ऊष्मागतिकी का तृतीय नियम: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Law of physics}} | {{Short description|Law of physics}} | ||
{{Thermodynamics|laws}} | {{Thermodynamics|laws}} | ||
यह निरंतर मान बंद प्रणाली की विशेषता बताने वाले किसी भी अन्य पैरामीटर पर निर्भर नहीं हो सकता है, जैसे कि दबाव या अनुप्रयुक्त चुंबकीय क्षेत्र है। पूर्ण शून्य (शून्य [[केल्विन]]) पर प्रणाली न्यूनतम संभव ऊर्जा वाली स्थिति में होना चाहिए। एंट्रॉपी सुलभ [[सूक्ष्म अवस्था (सांख्यिकीय यांत्रिकी)]] की संख्या से संबंधित है, और सामान्यतः न्यूनतम ऊर्जा के साथ एक अद्वितीय स्थिति (जिसे [[ जमीनी स्थिति ]] कहा जाता है) होता है।<ref>J. Wilks ''The Third Law of Thermodynamics'' Oxford University Press (1961).{{page needed|date=January 2013}}</ref> ऐसे स्थितियों में, पूर्ण शून्य पर एंट्रॉपी बिल्कुल शून्य होगी। यदि प्रणाली में एक अच्छी तरह से परिभाषित क्रम नहीं है (उदाहरण के लिए, यदि इसका क्रम [[अनाकार ठोस]] है), तो कुछ परिमित एन्ट्रापी रह सकती है क्योंकि प्रणाली को बहुत कम तापमान पर लाया जाता है, या तो क्योंकि प्रणाली विन्यास में बंद हो जाता है गैर-न्यूनतम ऊर्जा या क्योंकि न्यूनतम ऊर्जा स्थिति गैर-अद्वितीय है। स्थिर मान को प्रणाली का [[अवशिष्ट एन्ट्रापी]] कहा जाता है।<ref>Kittel and Kroemer, ''Thermal Physics'' (2nd ed.), page 49.</ref> एंट्रॉपी अनिवार्य रूप से एक स्थिति -कार्य है जिसका अर्थ है कि विभिन्न परमाणुओं, अणुओं, और उप-परमाणु या परमाणु सामग्री सहित कणों के अन्य विन्यासों के अंतर्निहित मूल्य को एन्ट्रॉपी द्वारा परिभाषित किया जाता है, जिसे 0 K के पास खोजा जा सकता है। | |||
ऊष्मप्रवैगिकी के तीसरे नियम का नर्नस्ट-साइमन कथन एक निश्चित, कम तापमान पर उष्मागतिक प्रक्रियाओं से संबंधित है: {{quote|उत्क्रमणीय समतापीय प्रक्रिया से गुजरने वाली किसी भी संघनित प्रणाली से जुड़ा एन्ट्रापी परिवर्तन शून्य तक पहुँच जाता है, जिस तापमान पर यह किया जाता है वह 0 K तक पहुँच जाता है।}} यहाँ एक संघनित प्रणाली तरल और ठोस को संदर्भित करती | ऊष्मप्रवैगिकी के तीसरे नियम का नर्नस्ट-साइमन कथन एक निश्चित, कम तापमान पर उष्मागतिक प्रक्रियाओं से संबंधित है: {{quote|उत्क्रमणीय समतापीय प्रक्रिया से गुजरने वाली किसी भी संघनित प्रणाली से जुड़ा एन्ट्रापी परिवर्तन शून्य तक पहुँच जाता है, जिस तापमान पर यह किया जाता है वह 0 K तक पहुँच जाता है।}} यहाँ एक संघनित प्रणाली तरल और ठोस को संदर्भित करती है।नर्न्स्ट द्वारा एक मौलिक सूत्रीकरण (वास्तव में तीसरे कानून का एक परिणाम) है: {{quote|किसी भी प्रक्रिया के लिए यह असंभव है, भले ही किसी प्रणाली की एन्ट्रापी को सीमित संख्या में संचालन में उसके पूर्ण-शून्य मान को कम करने के लिए कितना आदर्श बनाया गया हो।}} | ||
तीसरे कानून का एक सूत्रीकरण भी मौजूद है जो एक विशिष्ट ऊर्जा व्यवहार को स्थगित करके इस विषय पर पहुंचता है: {{quote|यदि दो उष्मागतिकीय प्रणालियों के सम्मिश्रण से एक पृथक प्रणाली का निर्माण होता है, तो उन दो प्रणालियों के बीच किसी भी रूप में कोई भी ऊर्जा विनिमय बंधित होता है।}} | |||
== इतिहास == | |||
तीसरा नियम 1906-12 के दौरान रसायनज्ञ [[वाल्थर नर्नस्ट]] द्वारा विकसित किया गया था, और इसलिए इसे अक्सर नर्न्स्ट ताप प्रमेयया नर्नस्ट की अभिधारणा के रूप में जाना जाता है ऊष्मप्रवैगिकी का तीसरा नियम बताता है कि पूर्ण शून्य पर एक प्रणाली की एन्ट्रापी एक अच्छी तरह से परिभाषित स्थिरांक है। ऐसा इसलिए है क्योंकि शून्य तापमान पर एक प्रणाली अपनी जमीनी अवस्था में वर्तमान होती है, जिससे कि इसकी एन्ट्रापी केवल जमीनी अवस्था के पतित ऊर्जा स्तर से निर्धारित होती है। | |||
1912 में नर्न्स्ट ने नियम को इस प्रकार बताया: किसी भी प्रक्रिया के लिए समताप रेखा {{math|''T'' {{=}} 0}} को चरणों की एक सीमित संख्या तक ले जाना असंभव है ।<ref>Bailyn, M. (1994). ''A Survey of Thermodynamics'', American Institute of Physics, New York, {{ISBN|0-88318-797-3}}, page 342.</ref> | |||
1923 में गिल्बर्ट एन लुईस और मर्ले रान्डेल द्वारा बताए गए ऊष्मप्रवैगिकी के तीसरे नियम का एक वैकल्पिक संस्करण: | 1923 में गिल्बर्ट एन लुईस और मर्ले रान्डेल द्वारा बताए गए ऊष्मप्रवैगिकी के तीसरे नियम का एक वैकल्पिक संस्करण: | ||
: यदि किसी (पूर्ण) क्रिस्टलीय अवस्था में प्रत्येक तत्व की एन्ट्रापी को तापमान के पूर्ण शून्य पर शून्य के रूप में लिया जाए, तो प्रत्येक पदार्थ में एक परिमित सकारात्मक एन्ट्रापी होती है; लेकिन तापमान के पूर्ण शून्य पर एन्ट्रापी शून्य हो सकती है, और ऐसा पूर्ण क्रिस्टलीय पदार्थों के | : यदि किसी (पूर्ण) क्रिस्टलीय अवस्था में प्रत्येक तत्व की एन्ट्रापी को तापमान के पूर्ण शून्य पर शून्य के रूप में लिया जाए, तो प्रत्येक पदार्थ में एक परिमित सकारात्मक एन्ट्रापी होती है; लेकिन तापमान के पूर्ण शून्य पर एन्ट्रापी शून्य हो सकती है, और ऐसा पूर्ण क्रिस्टलीय पदार्थों के स्थितियों में हो जाता है। | ||
यह संस्करण बताता है कि न केवल <math>\Delta S</math> 0 K पर शून्य पर पहुंच जाएगा, लेकिन <math>S</math> स्वयं भी शून्य तक पहुंच जाएगा जब तक कि क्रिस्टल में केवल एक विन्यास के साथ जमीनी अवस्था होती है। कुछ क्रिस्टल दोष बनाते हैं जो एक अवशिष्ट एन्ट्रॉपी का कारण बनते हैं। यह अवशिष्ट एन्ट्रापी तब गायब हो जाती है जब एक जमीनी अवस्था में संक्रमण के गतिज अवरोध दूर हो जाते हैं।<ref name="Residual Entropy and the Third Law">{{cite journal |doi=10.3390/e10030274 |title=अवशिष्ट एन्ट्रापी, तीसरा नियम और गुप्त ऊष्मा|year=2008 |last1=Kozliak |first1=Evguenii |first2=Frank L. |last2=Lambert |journal=Entropy |volume=10 |issue=3 |pages=274–84 |bibcode=2008Entrp..10..274K|doi-access=free }}</ref> | |||
[[सांख्यिकीय यांत्रिकी]] के विकास के साथ, ऊष्मप्रवैगिकी का तीसरा नियम (अन्य कानूनों की तरह) एक मौलिक नियम (प्रयोगों द्वारा न्यायोचित) से एक व्युत्पन्न नियम (और भी अधिक बुनियादी नियमो से प्राप्त) में बदल गया। मूल नियम जिसमें से यह मुख्य रूप से प्राप्त होता है, एक बड़ी प्रणाली के लिए एंट्रॉपी की सांख्यिकीय-यांत्रिकी परिभाषा है: | |||
[[सांख्यिकीय यांत्रिकी]] के विकास के साथ, ऊष्मप्रवैगिकी का तीसरा नियम (अन्य कानूनों की तरह) एक मौलिक | |||
:<math> S - S_0 = k_\text{B} \ln \, \Omega </math> | :<math> S - S_0 = k_\text{B} \ln \, \Omega </math> | ||
कहाँ <math>S</math> एंट्रॉपी है, <math> k_\mathrm{B} </math> [[बोल्ट्जमैन स्थिरांक]] है, और <math> \Omega </math> | कहाँ <math>S</math> एंट्रॉपी है, <math> k_\mathrm{B} </math> [[बोल्ट्जमैन स्थिरांक]] है, और <math> \Omega </math> स्थूल विन्यास के अनुरूप सूक्ष्मअवस्था (सांख्यिकीय यांत्रिकी) की संख्या है। अवस्थाओं की गिनती निरपेक्ष शून्य की संदर्भ स्थिति से होती है, जो <math>S_0</math> की एन्ट्रापी से मेल खाती है| | ||
== स्पष्टीकरण == | == स्पष्टीकरण == | ||
सरल शब्दों में, तीसरे नियम में कहा गया है कि एक शुद्ध पदार्थ के एक आदर्श क्रिस्टल की एन्ट्रापी शून्य के करीब पहुंचती है क्योंकि तापमान शून्य हो जाता है। एक पूर्ण क्रिस्टल का संरेखण क्रिस्टल के प्रत्येक भाग के स्थान और अभिविन्यास के रूप में कोई अस्पष्टता नहीं छोड़ता है। जैसे ही क्रिस्टल की ऊर्जा कम हो जाती है, व्यक्तिगत परमाणुओं का कंपन शून्य हो जाता है, और क्रिस्टल हर जगह समान हो जाता है। | सरल शब्दों में, तीसरे नियम में कहा गया है कि एक शुद्ध पदार्थ के एक आदर्श क्रिस्टल की एन्ट्रापी शून्य के करीब पहुंचती है क्योंकि तापमान शून्य हो जाता है। एक पूर्ण क्रिस्टल का संरेखण क्रिस्टल के प्रत्येक भाग के स्थान और अभिविन्यास के रूप में कोई अस्पष्टता नहीं छोड़ता है। जैसे ही क्रिस्टल की ऊर्जा कम हो जाती है, व्यक्तिगत परमाणुओं का कंपन शून्य हो जाता है, और क्रिस्टल हर जगह समान हो जाता है। | ||
[[File:Figure Showing Entropy at 0 K.png|thumb|(ए) पूर्ण शून्य पर एक | [[File:Figure Showing Entropy at 0 K.png|thumb|(ए) पूर्ण शून्य पर एक प्रणाली के लिए एकल संभव कॉन्फ़िगरेशन, यानी, केवल एक सूक्ष्म अवस्था पहुंच योग्य है। इस प्रकार एस = के एलएन डब्ल्यू = 0. (बी) पूर्ण शून्य से अधिक तापमान पर, परमाणु कंपन (आकृति में अतिरंजित) के कारण कई सूक्ष्म अवस्था सुलभ हैं। चूंकि सुलभ सूक्ष्म अवस्था ्स की संख्या 1 से अधिक है, S = k ln W> 0।]]तीसरा नियम किसी अन्य तापमान पर एन्ट्रापी के निर्धारण के लिए एक पूर्ण संदर्भ बिंदु प्रदान करता है। इस शून्य बिंदु के सापेक्ष निर्धारित एक बंद प्रणाली की एन्ट्रापी उस प्रणाली की पूर्ण एन्ट्रापी है। गणितीय रूप से, शून्य तापमान पर किसी भी प्रणाली की पूर्ण एन्ट्रापी जमीनी अवस्थाओं की संख्या का प्राकृतिक लघुगणक है जो बोल्ट्जमैन स्थिरांक से गुणा {{math|1=''k''{{sub|B}} = {{val|1.38|e=-23|u=J K<sup>−1</sup>}}}} है| | ||
नेर्नस्ट के प्रमेय द्वारा परिभाषित एक पूर्ण क्रिस्टल जालक की एन्ट्रॉपी शून्य है, | नेर्नस्ट के प्रमेय द्वारा परिभाषित एक पूर्ण क्रिस्टल जालक की एन्ट्रॉपी शून्य है, परंतु कि इसकी जमीनी अवस्था अद्वितीय हो, क्योंकि {{math|1=ln(1) = 0}}. यदि प्रणाली एक अरब परमाणुओं से समान रूप से बना है, और एक पूर्ण क्रिस्टल के मैट्रिक्स के भीतर स्थित हैं, तो अरब एक समय में एक अरब समान चीजों के संयोजन की संख्या है {{math|1=Ω = 1}}. इस तरह: | ||
<math display="block">S - S_0 = k_\text{B} \ln\Omega = k_\text{B}\ln{1} = 0 </math> | <math display="block">S - S_0 = k_\text{B} \ln\Omega = k_\text{B}\ln{1} = 0 </math> | ||
अंतर शून्य है, इसलिए प्रारंभिक एन्ट्रापी {{math|''S''{{sub|0}}}} कोई भी चयनित मूल्य हो सकता है जब तक कि अन्य सभी ऐसी गणनाओं में प्रारंभिक एंट्रॉपी के रूप में सम्मिलित हो। परिणामस्वरूप, शून्य का प्रारंभिक एन्ट्रापी मान चुना जाता है {{math|1=''S''{{sub|0}} = 0}} सुविधा के लिए प्रयोग किया जाता है। | |||
<math display="block">S - S_0 = S - 0 = 0</math><math display="block">S = 0</math> | |||
=== उदाहरण: आने वाले फोटॉन | ===== उदाहरण: आने वाले फोटॉन द्वारा गर्म किए गए क्रिस्टल जाली का एंट्रॉपी परिवर्तन ===== | ||
मान लीजिए कि | मान लीजिए कि {{math|1=''T'' = 0 K}} पर {{math|''N''}} समरूप परमाणुओं के आयतन एक प्रणाली जिसमें आयतन {{math|''V''}} के साथ एक क्रिस्टल जालीसे युक्त एक प्रणाली और तरंग दैर्ध्य {{math|''λ''}} और {{math|''ε''}} का एक आने वाला फोटॉन है। | ||
प्रारंभ में, केवल एक सुलभ | प्रारंभ में, केवल एक सुलभ सूक्ष्म अवस्था है: | ||
<math display="block">S_0 = k_\text{B} \ln\Omega = k_\text{B}\ln{1} = 0. </math> | <math display="block">S_0 = k_\text{B} \ln\Omega = k_\text{B}\ln{1} = 0. </math> | ||
आइए मान लें कि क्रिस्टल जाली आने वाले फोटॉन को अवशोषित करती है। जाली में एक अनोखा परमाणु होता है जो इस फोटॉन को | आइए मान लें कि क्रिस्टल जाली आने वाले फोटॉन को अवशोषित करती है। जाली में एक अनोखा परमाणु होता है जो इस फोटॉन को परस्पर प्रभाव और अवशोषित करता है। तो अवशोषण के बाद {{math|''N''}} संभावित सूक्ष्म अवस्था , प्रत्येक सूक्ष्म अवस्था एक उत्तेजित परमाणु के अनुरूप है, और अन्य परमाणु जमीनी अवस्था में शेष हैं। | ||
बंद प्रणाली की एन्ट्रापी, ऊर्जा और तापमान बढ़ जाता है और इसकी गणना की जा सकती है। एन्ट्रापी परिवर्तन है: | बंद प्रणाली की एन्ट्रापी, ऊर्जा और तापमान बढ़ जाता है और इसकी गणना की जा सकती है। एन्ट्रापी परिवर्तन है: | ||
Line 53: | Line 54: | ||
<math display="block">S - 0 = k_\text{B} \ln{N} = 1.38 \times 10^{-23} \times \ln{\left(3 \times 10^{22}\right)} = 70 \times 10^{-23} \,\mathrm{J\,K^{-1}}</math> | <math display="block">S - 0 = k_\text{B} \ln{N} = 1.38 \times 10^{-23} \times \ln{\left(3 \times 10^{22}\right)} = 70 \times 10^{-23} \,\mathrm{J\,K^{-1}}</math> | ||
हम यह मानते है कि {{math|1=''N'' = 3 × 10<sup>22</sup>}} और {{math|1=''λ'' = {{val|1|u=cm}}}}. एकल फोटॉन को अवशोषित करने के परिणामस्वरूप | हम यह मानते है कि {{math|1=''N'' = 3 × 10<sup>22</sup>}} और {{math|1=''λ'' = {{val|1|u=cm}}}}. एकल फोटॉन को अवशोषित करने के परिणामस्वरूप प्रणाली का ऊर्जा परिवर्तन जिसकी ऊर्जा {{math|''ε''}} है: | ||
<math display="block"> \delta Q = \varepsilon = \frac {hc}{\lambda} =\frac{6.62 \times 10^{-34}\,\mathrm{J\cdot s} \times 3 \times 10^{8} \,\mathrm{m\,s^{-1}}}{0.01 \,\mathrm{m}}=2 \times 10^{-23} \,\mathrm{J}</math> | <math display="block"> \delta Q = \varepsilon = \frac {hc}{\lambda} =\frac{6.62 \times 10^{-34}\,\mathrm{J\cdot s} \times 3 \times 10^{8} \,\mathrm{m\,s^{-1}}}{0.01 \,\mathrm{m}}=2 \times 10^{-23} \,\mathrm{J}</math> | ||
Line 59: | Line 60: | ||
<math display="block">T = \frac{\varepsilon}{\Delta S} = \frac{2 \times 10^{-23}\,\mathrm{J}}{70 \times 10^{-23}\,\mathrm{J\,K^{-1}}} = 0.02857 \,\mathrm{K} </math> | <math display="block">T = \frac{\varepsilon}{\Delta S} = \frac{2 \times 10^{-23}\,\mathrm{J}}{70 \times 10^{-23}\,\mathrm{J\,K^{-1}}} = 0.02857 \,\mathrm{K} </math> | ||
इसे | इसे <math> 0 < S < 70 \times 10^{-23}\,\mathrm{J\,K^{-1}}</math> की सीमा में प्रणाली के औसत तापमान के रूप में व्याख्या किया जा सकता है। .<ref>{{cite book|last=Reynolds and Perkins|title=इंजीनियरिंग ऊष्मप्रवैगिकी| url=https://archive.org/details/engineeringtherm00reyn|url-access=registration|year=1977|publisher=McGraw Hill|isbn=978-0-07-052046-2| pages=[https://archive.org/details/engineeringtherm00reyn/page/438 438]}}</ref> यह मान लिया गया था कि एक अकेला परमाणु फोटॉन को अवशोषित कर लेगा लेकिन तापमान और एन्ट्रापी परिवर्तन पूरे प्रणाली की विशेषता है। | ||
=== पूर्ण शून्य पर गैर-शून्य एंट्रॉपी वाले | === पूर्ण शून्य पर गैर-शून्य एंट्रॉपी वाले प्रणाली === | ||
एक प्रणाली का एक उदाहरण जिसमें एक अद्वितीय जमीनी स्थिति नहीं है, वह है जिसका शुद्ध [[स्पिन (भौतिकी)]] एक आधा पूर्णांक है, जिसके लिए [[समय-उलट समरूपता]] दो पतित जमीनी अवस्थाएँ देती है। ऐसी प्रणालियों के लिए, शून्य तापमान पर एन्ट्रापी कम से कम होती | एक प्रणाली का एक उदाहरण जिसमें एक अद्वितीय जमीनी स्थिति नहीं है, वह है जिसका शुद्ध [[स्पिन (भौतिकी)]] एक आधा पूर्णांक है, जिसके लिए [[समय-उलट समरूपता]] दो पतित जमीनी अवस्थाएँ देती है। ऐसी प्रणालियों के लिए, शून्य तापमान पर एन्ट्रापी कम से कम होती {{math|''k''{{sub|B}} ln(2)}} है (जो स्थूल पैमाने पर नगण्य है)। कुछ क्रिस्टलीय प्रणालियाँ [[ज्यामितीय निराशा]] प्रदर्शित करती हैं, जहाँ क्रिस्टल जाली की संरचना एक अद्वितीय जमीनी स्थिति के उद्भव को रोकती है। जमीनी अवस्था हीलियम (जब तक दबाव में नहीं) तरल रहता है। | ||
इसके अलावा, ग्लास और ठोस समाधान 0 K पर बड़ी एन्ट्रापी बनाए रखते हैं, क्योंकि वे लगभग पतित अवस्थाओं के बड़े संग्रह होते हैं, जिसमें वे संतुलन से बाहर हो जाते हैं। | इसके अलावा, ग्लास और ठोस समाधान 0 K पर बड़ी एन्ट्रापी बनाए रखते हैं, क्योंकि वे लगभग पतित अवस्थाओं के बड़े संग्रह होते हैं, जिसमें वे संतुलन से बाहर हो जाते हैं। एक ठोस का एक और उदाहरण जिसमें कई लगभग-पतित जमीनी अवस्थाएँ संतुलन से बाहर फंसी हुई हैं, बर्फ आईएच है, जो "प्रोटॉन विकार" है। | ||
निरपेक्ष शून्य पर एन्ट्रापी के लिए शून्य होने के लिए, एक पूरी तरह से आदेशित क्रिस्टल के चुंबकीय क्षणों को खुद को पूरी तरह से व्यवस्थित होना चाहिए; एंट्रोपिक दृष्टिकोण से, इसे एक पूर्ण क्रिस्टल की परिभाषा का हिस्सा माना जा सकता है। केवल [[ लौह-चुंबकीय ]], [[ प्रति-लौहचुंबकीय ]] और [[ प्रति-चुंबकीय ]] मैटीरियल ही इस स्थिति को पूरा कर सकते हैं। | निरपेक्ष शून्य पर एन्ट्रापी के लिए शून्य होने के लिए, एक पूरी तरह से आदेशित क्रिस्टल के चुंबकीय क्षणों को खुद को पूरी तरह से व्यवस्थित होना चाहिए; एंट्रोपिक दृष्टिकोण से, इसे एक पूर्ण क्रिस्टल की परिभाषा का हिस्सा माना जा सकता है। केवल [[ लौह-चुंबकीय ]], [[ प्रति-लौहचुंबकीय ]] और [[ प्रति-चुंबकीय ]] मैटीरियल ही इस स्थिति को पूरा कर सकते हैं। चूंकि , [[ लौह-चुंबकीय |लौह-चुंबकीय]] सामग्री, वास्तव में, शून्य तापमान पर शून्य एन्ट्रापी नहीं होती है, क्योंकि अयुग्मित इलेक्ट्रॉनों के स्पिन सभी संरेखित होते हैं और यह एक जमीनी अवस्था स्पिन अध: पतन देता है। सामग्री जो 0 K पर अनुचुंबकीय रहती है, इसके विपरीत, कई लगभग-पतित जमीनी अवस्थाएँ हो सकती हैं (उदाहरण के लिए, [[स्पिन ग्लास]] में), या गतिशील विकार ([[क्वांटम स्पिन तरल]]) को बनाए रख सकती हैं। | ||
== परिणाम == | == परिणाम == | ||
Line 75: | Line 76: | ||
=== पूर्ण शून्य === | === पूर्ण शून्य === | ||
तीसरा | तीसरा नियम कथन के बराबर है कि | ||
: यह किसी भी प्रक्रिया | : यह किसी भी प्रक्रिया द्वारा असंभव है, चाहे वह किसी भी बंद प्रणाली के तापमान को शून्य तापमान तक परिमित संचालन की सीमित संख्या में कम करने के लिए कितना आदर्श हो।<ref>[[Edward A. Guggenheim|Guggenheim, E.A.]] (1967). ''Thermodynamics. An Advanced Treatment for Chemists and Physicists'', fifth revised edition, North-Holland Publishing Company, Amsterdam, page 157.</ref> | ||
तीसरे नियम के अनुसार ''T'' = 0 तक नहीं पहुंचा जा सकता है, इसे इस प्रकार समझाया गया है: मान लीजिए कि किसी पदार्थ का तापमान को पैरामीटर ''X'' को ''X''<sub>2</sub> से ''X''<sub>1</sub> बदलकर एक आइसोट्रोपिक प्रक्रिया में कम किया जा सकता है। एक बहुस्तरीय [[ परमाणु विमुद्रीकरण ]] स्थापित करने के बारे में सोच सकते हैं जहां एक चुंबकीय क्षेत्र को नियंत्रित विधि से चालू और बंद किया जाता है।<ref>F. Pobell, Matter and Methods at Low Temperatures, (Springer-Verlag, Berlin, 2007){{page needed|date=January 2013}}</ref> यदि पूर्ण {{math|1=''T'' = 0}} पर एन्ट्रापी अंतर होता है| तो चरणों की एक सीमित संख्या में पहुँचा जा सकता है। चूंकि , T = 0 पर कोई एन्ट्रापी अंतर नहीं है इसलिए अनंत चरणों की आवश्यकता होगी। प्रक्रिया चित्र 1 में सचित्र है। | |||
=== विशिष्ट ऊष्मा === | === विशिष्ट ऊष्मा === | ||
अपने तीसरे नियम का एक गैर-मात्रात्मक विवरण जो नर्न्स्ट ने बिल्कुल शुरुआत में दिया था, बस यह था कि सामग्री को काफी नीचे तक ठंडा करके विशिष्ट गर्मी को हमेशा शून्य बनाया जा सकता है।<ref>''Einstein and the Quantum'', A. Douglas Stone, Princeton University Press, 2013.</ref> एक आधुनिक, मात्रात्मक विश्लेषण इस प्रकार है। | अपने तीसरे नियम का एक गैर-मात्रात्मक विवरण जो नर्न्स्ट ने बिल्कुल शुरुआत में दिया था, बस यह था कि सामग्री को काफी नीचे तक ठंडा करके विशिष्ट गर्मी को हमेशा शून्य बनाया जा सकता है।<ref>''Einstein and the Quantum'', A. Douglas Stone, Princeton University Press, 2013.</ref> एक आधुनिक, मात्रात्मक विश्लेषण इस प्रकार है। | ||
मान लिया कि कम तापमान वाले क्षेत्र में एक नमूने की ताप क्षमता एक शक्ति | मान लिया कि कम तापमान वाले क्षेत्र में एक नमूने की ताप क्षमता एक शक्ति नियम {{nowrap|1=''C''(''T,X'') = ''C''<sub>0</sub>''T''<sup>''α''</sup>}} का रूप में {{nowrap|''T'' → 0}}असम्बद्ध रूप में होती है, और हम यह जानना चाहते हैं कि {{math|''α''}} कौन से मूल्य हैं तीसरे नियम के अनुकूल हैं। अपने पास | ||
{{NumBlk|: | {{NumBlk|: | ||
| <math>\int_{T_0}^T \frac {C(T', X)}{T'}dT' = \frac {C_0}{ \alpha}(T^{ \alpha}-T_0^{ \alpha}).</math> | | <math>\int_{T_0}^T \frac {C(T', X)}{T'}dT' = \frac {C_0}{ \alpha}(T^{ \alpha}-T_0^{ \alpha}).</math> | ||
| {{EquationRef|11}} | | {{EquationRef|11}} | ||
}} | }} | ||
तीसरे नियम (ऊपर) की चर्चा से, इस | तीसरे नियम (ऊपर) की चर्चा से, इस अभिन्न को {{nowrap|''T''<sub>0</sub> → 0}} के रूप में परिबद्ध किया जाना चाहिए जो केवल {{math|''α'' > 0}} तभी संभव है| इसलिए ताप क्षमता पूर्ण शून्य पर शून्य होनी चाहिए | ||
{{NumBlk|: | {{NumBlk|: | ||
| <math> \lim_{T \to 0}C(T,X)=0.</math> | | <math> \lim_{T \to 0}C(T,X)=0.</math> | ||
| {{EquationRef|12}} | | {{EquationRef|12}} | ||
}} | }} | ||
अगर यह एक शक्ति | अगर यह एक शक्ति नियम का रूप है। इसी तर्क से पता चलता है कि भले ही हम शक्ति-नियम की धारणा को छोड़ दें। इसे एक सकारात्मक स्थिरांक से नीचे नहीं बांधा जा सकता है, | ||
दूसरी ओर, कमरे के तापमान पर हीलियम जैसे मोनोएटोमिक | दूसरी ओर, कमरे के तापमान पर हीलियम जैसे मोनोएटोमिक मौलिक आदर्श गैस की निरंतर मात्रा में दाढ़ की विशिष्ट ऊष्मा,{{math|1=''C{{sub|V}}'' = (3/2)''R''}} द्वारा दी जाती है साथ दाढ़ आदर्श गैस स्थिरांक होता है। लेकिन स्पष्ट रूप से एक स्थिर ताप क्षमता Eq को संतुष्ट नहीं करती है। ({{EquationNote|12}}). अर्थात्, पूर्ण शून्य तक निरंतर ताप क्षमता वाली गैस ऊष्मप्रवैगिकी के तीसरे नियम का उल्लंघन करती है। Eq में {{math|''C{{sub|V}}''}} को प्रतिस्थापित करके हम इसे और अधिक मौलिक रूप से सत्यापित कर सकते हैं| ({{EquationNote|14}}), जो उपजता है| | ||
{{NumBlk|: | {{NumBlk|: | ||
| <math>S(T,V) = S(T_0,V) + \frac{3}{2}R \ln \frac{T}{T_0}.</math> | | <math>S(T,V) = S(T_0,V) + \frac{3}{2}R \ln \frac{T}{T_0}.</math> | ||
Line 101: | Line 102: | ||
सीमा में {{nowrap|''T''<sub>0</sub> → 0}} यह अभिव्यक्ति विचलन करती है, फिर से उष्मागतिकी के तीसरे नियम का खंडन करती है। | सीमा में {{nowrap|''T''<sub>0</sub> → 0}} यह अभिव्यक्ति विचलन करती है, फिर से उष्मागतिकी के तीसरे नियम का खंडन करती है। | ||
संघर्ष को निम्नानुसार सुलझाया जाता है: एक निश्चित तापमान पर पदार्थ की क्वांटम प्रकृति व्यवहार पर हावी होने लगती है। फर्मी कण फर्मी-डिराक आँकड़ों का अनुसरण करते हैं और बोस कण बोस-आइंस्टीन आँकड़ों का अनुसरण करते हैं। दोनों ही | संघर्ष को निम्नानुसार सुलझाया जाता है: एक निश्चित तापमान पर पदार्थ की क्वांटम प्रकृति व्यवहार पर हावी होने लगती है। फर्मी कण फर्मी-डिराक आँकड़ों का अनुसरण करते हैं और बोस कण बोस-आइंस्टीन आँकड़ों का अनुसरण करते हैं। दोनों ही स्थितियों में आदर्श गैसों के लिए भी कम तापमान पर ताप क्षमता अब तापमान से स्वतंत्र नहीं है। फर्मी गैसों के लिए{{NumBlk|: | ||
{{NumBlk|: | |||
| <math>C_V = \frac{ \pi^2}{2}R \frac{T}{T_\text{F}}</math> | | <math>C_V = \frac{ \pi^2}{2}R \frac{T}{T_\text{F}}</math> | ||
| {{EquationRef|14}} | | {{EquationRef|14}} | ||
}} | }} | ||
फर्मी तापमान | फर्मी तापमान ''T''<sub>F</sub> के साथ द्वारा दिए गए | ||
{{NumBlk|: | {{NumBlk|: | ||
| <math>T_\text{F} = \frac{1}{8 \pi^2}\frac{N_\text{A}^2h^2}{MR}\left( \frac{3\pi^2N_\text{A}}{V_\text{m}}\right)^{2/3}. </math> | | <math>T_\text{F} = \frac{1}{8 \pi^2}\frac{N_\text{A}^2h^2}{MR}\left( \frac{3\pi^2N_\text{A}}{V_\text{m}}\right)^{2/3}. </math> | ||
Line 118: | Line 118: | ||
| {{EquationRef|16}} | | {{EquationRef|16}} | ||
}} | }} | ||
''T''<sub>B</sub> के साथ द्वारा दिए गए | |||
{{NumBlk|: | {{NumBlk|: | ||
| <math>T_\text{B} = \frac{1}{11.9..}\frac{N_\text{A}^2h^2}{MR}\left( \frac{N_\text{A}}{V_\text{m}}\right)^{2/3}. </math> | | <math>T_\text{B} = \frac{1}{11.9..}\frac{N_\text{A}^2h^2}{MR}\left( \frac{N_\text{A}}{V_\text{m}}\right)^{2/3}. </math> | ||
| {{EquationRef|17}} | | {{EquationRef|17}} | ||
}} | }} | ||
Eq द्वारा दी गई विशिष्ट हीट्स। ({{EquationNote|14}}) और ({{EquationNote|16}}) दोनों Eq को संतुष्ट करते हैं। ({{EquationNote|12}}). दरअसल, वे क्रमशः α=1 और α=3/2 के साथ शक्ति | Eq द्वारा दी गई विशिष्ट हीट्स। ({{EquationNote|14}}) और ({{EquationNote|16}}) दोनों Eq को संतुष्ट करते हैं। ({{EquationNote|12}}). दरअसल, वे क्रमशः α=1 और α=3/2 के साथ शक्ति नियम हैं। | ||
यहां तक कि एक विशुद्ध रूप से | यहां तक कि एक विशुद्ध रूप से मौलिक सेटिंग के भीतर, निश्चित कण संख्या पर एक मौलिक आदर्श गैस का घनत्व मनमाने ढंग से अधिक हो जाता है क्योंकि {{math|''T''}} शून्य हो जाता है, इसलिए अंतर कण अंतर शून्य हो जाती है। गैर-अंतःक्रियात्मक कणों की धारणा संभवतः तब टूट जाती है जब वे एक साथ पर्याप्त रूप से पास होते हैं, इसलिए {{math|''C{{sub|V}}''}} का मान अपने आदर्श स्थिर मान से दूर संशोधित हो जाता है। | ||
===वाष्प दाब=== | ===वाष्प दाब=== | ||
पूर्ण शून्य के पास एकमात्र | पूर्ण शून्य के पास एकमात्र <sup>3</sup>वह और <sup>4</sup>वह तरल पदार्थ हैं। वाष्पीकरण की उनकी गर्मी का एक सीमित मूल्य है | ||
{{NumBlk|: | {{NumBlk|: | ||
| <math>L=L_0+C_pT</math> | | <math>L=L_0+C_pT</math> | ||
| {{EquationRef|18}} | | {{EquationRef|18}} | ||
}} | }} | ||
''L''<sub>0</sub> और ''C''<sub>p</sub>स्थिरांक के साथ| यदि हम आंशिक रूप से तरल और आंशिक रूप से गैस से भरे कंटेनर पर विचार करते हैं, तो तरल-गैस मिश्रण की एन्ट्रॉपी है | |||
{{NumBlk|: | {{NumBlk|: | ||
Line 139: | Line 139: | ||
| {{EquationRef|19}} | | {{EquationRef|19}} | ||
}} | }} | ||
जहां | जहां ''S''<sub>l</sub>(''T'') तरल की एंट्रॉपी है और {{math|''x''}} गैस अंश है। तरल-गैस संक्रमण के दौरान स्पष्ट रूप से एन्ट्रापी परिवर्तन ({{math|''x''}} 0 से 1 तक) T→0 की सीमा में विचलन करता है। यह समीकरण का उल्लंघन करता है।({{EquationNote|8}}). प्रकृति इस विरोधाभास को इस प्रकार हल करती है: लगभग 50 एमके से कम तापमान पर वाष्प का दबाव इतना कम होता है कि गैस का घनत्व ब्रह्मांड में सबसे अच्छे निर्वात से कम होता है। दूसरे शब्दों में: 50 एमके से नीचे तरल के ऊपर कोई गैस नहीं है। | ||
===पिघलने की गुप्त ऊष्मा=== | ===पिघलने की गुप्त ऊष्मा=== | ||
<sup>3</sup>वह और <sup>4</sup>वह दोनों के पिघलने वाले वक्र सीमित दबाव पर पूर्ण शून्य तक बढ़ते हैं। पिघलने के दबाव में, तरल और ठोस संतुलन में होते हैं। तीसरा नियम मांग करता है कि ठोस और तरल की एंट्रॉपी {{math|1=''T'' = 0}} बराबर होती है . नतीजतन, पिघलने की अव्यक्त गर्मी शून्य है और क्लॉसियस-क्लैप्रोन समीकरण के परिणामस्वरूप पिघलने की अवस्था का ढलान शून्य हो जाता है। | |||
=== थर्मल विस्तार गुणांक === | === थर्मल विस्तार गुणांक === | ||
Line 164: | Line 164: | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[एडियाबेटिक प्रक्रिया]] | * [[एडियाबेटिक प्रक्रिया|स्थिरोष्म प्रक्रिया]] | ||
* जमीनी | * जमीनी अवस्था | ||
* [[ऊष्मप्रवैगिकी के नियम]] | * [[ऊष्मप्रवैगिकी के नियम]] | ||
* [[क्वांटम थर्मोडायनामिक्स]] | * [[क्वांटम थर्मोडायनामिक्स|क्वांटम ऊष्मप्रवैगिकी]] | ||
* अवशिष्ट एन्ट्रॉपी | * अवशिष्ट एन्ट्रॉपी | ||
* एंट्रॉपी ( | * एंट्रॉपी (मौलिक ऊष्मप्रवैगिकी) | ||
* ऊष्मप्रवैगिकी, सांख्यिकीय यांत्रिकी और यादृच्छिक प्रक्रियाओं की समयरेखा | * ऊष्मप्रवैगिकी, सांख्यिकीय यांत्रिकी और यादृच्छिक प्रक्रियाओं की समयरेखा | ||
* [[क्वांटम हीट इंजन और रेफ्रिजरेटर]] | * [[क्वांटम हीट इंजन और रेफ्रिजरेटर|क्वांटम ऊष्माइंजन और रेफ्रिजरेटर]] | ||
==संदर्भ== | ==संदर्भ== | ||
Line 183: | Line 183: | ||
*{{cite journal |doi=10.1103/PhysRevE.85.061126|pmid=23005070|title=Quantum refrigerators and the third law of thermodynamics|year=2012 |last1=Levy |first1=A. |last2=Alicki |first2=R. |last3=Kosloff |first3=R. |journal=Phys. Rev. E |volume=85 |issue=6|pages=061126|arxiv = 1205.1347 |bibcode = 2012PhRvE..85f1126L |s2cid=24251763}} | *{{cite journal |doi=10.1103/PhysRevE.85.061126|pmid=23005070|title=Quantum refrigerators and the third law of thermodynamics|year=2012 |last1=Levy |first1=A. |last2=Alicki |first2=R. |last3=Kosloff |first3=R. |journal=Phys. Rev. E |volume=85 |issue=6|pages=061126|arxiv = 1205.1347 |bibcode = 2012PhRvE..85f1126L |s2cid=24251763}} | ||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category: | [[Category:Chemistry sidebar templates]] | ||
[[Category:Citation Style 1 templates|M]] | |||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 09/03/2023]] | [[Category:Created On 09/03/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Mechanics templates]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Physics sidebar templates]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite magazine]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia articles needing page number citations from January 2013]] | |||
[[Category:Wikipedia fully protected templates|Cite magazine]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:ऊष्मप्रवैगिकी के नियम|3]] |
Latest revision as of 17:15, 2 November 2023
थर्मोडायनामिक्स |
---|
यह निरंतर मान बंद प्रणाली की विशेषता बताने वाले किसी भी अन्य पैरामीटर पर निर्भर नहीं हो सकता है, जैसे कि दबाव या अनुप्रयुक्त चुंबकीय क्षेत्र है। पूर्ण शून्य (शून्य केल्विन) पर प्रणाली न्यूनतम संभव ऊर्जा वाली स्थिति में होना चाहिए। एंट्रॉपी सुलभ सूक्ष्म अवस्था (सांख्यिकीय यांत्रिकी) की संख्या से संबंधित है, और सामान्यतः न्यूनतम ऊर्जा के साथ एक अद्वितीय स्थिति (जिसे जमीनी स्थिति कहा जाता है) होता है।[1] ऐसे स्थितियों में, पूर्ण शून्य पर एंट्रॉपी बिल्कुल शून्य होगी। यदि प्रणाली में एक अच्छी तरह से परिभाषित क्रम नहीं है (उदाहरण के लिए, यदि इसका क्रम अनाकार ठोस है), तो कुछ परिमित एन्ट्रापी रह सकती है क्योंकि प्रणाली को बहुत कम तापमान पर लाया जाता है, या तो क्योंकि प्रणाली विन्यास में बंद हो जाता है गैर-न्यूनतम ऊर्जा या क्योंकि न्यूनतम ऊर्जा स्थिति गैर-अद्वितीय है। स्थिर मान को प्रणाली का अवशिष्ट एन्ट्रापी कहा जाता है।[2] एंट्रॉपी अनिवार्य रूप से एक स्थिति -कार्य है जिसका अर्थ है कि विभिन्न परमाणुओं, अणुओं, और उप-परमाणु या परमाणु सामग्री सहित कणों के अन्य विन्यासों के अंतर्निहित मूल्य को एन्ट्रॉपी द्वारा परिभाषित किया जाता है, जिसे 0 K के पास खोजा जा सकता है।
ऊष्मप्रवैगिकी के तीसरे नियम का नर्नस्ट-साइमन कथन एक निश्चित, कम तापमान पर उष्मागतिक प्रक्रियाओं से संबंधित है:
उत्क्रमणीय समतापीय प्रक्रिया से गुजरने वाली किसी भी संघनित प्रणाली से जुड़ा एन्ट्रापी परिवर्तन शून्य तक पहुँच जाता है, जिस तापमान पर यह किया जाता है वह 0 K तक पहुँच जाता है।
यहाँ एक संघनित प्रणाली तरल और ठोस को संदर्भित करती है।नर्न्स्ट द्वारा एक मौलिक सूत्रीकरण (वास्तव में तीसरे कानून का एक परिणाम) है:
किसी भी प्रक्रिया के लिए यह असंभव है, भले ही किसी प्रणाली की एन्ट्रापी को सीमित संख्या में संचालन में उसके पूर्ण-शून्य मान को कम करने के लिए कितना आदर्श बनाया गया हो।
तीसरे कानून का एक सूत्रीकरण भी मौजूद है जो एक विशिष्ट ऊर्जा व्यवहार को स्थगित करके इस विषय पर पहुंचता है:
यदि दो उष्मागतिकीय प्रणालियों के सम्मिश्रण से एक पृथक प्रणाली का निर्माण होता है, तो उन दो प्रणालियों के बीच किसी भी रूप में कोई भी ऊर्जा विनिमय बंधित होता है।
इतिहास
तीसरा नियम 1906-12 के दौरान रसायनज्ञ वाल्थर नर्नस्ट द्वारा विकसित किया गया था, और इसलिए इसे अक्सर नर्न्स्ट ताप प्रमेयया नर्नस्ट की अभिधारणा के रूप में जाना जाता है ऊष्मप्रवैगिकी का तीसरा नियम बताता है कि पूर्ण शून्य पर एक प्रणाली की एन्ट्रापी एक अच्छी तरह से परिभाषित स्थिरांक है। ऐसा इसलिए है क्योंकि शून्य तापमान पर एक प्रणाली अपनी जमीनी अवस्था में वर्तमान होती है, जिससे कि इसकी एन्ट्रापी केवल जमीनी अवस्था के पतित ऊर्जा स्तर से निर्धारित होती है।
1912 में नर्न्स्ट ने नियम को इस प्रकार बताया: किसी भी प्रक्रिया के लिए समताप रेखा T = 0 को चरणों की एक सीमित संख्या तक ले जाना असंभव है ।[3]
1923 में गिल्बर्ट एन लुईस और मर्ले रान्डेल द्वारा बताए गए ऊष्मप्रवैगिकी के तीसरे नियम का एक वैकल्पिक संस्करण:
- यदि किसी (पूर्ण) क्रिस्टलीय अवस्था में प्रत्येक तत्व की एन्ट्रापी को तापमान के पूर्ण शून्य पर शून्य के रूप में लिया जाए, तो प्रत्येक पदार्थ में एक परिमित सकारात्मक एन्ट्रापी होती है; लेकिन तापमान के पूर्ण शून्य पर एन्ट्रापी शून्य हो सकती है, और ऐसा पूर्ण क्रिस्टलीय पदार्थों के स्थितियों में हो जाता है।
यह संस्करण बताता है कि न केवल 0 K पर शून्य पर पहुंच जाएगा, लेकिन स्वयं भी शून्य तक पहुंच जाएगा जब तक कि क्रिस्टल में केवल एक विन्यास के साथ जमीनी अवस्था होती है। कुछ क्रिस्टल दोष बनाते हैं जो एक अवशिष्ट एन्ट्रॉपी का कारण बनते हैं। यह अवशिष्ट एन्ट्रापी तब गायब हो जाती है जब एक जमीनी अवस्था में संक्रमण के गतिज अवरोध दूर हो जाते हैं।[4]
सांख्यिकीय यांत्रिकी के विकास के साथ, ऊष्मप्रवैगिकी का तीसरा नियम (अन्य कानूनों की तरह) एक मौलिक नियम (प्रयोगों द्वारा न्यायोचित) से एक व्युत्पन्न नियम (और भी अधिक बुनियादी नियमो से प्राप्त) में बदल गया। मूल नियम जिसमें से यह मुख्य रूप से प्राप्त होता है, एक बड़ी प्रणाली के लिए एंट्रॉपी की सांख्यिकीय-यांत्रिकी परिभाषा है:
कहाँ एंट्रॉपी है, बोल्ट्जमैन स्थिरांक है, और स्थूल विन्यास के अनुरूप सूक्ष्मअवस्था (सांख्यिकीय यांत्रिकी) की संख्या है। अवस्थाओं की गिनती निरपेक्ष शून्य की संदर्भ स्थिति से होती है, जो की एन्ट्रापी से मेल खाती है|
स्पष्टीकरण
सरल शब्दों में, तीसरे नियम में कहा गया है कि एक शुद्ध पदार्थ के एक आदर्श क्रिस्टल की एन्ट्रापी शून्य के करीब पहुंचती है क्योंकि तापमान शून्य हो जाता है। एक पूर्ण क्रिस्टल का संरेखण क्रिस्टल के प्रत्येक भाग के स्थान और अभिविन्यास के रूप में कोई अस्पष्टता नहीं छोड़ता है। जैसे ही क्रिस्टल की ऊर्जा कम हो जाती है, व्यक्तिगत परमाणुओं का कंपन शून्य हो जाता है, और क्रिस्टल हर जगह समान हो जाता है।
तीसरा नियम किसी अन्य तापमान पर एन्ट्रापी के निर्धारण के लिए एक पूर्ण संदर्भ बिंदु प्रदान करता है। इस शून्य बिंदु के सापेक्ष निर्धारित एक बंद प्रणाली की एन्ट्रापी उस प्रणाली की पूर्ण एन्ट्रापी है। गणितीय रूप से, शून्य तापमान पर किसी भी प्रणाली की पूर्ण एन्ट्रापी जमीनी अवस्थाओं की संख्या का प्राकृतिक लघुगणक है जो बोल्ट्जमैन स्थिरांक से गुणा kB = 1.38×10−23 J K−1 है|
नेर्नस्ट के प्रमेय द्वारा परिभाषित एक पूर्ण क्रिस्टल जालक की एन्ट्रॉपी शून्य है, परंतु कि इसकी जमीनी अवस्था अद्वितीय हो, क्योंकि ln(1) = 0. यदि प्रणाली एक अरब परमाणुओं से समान रूप से बना है, और एक पूर्ण क्रिस्टल के मैट्रिक्स के भीतर स्थित हैं, तो अरब एक समय में एक अरब समान चीजों के संयोजन की संख्या है Ω = 1. इस तरह:
अंतर शून्य है, इसलिए प्रारंभिक एन्ट्रापी S0 कोई भी चयनित मूल्य हो सकता है जब तक कि अन्य सभी ऐसी गणनाओं में प्रारंभिक एंट्रॉपी के रूप में सम्मिलित हो। परिणामस्वरूप, शून्य का प्रारंभिक एन्ट्रापी मान चुना जाता है S0 = 0 सुविधा के लिए प्रयोग किया जाता है।
उदाहरण: आने वाले फोटॉन द्वारा गर्म किए गए क्रिस्टल जाली का एंट्रॉपी परिवर्तन
मान लीजिए कि T = 0 K पर N समरूप परमाणुओं के आयतन एक प्रणाली जिसमें आयतन V के साथ एक क्रिस्टल जालीसे युक्त एक प्रणाली और तरंग दैर्ध्य λ और ε का एक आने वाला फोटॉन है।
प्रारंभ में, केवल एक सुलभ सूक्ष्म अवस्था है:
बंद प्रणाली की एन्ट्रापी, ऊर्जा और तापमान बढ़ जाता है और इसकी गणना की जा सकती है। एन्ट्रापी परिवर्तन है:
पूर्ण शून्य पर गैर-शून्य एंट्रॉपी वाले प्रणाली
एक प्रणाली का एक उदाहरण जिसमें एक अद्वितीय जमीनी स्थिति नहीं है, वह है जिसका शुद्ध स्पिन (भौतिकी) एक आधा पूर्णांक है, जिसके लिए समय-उलट समरूपता दो पतित जमीनी अवस्थाएँ देती है। ऐसी प्रणालियों के लिए, शून्य तापमान पर एन्ट्रापी कम से कम होती kB ln(2) है (जो स्थूल पैमाने पर नगण्य है)। कुछ क्रिस्टलीय प्रणालियाँ ज्यामितीय निराशा प्रदर्शित करती हैं, जहाँ क्रिस्टल जाली की संरचना एक अद्वितीय जमीनी स्थिति के उद्भव को रोकती है। जमीनी अवस्था हीलियम (जब तक दबाव में नहीं) तरल रहता है।
इसके अलावा, ग्लास और ठोस समाधान 0 K पर बड़ी एन्ट्रापी बनाए रखते हैं, क्योंकि वे लगभग पतित अवस्थाओं के बड़े संग्रह होते हैं, जिसमें वे संतुलन से बाहर हो जाते हैं। एक ठोस का एक और उदाहरण जिसमें कई लगभग-पतित जमीनी अवस्थाएँ संतुलन से बाहर फंसी हुई हैं, बर्फ आईएच है, जो "प्रोटॉन विकार" है।
निरपेक्ष शून्य पर एन्ट्रापी के लिए शून्य होने के लिए, एक पूरी तरह से आदेशित क्रिस्टल के चुंबकीय क्षणों को खुद को पूरी तरह से व्यवस्थित होना चाहिए; एंट्रोपिक दृष्टिकोण से, इसे एक पूर्ण क्रिस्टल की परिभाषा का हिस्सा माना जा सकता है। केवल लौह-चुंबकीय , प्रति-लौहचुंबकीय और प्रति-चुंबकीय मैटीरियल ही इस स्थिति को पूरा कर सकते हैं। चूंकि , लौह-चुंबकीय सामग्री, वास्तव में, शून्य तापमान पर शून्य एन्ट्रापी नहीं होती है, क्योंकि अयुग्मित इलेक्ट्रॉनों के स्पिन सभी संरेखित होते हैं और यह एक जमीनी अवस्था स्पिन अध: पतन देता है। सामग्री जो 0 K पर अनुचुंबकीय रहती है, इसके विपरीत, कई लगभग-पतित जमीनी अवस्थाएँ हो सकती हैं (उदाहरण के लिए, स्पिन ग्लास में), या गतिशील विकार (क्वांटम स्पिन तरल) को बनाए रख सकती हैं।
परिणाम
परम शून्य तक सीमित चरणों में पहुँचा जा सकता है यदि S(0, X1) ≠ S(0, X2). दाएं: तब से अनंत चरणों की आवश्यकता है S(0, X1) = S(0, X2).
पूर्ण शून्य
तीसरा नियम कथन के बराबर है कि
- यह किसी भी प्रक्रिया द्वारा असंभव है, चाहे वह किसी भी बंद प्रणाली के तापमान को शून्य तापमान तक परिमित संचालन की सीमित संख्या में कम करने के लिए कितना आदर्श हो।[6]
तीसरे नियम के अनुसार T = 0 तक नहीं पहुंचा जा सकता है, इसे इस प्रकार समझाया गया है: मान लीजिए कि किसी पदार्थ का तापमान को पैरामीटर X को X2 से X1 बदलकर एक आइसोट्रोपिक प्रक्रिया में कम किया जा सकता है। एक बहुस्तरीय परमाणु विमुद्रीकरण स्थापित करने के बारे में सोच सकते हैं जहां एक चुंबकीय क्षेत्र को नियंत्रित विधि से चालू और बंद किया जाता है।[7] यदि पूर्ण T = 0 पर एन्ट्रापी अंतर होता है| तो चरणों की एक सीमित संख्या में पहुँचा जा सकता है। चूंकि , T = 0 पर कोई एन्ट्रापी अंतर नहीं है इसलिए अनंत चरणों की आवश्यकता होगी। प्रक्रिया चित्र 1 में सचित्र है।
विशिष्ट ऊष्मा
अपने तीसरे नियम का एक गैर-मात्रात्मक विवरण जो नर्न्स्ट ने बिल्कुल शुरुआत में दिया था, बस यह था कि सामग्री को काफी नीचे तक ठंडा करके विशिष्ट गर्मी को हमेशा शून्य बनाया जा सकता है।[8] एक आधुनिक, मात्रात्मक विश्लेषण इस प्रकार है।
मान लिया कि कम तापमान वाले क्षेत्र में एक नमूने की ताप क्षमता एक शक्ति नियम C(T,X) = C0Tα का रूप में T → 0असम्बद्ध रूप में होती है, और हम यह जानना चाहते हैं कि α कौन से मूल्य हैं तीसरे नियम के अनुकूल हैं। अपने पास
-
(11)
तीसरे नियम (ऊपर) की चर्चा से, इस अभिन्न को T0 → 0 के रूप में परिबद्ध किया जाना चाहिए जो केवल α > 0 तभी संभव है| इसलिए ताप क्षमता पूर्ण शून्य पर शून्य होनी चाहिए
-
(12)
अगर यह एक शक्ति नियम का रूप है। इसी तर्क से पता चलता है कि भले ही हम शक्ति-नियम की धारणा को छोड़ दें। इसे एक सकारात्मक स्थिरांक से नीचे नहीं बांधा जा सकता है,
दूसरी ओर, कमरे के तापमान पर हीलियम जैसे मोनोएटोमिक मौलिक आदर्श गैस की निरंतर मात्रा में दाढ़ की विशिष्ट ऊष्मा,CV = (3/2)R द्वारा दी जाती है साथ दाढ़ आदर्श गैस स्थिरांक होता है। लेकिन स्पष्ट रूप से एक स्थिर ताप क्षमता Eq को संतुष्ट नहीं करती है। (12). अर्थात्, पूर्ण शून्य तक निरंतर ताप क्षमता वाली गैस ऊष्मप्रवैगिकी के तीसरे नियम का उल्लंघन करती है। Eq में CV को प्रतिस्थापित करके हम इसे और अधिक मौलिक रूप से सत्यापित कर सकते हैं| (14), जो उपजता है|
-
(13)
सीमा में T0 → 0 यह अभिव्यक्ति विचलन करती है, फिर से उष्मागतिकी के तीसरे नियम का खंडन करती है।
संघर्ष को निम्नानुसार सुलझाया जाता है: एक निश्चित तापमान पर पदार्थ की क्वांटम प्रकृति व्यवहार पर हावी होने लगती है। फर्मी कण फर्मी-डिराक आँकड़ों का अनुसरण करते हैं और बोस कण बोस-आइंस्टीन आँकड़ों का अनुसरण करते हैं। दोनों ही स्थितियों में आदर्श गैसों के लिए भी कम तापमान पर ताप क्षमता अब तापमान से स्वतंत्र नहीं है। फर्मी गैसों के लिए
-
(14)
फर्मी तापमान TF के साथ द्वारा दिए गए
-
(15)
यहाँ NA अवोगाद्रो नियतांक है, Vm दाढ़ की मात्रा, और M दाढ़ द्रव्यमान।
बोस गैसों के लिए
-
(16)
TB के साथ द्वारा दिए गए
-
(17)
Eq द्वारा दी गई विशिष्ट हीट्स। (14) और (16) दोनों Eq को संतुष्ट करते हैं। (12). दरअसल, वे क्रमशः α=1 और α=3/2 के साथ शक्ति नियम हैं।
यहां तक कि एक विशुद्ध रूप से मौलिक सेटिंग के भीतर, निश्चित कण संख्या पर एक मौलिक आदर्श गैस का घनत्व मनमाने ढंग से अधिक हो जाता है क्योंकि T शून्य हो जाता है, इसलिए अंतर कण अंतर शून्य हो जाती है। गैर-अंतःक्रियात्मक कणों की धारणा संभवतः तब टूट जाती है जब वे एक साथ पर्याप्त रूप से पास होते हैं, इसलिए CV का मान अपने आदर्श स्थिर मान से दूर संशोधित हो जाता है।
वाष्प दाब
पूर्ण शून्य के पास एकमात्र 3वह और 4वह तरल पदार्थ हैं। वाष्पीकरण की उनकी गर्मी का एक सीमित मूल्य है
-
(18)
L0 और Cpस्थिरांक के साथ| यदि हम आंशिक रूप से तरल और आंशिक रूप से गैस से भरे कंटेनर पर विचार करते हैं, तो तरल-गैस मिश्रण की एन्ट्रॉपी है
-
(19)
जहां Sl(T) तरल की एंट्रॉपी है और x गैस अंश है। तरल-गैस संक्रमण के दौरान स्पष्ट रूप से एन्ट्रापी परिवर्तन (x 0 से 1 तक) T→0 की सीमा में विचलन करता है। यह समीकरण का उल्लंघन करता है।(8). प्रकृति इस विरोधाभास को इस प्रकार हल करती है: लगभग 50 एमके से कम तापमान पर वाष्प का दबाव इतना कम होता है कि गैस का घनत्व ब्रह्मांड में सबसे अच्छे निर्वात से कम होता है। दूसरे शब्दों में: 50 एमके से नीचे तरल के ऊपर कोई गैस नहीं है।
पिघलने की गुप्त ऊष्मा
3वह और 4वह दोनों के पिघलने वाले वक्र सीमित दबाव पर पूर्ण शून्य तक बढ़ते हैं। पिघलने के दबाव में, तरल और ठोस संतुलन में होते हैं। तीसरा नियम मांग करता है कि ठोस और तरल की एंट्रॉपी T = 0 बराबर होती है . नतीजतन, पिघलने की अव्यक्त गर्मी शून्य है और क्लॉसियस-क्लैप्रोन समीकरण के परिणामस्वरूप पिघलने की अवस्था का ढलान शून्य हो जाता है।
थर्मल विस्तार गुणांक
थर्मल विस्तार गुणांक के रूप में परिभाषित किया गया है
-
(20)
मैक्सवेल संबंध के साथ
-
(21)
और समीकरण। (8) साथ X = p यह दिखाया गया है
-
(22)
तो सभी सामग्रियों का थर्मल विस्तार गुणांक शून्य केल्विन पर शून्य होना चाहिए।
यह भी देखें
- स्थिरोष्म प्रक्रिया
- जमीनी अवस्था
- ऊष्मप्रवैगिकी के नियम
- क्वांटम ऊष्मप्रवैगिकी
- अवशिष्ट एन्ट्रॉपी
- एंट्रॉपी (मौलिक ऊष्मप्रवैगिकी)
- ऊष्मप्रवैगिकी, सांख्यिकीय यांत्रिकी और यादृच्छिक प्रक्रियाओं की समयरेखा
- क्वांटम ऊष्माइंजन और रेफ्रिजरेटर
संदर्भ
- ↑ J. Wilks The Third Law of Thermodynamics Oxford University Press (1961).[page needed]
- ↑ Kittel and Kroemer, Thermal Physics (2nd ed.), page 49.
- ↑ Bailyn, M. (1994). A Survey of Thermodynamics, American Institute of Physics, New York, ISBN 0-88318-797-3, page 342.
- ↑ Kozliak, Evguenii; Lambert, Frank L. (2008). "अवशिष्ट एन्ट्रापी, तीसरा नियम और गुप्त ऊष्मा". Entropy. 10 (3): 274–84. Bibcode:2008Entrp..10..274K. doi:10.3390/e10030274.
- ↑ Reynolds and Perkins (1977). इंजीनियरिंग ऊष्मप्रवैगिकी. McGraw Hill. pp. 438. ISBN 978-0-07-052046-2.
- ↑ Guggenheim, E.A. (1967). Thermodynamics. An Advanced Treatment for Chemists and Physicists, fifth revised edition, North-Holland Publishing Company, Amsterdam, page 157.
- ↑ F. Pobell, Matter and Methods at Low Temperatures, (Springer-Verlag, Berlin, 2007)[page needed]
- ↑ Einstein and the Quantum, A. Douglas Stone, Princeton University Press, 2013.
अग्रिम पठन
- Goldstein, Martin & Inge F. (1993) The Refrigerator and the Universe. Cambridge MA: Harvard University Press. ISBN 0-674-75324-0. Chpt. 14 is a nontechnical discussion of the Third Law, one including the requisite elementary quantum mechanics.
- Braun, S.; Ronzheimer, J. P.; Schreiber, M.; Hodgman, S. S.; Rom, T.; Bloch, I.; Schneider, U. (2013). "Negative Absolute Temperature for Motional Degrees of Freedom". Science. 339 (6115): 52–5. arXiv:1211.0545. Bibcode:2013Sci...339...52B. doi:10.1126/science.1227831. PMID 23288533. S2CID 8207974.
- Jacob Aron (3 January 2013). "Cloud of atoms goes beyond absolute zero". New Scientist.
- Levy, A.; Alicki, R.; Kosloff, R. (2012). "Quantum refrigerators and the third law of thermodynamics". Phys. Rev. E. 85 (6): 061126. arXiv:1205.1347. Bibcode:2012PhRvE..85f1126L. doi:10.1103/PhysRevE.85.061126. PMID 23005070. S2CID 24251763.