् संबद्ध बहुपद) है <math>P</math>: <math display="block"> C = c_0 I + c_1 P + c_2 P^2 + \dots + c_{n-1} P^{n-1} = f(P),</math> कहाँ <math>P</math> द्वारा दिया गया है <math display="block">P = \begin{bmatrix}
* चक्रीय क्रमचय आव्यूह में कोई भी चक्रीय आव्यूह बहुपद अर्थात् संबद्ध बहुपद <math>P</math> के रुप में होता है<math display="block"> C = c_0 I + c_1 P + c_2 P^2 + \dots + c_{n-1} P^{n-1} = f(P),</math> जहाँ <math>P</math> द्वारा दिया गया है <math display="block">P = \begin{bmatrix}
  0&0&\cdots&0&1\\
  0&0&\cdots&0&1\\
  1&0&\cdots&0&0\\
  1&0&\cdots&0&0\\
Line 69: Line 61:
  0&\cdots&0&1&0
  0&\cdots&0&1&0
\end{bmatrix}.</math>
\end{bmatrix}.</math>
* का [[सेट (गणित)]]<math>n \times n</math> सर्कुलेंट मेट्रिसेस एक बनाता है <math>n</math>-डिमेंशन ([[ सदिश स्थल ]]) वेक्टर स्पेस जोड़ और स्केलर गुणन के संबंध में। इस स्थान को क्रम के चक्रीय समूह (समूह सिद्धांत) पर कार्यों के स्थान के रूप में व्याख्या किया जा सकता है <math>n</math>, <math>C_n</math>, या समकक्ष के [[समूह की अंगूठी]] के रूप में <math>C_n</math>.
* [[सेट (गणित)|समुच्चय (गणित)]] <math>n \times n</math> चक्रीय आव्यूहों एक योग और अदिश गुणन के संबंध में एक n-आयामी [[सदिश स्थान]] बनाता है। इस स्थान की व्याख्या क्रम के चक्रीय समूह कार्यों के स्थान के रूप में की जा सकती है <math>n</math>, <math>C_n</math>, या समकक्ष <math>C_n</math>.के [[समूह की अंगूठी|समूह की वलय]] के रूप में होती है
* सर्कुलेंट मेट्रिसेस एक [[क्रमविनिमेय बीजगणित]] बनाते हैं, क्योंकि किसी भी दो सर्कुलेंट मेट्रिसेस के लिए <math>A</math> और <math>B</math>, योग <math>A + B</math> परिचालित है, उत्पाद <math>AB</math> परिचालित है, और <math>AB = BA</math>.
* चक्रीय आव्यूहों एक [[क्रमविनिमेय बीजगणित]] की आवश्यकता होती है, क्योंकि किसी भी दो चक्रीय आव्यूहों के लिए <math>A</math> और <math>B</math>, योग <math>A + B</math> परिचालित होते है, <math>AB</math> सर्कुलर और <math>AB = BA</math>. परिचालित रुप में होते है
* नॉनसिंगुलर सर्कुलेंट मैट्रिक्स के लिए <math>A</math>, इसका उलटा <math>A^{-1}</math> परिवृत्ती भी है। एक विलक्षण सर्कुलेंट मैट्रिक्स के लिए, इसका मूर-पेनरोज़ इनवर्स|मूर-पेनरोज़ स्यूडोइनवर्स <math>A^+</math> परिवृत्ती है।
* विलक्षण चक्रीय आव्यूह के लिए <math>A</math>, इसका प्रतिलोम <math>A^{-1}</math> परिवृत्ती है। एक विलक्षण चक्रीय आव्यूह के लिए, इसका मूर-पेनरोज़ स्यूडोइनवर्स <math>A^+</math> परिवृत्तीरुप में होता है।
* गणित का सवाल <math>U</math> जो एक सर्कुलेंट मैट्रिक्स के ईजेनवेक्टरों से बना है, डिस्क्रीट फूरियर ट्रांसफॉर्म # द एकात्मक डीएफटी और इसके व्युत्क्रम ट्रांसफॉर्म से संबंधित है: <math display="block"> U_n^* = \frac{1}{\sqrt{n}} F_n, \quad\text{and}\quad U_n = \frac{1}{\sqrt{n}} F_n^{-1}, \text{ where } F_n = (f_{jk}) \text{ with } f_{jk} = e^{-2jk\pi i/n}, \,\text{for } 0 \leq j,k < n.</math> परिणाम स्वरुप मैट्रिक्स <math>U_n</math> [[विकर्णीय मैट्रिक्स]] <math>C</math>. वास्तव में, हमारे पास है <math display="block"> C = U_n \operatorname{diag}(F_n c) U_n^* = \frac{1}{n}F_n^{-1} \operatorname{diag}(F_n c) F_n,</math> कहाँ <math>c</math> का प्रथम स्तंभ है <math>C</math>. के eigenvalues <math>C</math> उत्पाद द्वारा दिया जाता है <math>F_n c</math>. इस उत्पाद की तेजी से फूरियर रूपांतरण द्वारा आसानी से गणना की जा सकती है।<ref>{{Citation | last1=Golub | first1=Gene H. | author1-link=Gene H. Golub | last2=Van Loan | first2=Charles F. | author2-link=Charles F. Van Loan | title=Matrix Computations | chapter=§4.7.7 Circulant Systems | publisher=Johns Hopkins | edition=3rd | isbn=978-0-8018-5414-9 | year=1996}}</ref> इसके विपरीत, किसी भी विकर्ण मैट्रिक्स के लिए <math>D</math>, उत्पाद <math>F_n^{-1}DF_n</math> वे इसे प्रसारित करते हैं।
* गणित का सवाल <math>U</math> जो एक चक्रीय आव्यूह के अभिलक्षणिक सदिश से बना है, डिस्क्रीट फूरियर ट्रांसफॉर्म द एकात्मक डीएफटी और इसके व्युत्क्रम ट्रांसफॉर्म से संबंधित होता है<math display="block"> U_n^* = \frac{1}{\sqrt{n}} F_n, \quad\text{and}\quad U_n = \frac{1}{\sqrt{n}} F_n^{-1}, \text{ where } F_n = (f_{jk}) \text{ with } f_{jk} = e^{-2jk\pi i/n}, \,\text{for } 0 \leq j,k < n.</math> परिणाम स्वरुप आव्यूह <math>U_n</math> [[विकर्णीय मैट्रिक्स|विकर्णीय आव्यूह]] <math>C</math>. वास्तव में, हमारे पास है <math display="block"> C = U_n \operatorname{diag}(F_n c) U_n^* = \frac{1}{n}F_n^{-1} \operatorname{diag}(F_n c) F_n,</math> जहाँ <math>c</math> का प्रथम स्तंभ है <math>C</math>. के अभिलक्षणिक मान <math>C</math> उत्पाद द्वारा दिया जाता है <math>F_n c</math>. इस उत्पाद की तेजी से फूरियर रूपांतरण द्वारा आसानी से गणना की जा सकती है।<ref>{{Citation | last1=Golub | first1=Gene H. | author1-link=Gene H. Golub | last2=Van Loan | first2=Charles F. | author2-link=Charles F. Van Loan | title=Matrix Computations | chapter=§4.7.7 Circulant Systems | publisher=Johns Hopkins | edition=3rd | isbn=978-0-8018-5414-9 | year=1996}}</ref> इसके विपरीत, किसी भी विकर्ण आव्यूह के लिए <math>D</math>, उत्पाद <math>F_n^{-1}DF_n</math> वे इसे प्रसारित करते हैं।
* होने देना <math>p(x)</math> ([[मोनिक बहुपद]]) एक की [[विशेषता बहुपद]] हो <math>n \times n</math> मैट्रिक्स की परिक्रमा <math>C</math>, और जाने <math>p'(x)</math> का व्युत्पन्न होना <math>p(x)</math>. फिर बहुपद <math display="inline">\frac{1}{n}p'(x)</math> निम्नलिखित का अभिलाक्षणिक बहुपद है <math>(n-1)\times(n-1)</math> का सबमैट्रिक्स <math>C</math>: <math display="block">C_{n-1} = \begin{bmatrix}
* माना <math>p(x)</math> [[मोनिक बहुपद]] एक की [[विशेषता बहुपद|विशेष बहुपद]] के रुप में होती है <math>n \times n</math> आव्यूह की परिक्रमा <math>C</math> और जाने <math>p'(x)</math> का व्युत्पन्न होना <math>p(x)</math>. फिर बहुपद <math display="inline">\frac{1}{n}p'(x)</math> निम्नलिखित का अभिलाक्षणिक बहुपद है <math>(n-1)\times(n-1)</math> का सब आव्यूह <math>C</math> है।<math display="block">C_{n-1} = \begin{bmatrix}
  c_0    & c_{n-1} & \cdots  & c_3    & c_2    \\
  c_0    & c_{n-1} & \cdots  & c_3    & c_2    \\
  c_1    & c_0    & c_{n-1} &        & c_3    \\
  c_1    & c_0    & c_{n-1} &        & c_3    \\
Line 79: Line 71:
  c_{n-3} &        & \ddots  & \ddots  & c_{n-1} \\
  c_{n-3} &        & \ddots  & \ddots  & c_{n-1} \\
  c_{n-2} & c_{n-3} & \cdots  & c_{1}  & c_0    \\
  c_{n-2} & c_{n-3} & \cdots  & c_{1}  & c_0    \\
\end{bmatrix}</math> (देखना <ref>{{Citation | last1=Kushel | first1=Olga | last2=Tyaglov | first2=Mikhail | title=Circulants and critical points of polynomials |journal = Journal of Mathematical Analysis and Applications| date=July 15, 2016| issn=0022-247X| pages=634–650|volume=439|issue=2| doi= 10.1016/j.jmaa.2016.03.005|arxiv=1512.07983}}</ref> प्रमाण  के लिए)।
\end{bmatrix}</math> प्रमाण के लिए इसे दिखाया गया है।<ref>{{Citation | last1=Kushel | first1=Olga | last2=Tyaglov | first2=Mikhail | title=Circulants and critical points of polynomials |journal = Journal of Mathematical Analysis and Applications| date=July 15, 2016| issn=0022-247X| pages=634–650|volume=439|issue=2| doi= 10.1016/j.jmaa.2016.03.005|arxiv=1512.07983}}</ref>  


== विश्लेषणात्मक व्याख्या ==
== विश्लेषणात्मक व्याख्या ==
सर्कुलेंट मेट्रिसेस की व्याख्या ज्यामितीय रूप से की जा सकती है, जो असतत फूरियर रूपांतरण के साथ संबंध की व्याख्या करता है।
चक्रीय आव्यूहों की व्याख्या ज्यामितीय रूप से की जा सकती है, जो असतत फूरियर रूपांतरण के साथ संबंध की व्याख्या करता है।


में वैक्टर पर विचार करें <math>\R^n</math> अवधि के साथ [[पूर्णांक]]ों पर कार्य के रूप में <math>n</math>, (अर्थात , आवधिक द्वि-अनंत अनुक्रम के रूप में: <math>\dots,a_0,a_1,\dots,a_{n-1},a_0,a_1,\dots</math>) या समकक्ष, आदेश के चक्रीय समूह पर कार्य करता है <math>n</math> (<math>C_n</math> या <math>\Z/n\Z</math>) ज्यामितीय रूप से, नियमित रूप से (कोने पर)। {{nowrap|<math>n</math>-gon}}: यह [[वास्तविक रेखा]] या वृत्त पर आवधिक कार्यों के लिए असतत अनुरूप है।
अवधि के साथ [[पूर्णांकों]] पर कार्य के रूप में <math>\R^n</math> वैक्टर पर विचार करें <math>n</math>, अर्थात आवधिक द्वि-अनंत अनुक्रम के रूप में: <math>\dots,a_0,a_1,\dots,a_{n-1},a_0,a_1,\dots</math> या समकक्ष, क्रम के चक्रीय समूह पर कार्य करता है <math>n</math> (<math>C_n</math> या <math>\Z/n\Z</math>) ज्यामितीय रूप से, नियमित रूप से कोने पर {{nowrap|एन- गोन}} के रुप में होता है, यह [[वास्तविक रेखा]] या वृत्त पर आवधिक कार्यों के लिए असतत अनुरूप है।


फिर, [[ऑपरेटर सिद्धांत]] के परिप्रेक्ष्य से, एक सर्कुलेंट मैट्रिक्स असतत [[अभिन्न परिवर्तन]] का कर्नेल है, अर्थात् फ़ंक्शन के लिए कनवल्शन ऑपरेटर <math>(c_0,c_1,\dots,c_{n-1})</math>; यह एक असतत गोलाकार कनवल्शन है। कार्यों के दृढ़ संकल्प के लिए सूत्र <math>(b_i) := (c_i) * (a_i)</math> है
फिर, [[ऑपरेटर सिद्धांत]] के परिप्रेक्ष्य से, एक चक्रीय आव्यूह असतत [[अभिन्न परिवर्तन]] का कर्नेल है, अर्थात् फलन के लिए कनवल्शन ऑपरेटर <math>(c_0,c_1,\dots,c_{n-1})</math>; यह एक असतत गोलाकार कनवल्शन के रुप में होता है। कार्यों के दृढ़ संकल्प के लिए सूत्र <math>(b_i) := (c_i) * (a_i)</math> इस प्रकार है <math display="block">b_k = \sum_{i=0}^{n-1} a_i c_{k-i}</math>
<math display="block">b_k = \sum_{i=0}^{n-1} a_i c_{k-i}</math> (याद रखें कि अनुक्रम आवधिक हैं)
जो वेक्टर का उत्पाद है <math>(a_i)</math> सर्कुलेंट मैट्रिक्स के लिए <math>(c_i)</math>.


असतत फूरियर रूपांतरण तब कनवल्शन को गुणन में परिवर्तित करता है, जो मैट्रिक्स सेटिंग में विकर्णीकरण से मेल खाता है। <math>C^*</math>वें>-[[जटिल संख्या]] प्रविष्टियों के साथ सभी परिसंचारी मैट्रिसेस का बीजगणित समूह के लिए [[ समरूप ]] है <math>C^*</math>-बीजगणित का <math>\Z/n\Z</math>.


== सममित परिसंचारी आव्यूह ==
याद रखें कि अनुक्रम आवधिक के रुप में होती है, जो वेक्टर का उत्पाद है <math>(a_i)</math> चक्रीय आव्यूह के लिए <math>(c_i)</math>.के रुप में होता है
एक सममित परिसंचरण मैट्रिक्स के लिए <math>C</math> एक की अतिरिक्त शर्त है कि <math>c_{n-i}=c_i</math>.
 
इस प्रकार यह द्वारा निर्धारित किया जाता है <math>\lfloor n/2\rfloor + 1</math> तत्व।
असतत फूरियर रूपांतरण तब कनवल्शन को गुणन में परिवर्तित करता है, जो आव्यूह समूह वलय में विकर्णीकरण से मेल खाता है। <math>C^*</math>वें [[जटिल संख्या]] प्रविष्टियों के साथ सभी चक्रीय आव्यूह का बीजगणित समूह के लिए [[ समरूप |समरूप]] है <math>C^*</math>का बीजगणित का <math>\Z/n\Z</math>. है
<math display="block">
 
== सममित चक्रीय आव्यूह ==
एक सममित परिसंचरण आव्यूह <math>C</math> के लिए एक की अतिरिक्त शर्त है कि <math>c_{n-i}=c_i</math>.इस प्रकार यह <math>\lfloor n/2\rfloor + 1</math> तत्वों द्वारा निर्धारित किया जाता है।
<math display="block">
C= \begin{bmatrix}
C= \begin{bmatrix}
c_0    & c_1 & \cdots & c_2    & c_1    \\
c_0    & c_1 & \cdots & c_2    & c_1    \\
Line 104: Line 96:
\end{bmatrix}.
\end{bmatrix}.
</math>
</math>
किसी भी वास्तविक सममित मैट्रिक्स के eigenvalues ​​वास्तविक हैं।
किसी भी वास्तविक सममित आव्यूह के अभिलक्षणिक मान ​​वास्तविक रुप में होते है। यह संबंधित अभिलक्षणिक मान ​​बन जाते हैं
संबंधित eigenvalues ​​बन जाते हैं:
<math display="block">\lambda_j = c_0 + 2 c_1 \Re \omega_j + 2 c_2 \Re \omega_j^2 + \dots + 2c_{n/2-1} \Re \omega_j^{n/2-1} + c_{n/2} \omega_j^{n/2}</math>
<math display="block">\lambda_j = c_0 + 2 c_1 \Re \omega_j + 2 c_2 \Re \omega_j^2 + \dots + 2c_{n/2-1} \Re \omega_j^{n/2-1} + c_{n/2} \omega_j^{n/2}</math>
के लिए <math>n</math> समानता (गणित), और
<math>n</math> सम के लिए (गणित) और,
<math display="block">\lambda_j = c_0 + 2 c_1 \Re \omega_j + 2 c_2 \Re \omega_j^2 + \dots + 2c_{(n-1)/2} \Re \omega_j^{(n-1)/2}</math>
<math display="block">\lambda_j = c_0 + 2 c_1 \Re \omega_j + 2 c_2 \Re \omega_j^2 + \dots + 2c_{(n-1)/2} \Re \omega_j^{(n-1)/2}</math>
के लिए <math>n</math> समता (गणित), जहां <math>\Re z</math> की जटिल संख्या को दर्शाता है <math>z</math>.
<math>n</math> विषम के लिए (गणित) हैं, जहां <math>\Re z</math>, <math>z</math> के वास्तविक भाग को दर्शाता है। .इस तथ्य का उपयोग करके इसे और सरल बनाया जा सकता है <math>\Re \omega_j^k = \cos(2\pi j k/n)</math>.
इस तथ्य का उपयोग करके इसे और सरल बनाया जा सकता है <math>\Re \omega_j^k = \cos(2\pi j k/n)</math>.


सममित परिसंचारी आव्यूह द्विसममित आव्यूह के वर्ग से संबंधित हैं।
सममित चक्रीय आव्यूह द्विसममित आव्यूह के वर्ग से संबंधित होते है।


== हर्मिटियन सर्कुलेंट मैट्रिसेस ==
== हर्मिटियन चक्रीय मैट्रिसेस ==
सर्कुलेंट मैट्रिक्स का जटिल संस्करण, संचार सिद्धांत में सर्वव्यापी, सामान्यतः [[हर्मिटियन मैट्रिक्स]] है। इस स्थितियों में <math>c_{n-i} = c_i^*, \; i \le n/2 </math> और इसके निर्धारक और सभी eigenvalues ​​वास्तविक हैं।
चक्रीय आव्यूह का जटिल संस्करण, संचार सिद्धांत में सर्वव्यापी, सामान्यतः [[हर्मिटियन मैट्रिक्स|हर्मिटियन आव्यूह]] है। इस स्थितियों में <math>c_{n-i} = c_i^*, \; i \le n/2 </math> और इसके निर्धारक और सभी अभिलक्षणिक मान ​​वास्तविक रुप में होते है।


यदि n पहली दो पंक्तियाँ भी आवश्यक रूप से रूप लेती हैं
यदि n पहली दो पंक्तियाँ भी आवश्यक रूप से लेती हैं<math display="block">
<math display="block">
\begin{bmatrix}
\begin{bmatrix}
r_0    & z_1 & z_2 & r_3 & z_2^* & z_1^* \\
r_0    & z_1 & z_2 & r_3 & z_2^* & z_1^* \\
Line 125: Line 114:
\end{bmatrix}.
\end{bmatrix}.
</math>
</math>
जिसमें प्रथम तत्व है <math> r_3 </math> शीर्ष दूसरी छमाही पंक्ति में वास्तविक है।
जिसमें प्रथम तत्व <math> r_3 </math> है शीर्ष दूसरी छमाही पंक्ति में वास्तविक है।


यदि n विषम है तो हमें प्राप्त होता है
यदि n विषम है तो हमें प्राप्त होता है
Line 135: Line 124:
\end{bmatrix}.
\end{bmatrix}.
</math>
</math>
टी<ref>{{Cite journal|last=Tee|first=G J|date=2007|title=ब्लॉक सर्कुलेंट और अल्टरनेटिंग सर्कुलेंट मैट्रिसेस के आइजनवेक्टर|journal=New Zealand Journal of Mathematics|volume=36|pages=195-211}}</ref> हर्मिटियन स्थिति के लिए eigenvalues ​​पर बाधाओं पर चर्चा की है।
टी<ref>{{Cite journal|last=Tee|first=G J|date=2007|title=ब्लॉक सर्कुलेंट और अल्टरनेटिंग सर्कुलेंट मैट्रिसेस के आइजनवेक्टर|journal=New Zealand Journal of Mathematics|volume=36|pages=195-211}}</ref> हर्मिटियन स्थिति के लिए अभिलक्षणिक मान ​​पर बाधाओं पर चर्चा की जाती है।


== अनुप्रयोग ==
== अनुप्रयोग ==
Line 141: Line 130:
=== रैखिक समीकरणों में ===
=== रैखिक समीकरणों में ===


एक मैट्रिक्स समीकरण दिया
एक आव्यूह समीकरण दिया गया है
<math display="block">C \mathbf{x} = \mathbf{b},</math>
<math display="block">C \mathbf{x} = \mathbf{b},</math>
कहाँ <math>C</math> आकार का एक गोलाकार वर्ग मैट्रिक्स है <math>n</math> हम समीकरण को वृत्ताकार कनवल्शन के रूप में लिख सकते हैं
जहाँ <math>C</math> आकार का एक गोलाकार वर्ग आव्यूह <math>n</math> के रुप में होता है, हम समीकरण को वृत्ताकार कनवल्शन के रूप में लिख सकते हैं
<math display="block">\mathbf{c} \star \mathbf{x} = \mathbf{b},</math>
<math display="block">\mathbf{c} \star \mathbf{x} = \mathbf{b},</math>
कहाँ <math>\mathbf c</math> का प्रथम स्तंभ है <math>C</math>, और वैक्टर <math>\mathbf c</math>, <math>\mathbf x</math> और <math>\mathbf b</math> प्रत्येक दिशा में चक्रीय रूप से विस्तारित होते हैं। डिस्क्रीट फूरियर ट्रांसफॉर्म # सर्कुलर कनवल्शन प्रमेय और क्रॉस-सहसंबंध प्रमेय का उपयोग करके, हम चक्रीय कनवल्शन को घटक-वार गुणन में बदलने के लिए डिस्क्रीट फूरियर ट्रांसफॉर्म का उपयोग कर सकते हैं
जहाँ <math>\mathbf c</math> का प्रथम स्तंभ <math>C</math> है और वैक्टर <math>\mathbf c</math>, <math>\mathbf x</math> और <math>\mathbf b</math> प्रत्येक दिशा में चक्रीय रूप से विस्तारित होते हैं। डिस्क्रीट फूरियर ट्रांसफॉर्म सर्कुलर कनवल्शन प्रमेय और क्रॉस-सहसंबंध प्रमेय का उपयोग करके हम चक्रीय कनवल्शन को घटक-वार गुणन में बदलने के लिए डिस्क्रीट फूरियर ट्रांसफॉर्म का उपयोग कर सकते हैं
<math display="block">\mathcal{F}_{n}(\mathbf{c} \star \mathbf{x}) = \mathcal{F}_{n}(\mathbf{c}) \mathcal{F}_{n}(\mathbf{x}) = \mathcal{F}_{n}(\mathbf{b})</math>
<math display="block">\mathcal{F}_{n}(\mathbf{c} \star \mathbf{x}) = \mathcal{F}_{n}(\mathbf{c}) \mathcal{F}_{n}(\mathbf{x}) = \mathcal{F}_{n}(\mathbf{b})</math>
जिससे कि  
जिससे कि  
Line 156: Line 145:
\right ]^{\rm T}.
\right ]^{\rm T}.
</math>
</math>
यह एल्गोरिथम मानक गाऊसी उन्मूलन की तुलना में बहुत तेज है, विशेष रूप से यदि एक तेज फूरियर रूपांतरण का उपयोग किया जाता है।
यह एल्गोरिथम मानक गाऊसी उन्मूलन की तुलना में बहुत तेज होता है, विशेष रूप से यदि एक तेज फूरियर रूपांतरण का उपयोग किया जाता है।


=== [[ग्राफ सिद्धांत]] में ===
=== [[ग्राफ सिद्धांत]] में ===


ग्राफ़ सिद्धांत में, एक ग्राफ़ (असतत गणित) या [[निर्देशित ग्राफ]]जिसका आसन्न मैट्रिक्स सर्कुलेंट है, एक [[ गोलाकार ग्राफ ]]़ (या डिग्राफ़) कहा जाता है। समतुल्य रूप से, एक ग्राफ परिचालित होता है यदि इसके [[ऑटोमोर्फिज्म समूह]] में एक पूर्ण-लंबाई चक्र होता है। मोबियस लैडर सर्कुलेंट ग्राफ़ के उदाहरण हैं, जैसे कि [[अभाज्य संख्या]] क्रम के [[क्षेत्र (गणित)]] के लिए [[पाले ग्राफ]] हैं।
ग्राफ़ सिद्धांत में, एक ग्राफ़ असतत गणित या [[निर्देशित ग्राफ]] जिसका आसन्न आव्यूह चक्रीय रुप में होता है, एक [[ गोलाकार ग्राफ |गोलाकार ग्राफ]] या डिग्राफ़ कहलाता है। समतुल्य रूप से, एक ग्राफ परिचालित होता है यदि इसके [[ऑटोमोर्फिज्म समूह]] में एक पूर्ण-लंबाई का चक्र होता है। मोबियस लैडर चक्रीय ग्राफ़ के उदाहरण हैं, जैसे कि [[अभाज्य संख्या]] क्रम के [[क्षेत्र (गणित)]] के लिए [[पाले ग्राफ|पैली ग्राफ]] हैं।


==संदर्भ==
==संदर्भ==
Line 171: Line 160:
* [https://github.com/MMesch/toeplitz_spectrum/blob/master/toeplitz_spectrum.ipynb IPython Notebook demonstrating properties of circulant matrices]
* [https://github.com/MMesch/toeplitz_spectrum/blob/master/toeplitz_spectrum.ipynb IPython Notebook demonstrating properties of circulant matrices]


{{Numerical linear algebra}}
[[Category:CS1]]
{{Matrix classes}}
[[Category: संख्यात्मक रैखिक बीजगणित]] [[Category: मैट्रिसेस]] [[Category: लैटिन वर्ग]] [[Category: निर्धारकों]]
 
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 02/03/2023]]
[[Category:Created On 02/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:निर्धारकों]]
[[Category:मैट्रिसेस]]
[[Category:लैटिन वर्ग]]
[[Category:संख्यात्मक रैखिक बीजगणित]]

Latest revision as of 10:30, 15 March 2023

रैखिक बीजगणित में, एक स्क्वायर आव्यूह एक वर्ग आव्यूह होता है, जिसमें सभी पंक्ति वैक्टर समान तत्वों से बने होते हैं और प्रत्येक पंक्ति वेक्टर पूर्ववर्ती पंक्ति वेक्टर के सापेक्ष एक तत्व को दाहिनी ओर घुमाया जाता है। यह एक विशेष प्रकार का टोपलिट्ज़ आव्यूह के रुप में होता है।

संख्यात्मक विश्लेषण में, चक्रीय आव्यूह महत्वपूर्ण होती है, क्योंकि वे असतत फूरियर रूपांतरण द्वारा विकर्णित होते हैं और इसलिए उन्हें सम्मलित करने वाले रैखिक समीकरणों को तेजी से फूरियर रूपांतरण का उपयोग करके हल किया जा सकता है। [1] उन्हें विश्लेषणात्मक रूप से चक्रीय समूह पर एक कनवल्शन ऑपरेटर के अभिन्न कर्नेल के रूप में व्याख्या किया जा सकता है और इसलिए अधिकांशतः स्थानिक रूप से अपरिवर्तनीय रैखिक संचालन के औपचारिक विवरण में दिखाई देते हैं। यह गुणधर्म आधुनिक सॉफ्टवेयर परिभाषित रेडियो में भी महत्वपूर्ण होते है, जो चक्रीय उपसर्ग का उपयोग करके प्रतीकों बिट्स को फैलाने के लिए समकोणकार आवृति विभाजन बहुसंकेतन का उपयोग करती है। यह चैनल को एक चक्रीय आव्यूह द्वारा प्रदर्शित करने में सक्षम बनाता है, आवृत्ति डोमेन में चैनल समानता को सरल करता है।

क्रिप्टोग्राफी में, उन्नत एन्क्रिप्शन मानक के रिजेंडेल मिक्स कॉलम चरण में एक चक्रीय आव्यूह का उपयोग किया जाता है।

परिभाषा

एक आव्यूह की परिक्रमा रूप धारण कर लेता है

या इस रूप का स्थानान्तरण (संकेतन के विकल्प द्वारा)। जब पद एक है स्क्वायर आव्यूह, फिर आव्यूह एक ब्लॉक-चक्रीय आव्यूह कहा जाता है।

एक चक्रीय आव्यूह पूरी प्रकार से एक वेक्टर द्वारा निर्दिष्ट होता है, , जो के पहले कॉलम (या पंक्ति) के रूप में दिखाई देता है . के शेष स्तंभ (और पंक्तियाँ, क्रमशः)। वेक्टर के प्रत्येक चक्रीय क्रमपरिवर्तन हैं कॉलम (या पंक्ति, सम्मान) इंडेक्स के बराबर ऑफ़समूह के साथ, यदि लाइनों को 0 से अनुक्रमित किया जाता है . (पंक्तियों के चक्रीय क्रमपरिवर्तन का वही प्रभाव होता है जो स्तंभों के चक्रीय क्रमपरिवर्तन का होता है।) की अंतिम पंक्ति सदिश है एक के बाद एक उलटफेर किया।

अलग-अलग स्रोत चक्रीय आव्यूह को अलग-अलग विधियों से परिभाषित करते हैं, उदाहरण के लिए ऊपर, या वेक्टर के साथ आव्यूह के पहले कॉलम के अतिरिक्त पहली पंक्ति के अनुरूप; और संभवतः शिफ्ट की एक अलग दिशा के साथ (जिसे कभी-कभी एंटी-चक्रीय आव्यूह कहा जाता है)।

बहुपद आव्यूह का संबद्ध बहुपद कहा जाता है .

गुण

अभिलक्षणिक सदिश और अभिलक्षणिक मान

एक चक्रीय आव्यूह के सामान्यीकृत अभिलक्षणिक सदिश फूरियर मोड के रुप में होते है, अर्थात्,

जहाँ प्रिमिटिव रुप में होता है -एकता की रुट और काल्पनिक इकाई है।

यह समझ कर समझा जा सकता है कि एक चक्रीय आव्यूह के साथ गुणन एक कनवल्शन को लागू करता है। फूरियर स्पेस में कनवल्शन मल्टीप्लिकेशन बन जाते हैं। इसलिए एक फूरियर मोड के साथ एक चक्रीय आव्यूह का उत्पाद उस फूरियर मोड के एक से अधिक का उत्पादन करता है यानी यह एक अभिलक्षणिक सदिश के रुप में होता है।

इसी अभिलक्षणिक सदिश ​​द्वारा दिया जाता है


निर्धारक

ऊपर दिए गए अभिलक्षणिक मान के स्पष्ट सूत्र के परिणामस्वरूप, एक चक्रीय आव्यूह के निर्धारक की गणना इस प्रकार की जाती है

चूंकि ट्रांसपोज़ लेने से आव्यूह के अभिलक्षणिक मान नहीं बदलते हैं, यह एक समकक्ष फॉर्मूलेशन है

रैंक

चक्रीय आव्यूह का रैंक (रैखिक बीजगणित) के बराबर होता है, , जहाँ बहुपद की घात है .[1]


अन्य गुण

  • चक्रीय क्रमचय आव्यूह में कोई भी चक्रीय आव्यूह बहुपद अर्थात् संबद्ध बहुपद के रुप में होता है
    जहाँ द्वारा दिया गया है
  • समुच्चय (गणित) चक्रीय आव्यूहों एक योग और अदिश गुणन के संबंध में एक n-आयामी सदिश स्थान बनाता है। इस स्थान की व्याख्या क्रम के चक्रीय समूह कार्यों के स्थान के रूप में की जा सकती है , , या समकक्ष .के समूह की वलय के रूप में होती है
  • चक्रीय आव्यूहों एक क्रमविनिमेय बीजगणित की आवश्यकता होती है, क्योंकि किसी भी दो चक्रीय आव्यूहों के लिए और , योग परिचालित होते है, सर्कुलर और . परिचालित रुप में होते है
  • विलक्षण चक्रीय आव्यूह के लिए , इसका प्रतिलोम परिवृत्ती है। एक विलक्षण चक्रीय आव्यूह के लिए, इसका मूर-पेनरोज़ स्यूडोइनवर्स परिवृत्तीरुप में होता है।
  • गणित का सवाल जो एक चक्रीय आव्यूह के अभिलक्षणिक सदिश से बना है, डिस्क्रीट फूरियर ट्रांसफॉर्म द एकात्मक डीएफटी और इसके व्युत्क्रम ट्रांसफॉर्म से संबंधित होता है
    परिणाम स्वरुप आव्यूह विकर्णीय आव्यूह . वास्तव में, हमारे पास है
    जहाँ का प्रथम स्तंभ है . के अभिलक्षणिक मान उत्पाद द्वारा दिया जाता है . इस उत्पाद की तेजी से फूरियर रूपांतरण द्वारा आसानी से गणना की जा सकती है।[2] इसके विपरीत, किसी भी विकर्ण आव्यूह के लिए , उत्पाद वे इसे प्रसारित करते हैं।
  • माना मोनिक बहुपद एक की विशेष बहुपद के रुप में होती है आव्यूह की परिक्रमा और जाने का व्युत्पन्न होना . फिर बहुपद निम्नलिखित का अभिलाक्षणिक बहुपद है का सब आव्यूह है।
    प्रमाण के लिए इसे दिखाया गया है।[3]

विश्लेषणात्मक व्याख्या

चक्रीय आव्यूहों की व्याख्या ज्यामितीय रूप से की जा सकती है, जो असतत फूरियर रूपांतरण के साथ संबंध की व्याख्या करता है।

अवधि के साथ पूर्णांकों पर कार्य के रूप में वैक्टर पर विचार करें , अर्थात आवधिक द्वि-अनंत अनुक्रम के रूप में: या समकक्ष, क्रम के चक्रीय समूह पर कार्य करता है ( या ) ज्यामितीय रूप से, नियमित रूप से कोने पर एन- गोन के रुप में होता है, यह वास्तविक रेखा या वृत्त पर आवधिक कार्यों के लिए असतत अनुरूप है।

फिर, ऑपरेटर सिद्धांत के परिप्रेक्ष्य से, एक चक्रीय आव्यूह असतत अभिन्न परिवर्तन का कर्नेल है, अर्थात् फलन के लिए कनवल्शन ऑपरेटर ; यह एक असतत गोलाकार कनवल्शन के रुप में होता है। कार्यों के दृढ़ संकल्प के लिए सूत्र इस प्रकार है


याद रखें कि अनुक्रम आवधिक के रुप में होती है, जो वेक्टर का उत्पाद है चक्रीय आव्यूह के लिए .के रुप में होता है

असतत फूरियर रूपांतरण तब कनवल्शन को गुणन में परिवर्तित करता है, जो आव्यूह समूह वलय में विकर्णीकरण से मेल खाता है। वें जटिल संख्या प्रविष्टियों के साथ सभी चक्रीय आव्यूह का बीजगणित समूह के लिए समरूप है का बीजगणित का . है

सममित चक्रीय आव्यूह

एक सममित परिसंचरण आव्यूह के लिए एक की अतिरिक्त शर्त है कि .इस प्रकार यह तत्वों द्वारा निर्धारित किया जाता है।

किसी भी वास्तविक सममित आव्यूह के अभिलक्षणिक मान ​​वास्तविक रुप में होते है। यह संबंधित अभिलक्षणिक मान ​​बन जाते हैं
सम के लिए (गणित) और,
विषम के लिए (गणित) हैं, जहां , के वास्तविक भाग को दर्शाता है। .इस तथ्य का उपयोग करके इसे और सरल बनाया जा सकता है .

सममित चक्रीय आव्यूह द्विसममित आव्यूह के वर्ग से संबंधित होते है।

हर्मिटियन चक्रीय मैट्रिसेस

चक्रीय आव्यूह का जटिल संस्करण, संचार सिद्धांत में सर्वव्यापी, सामान्यतः हर्मिटियन आव्यूह है। इस स्थितियों में और इसके निर्धारक और सभी अभिलक्षणिक मान ​​वास्तविक रुप में होते है।

यदि n पहली दो पंक्तियाँ भी आवश्यक रूप से लेती हैं

जिसमें प्रथम तत्व है शीर्ष दूसरी छमाही पंक्ति में वास्तविक है।

यदि n विषम है तो हमें प्राप्त होता है

टी[4] हर्मिटियन स्थिति के लिए अभिलक्षणिक मान ​​पर बाधाओं पर चर्चा की जाती है।

अनुप्रयोग

रैखिक समीकरणों में

एक आव्यूह समीकरण दिया गया है

जहाँ आकार का एक गोलाकार वर्ग आव्यूह के रुप में होता है, हम समीकरण को वृत्ताकार कनवल्शन के रूप में लिख सकते हैं
जहाँ का प्रथम स्तंभ है और वैक्टर , और प्रत्येक दिशा में चक्रीय रूप से विस्तारित होते हैं। डिस्क्रीट फूरियर ट्रांसफॉर्म सर्कुलर कनवल्शन प्रमेय और क्रॉस-सहसंबंध प्रमेय का उपयोग करके हम चक्रीय कनवल्शन को घटक-वार गुणन में बदलने के लिए डिस्क्रीट फूरियर ट्रांसफॉर्म का उपयोग कर सकते हैं
जिससे कि
यह एल्गोरिथम मानक गाऊसी उन्मूलन की तुलना में बहुत तेज होता है, विशेष रूप से यदि एक तेज फूरियर रूपांतरण का उपयोग किया जाता है।

ग्राफ सिद्धांत में

ग्राफ़ सिद्धांत में, एक ग्राफ़ असतत गणित या निर्देशित ग्राफ जिसका आसन्न आव्यूह चक्रीय रुप में होता है, एक गोलाकार ग्राफ या डिग्राफ़ कहलाता है। समतुल्य रूप से, एक ग्राफ परिचालित होता है यदि इसके ऑटोमोर्फिज्म समूह में एक पूर्ण-लंबाई का चक्र होता है। मोबियस लैडर चक्रीय ग्राफ़ के उदाहरण हैं, जैसे कि अभाज्य संख्या क्रम के क्षेत्र (गणित) के लिए पैली ग्राफ हैं।

संदर्भ

  1. A. W. Ingleton (1956). "सर्कुलेंट मैट्रिसेस की रैंक". J. London Math. Soc. s1-31 (4): 445–460. doi:10.1112/jlms/s1-31.4.445.
  2. Golub, Gene H.; Van Loan, Charles F. (1996), "§4.7.7 Circulant Systems", Matrix Computations (3rd ed.), Johns Hopkins, ISBN 978-0-8018-5414-9
  3. Kushel, Olga; Tyaglov, Mikhail (July 15, 2016), "Circulants and critical points of polynomials", Journal of Mathematical Analysis and Applications, 439 (2): 634–650, arXiv:1512.07983, doi:10.1016/j.jmaa.2016.03.005, ISSN 0022-247X
  4. Tee, G J (2007). "ब्लॉक सर्कुलेंट और अल्टरनेटिंग सर्कुलेंट मैट्रिसेस के आइजनवेक्टर". New Zealand Journal of Mathematics. 36: 195–211.


बाहरी संबंध