भिन्नता सिद्धांत: Difference between revisions

From Vigyanwiki
 
(One intermediate revision by one other user not shown)
Line 54: Line 54:
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Created On 02/03/2023]]
[[Category:Created On 02/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Machine Translated Page]]
[[Category:Pages using sidebar with the child parameter]]
[[Category:Pages using sidebar with the child parameter]]
Line 60: Line 61:
[[Category:Template documentation pages|Short description/doc]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates Vigyan Ready]]
[[Category:Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia articles needing factual verification from August 2020]]

Latest revision as of 15:35, 13 September 2023

विज्ञान में और विशेष रूप से गणितीय अध्ययनों में, एक भिन्नता सिद्धांत वह है जो किसी समस्या को विविधताओं के कलन का उपयोग करके हल करने में सक्षम बनाता है, जो उन कार्यों को खोजने से संबंधित है जो उन कार्यों पर निर्भर मात्रा के मूल्यों को अनुकूलित करते हैं। उदाहरण के लिए, दोनों सिरों पर लटकी हुई जंजीर के आकार को निर्धारित करने की समस्या ज़ंजीर को परिवर्तनशील कलन का उपयोग करके हल किया जा सकता है, और इस प्रकरण में, श्रृंखला का परिवर्तनशील सिद्धांत निम्नलिखित है: समाधान एक ऐसा कार्य है जो गुरुत्वाकर्षण ऊर्जा को कम करता है।

अवलोकन

कोई भी भौतिक नियम जिसे परिवर्तनशील सिद्धांत के रूप में व्यक्त किया जा सकता है, एक स्व-संयोजित संकारक का वर्णन करता है।[1][verification needed] इन भावों को हर्मिटियन भी कहा जाता है। इस तरह की अभिव्यक्ति एक हर्मिटियन परिवर्तन के तहत एक अपरिवर्तनीय (गणित) वर्णन करती है।

इतिहास

फेलिक्स क्लेन के एर्लांगेन कार्यक्रम ने परिवर्तनों के एक समूह के आधार पर ऐसे आविष्कारों की पहचान करने का प्रयास किया। जिसे भौतिकी में नोएदर के प्रमेय के रूप में संदर्भित किया जाता है, सामान्य सापेक्षता के लिए परिवर्तनों के पॉइंकेयर समूह (जिसे अब एक गेज समूह कहा जाता है) परिवर्तनों के एक समूह के तहत समरूपता को परिभाषित करता है जो एक भिन्नता सिद्धांत, या क्रिया (भौतिकी) पर निर्भर करता है।

उदाहरण

गणित में

भौतिकी में

संदर्भ

  1. Lanczos, Cornelius (1974) [1st published 1970, University of Toronto Press]. यांत्रिकी के परिवर्तनशील सिद्धांत (4th, paperback ed.). Dover. p. 351. ISBN 0-8020-1743-6.


बाहरी संबंध