आधा-पूर्णांक: Difference between revisions
(Created page with "{{Short description|Rational number equal to an integer plus 1/2}} {{use dmy dates|date=February 2021}} गणित में, आधा पूर्णांक संख...") |
No edit summary |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Rational number equal to an integer plus 1/2}} | {{Short description|Rational number equal to an integer plus 1/2}} | ||
गणित में, '''आधा पूर्णांक''' [[संख्या]] का एक रूप है : | |||
गणित में, आधा पूर्णांक [[संख्या]] का एक रूप है | <math display=block>n + \tfrac{1}{2},</math> | ||
जहाँ <math>n</math> एक पूर्ण संख्या है। उदाहरण के लिए, | |||
<math display=block>4\tfrac12,\quad 7/2,\quad -\tfrac{13}{2},\quad 8.5</math> | |||
सभी अर्ध-पूर्णांक हैं। "आधा-पूर्णांक" नाम संभवतः भ्रामक है, क्योंकि समूह को 1 जैसी संख्याओं को सम्मलित करने के लिए गलत समझा जा सकता है (आधा पूर्णांक 2 होना)। "पूर्णांक-प्लस-आधा" जैसा नाम अधिक त्रुटिहीन हो सकता है, किन्तु होने पर भी शाब्दिक रूप से सत्य नहीं होने के ,अतिरिक्त "आधा पूर्णांक" पारंपरिक शब्द है। आधा-पूर्णांक गणित और क्वांटम यांत्रिकी में अधिकांशतः पर्याप्त होते हैं कि एक अलग शब्द सुविधाजनक होता है। | |||
सभी अर्ध-पूर्णांक हैं। आधा-पूर्णांक नाम | |||
ध्यान दें कि एक पूर्णांक को आधा करने से हमेशा | ध्यान दें कि एक पूर्णांक को आधा करने से हमेशा आधा पूर्णांक नहीं बनता है; यह एकमात्र [[विषम पूर्णांक|विषम पूर्णांकों]] के लिए सत्य है। इस कारण से, आधे-पूर्णांकों को कभी-कभी आधा-विषम-पूर्णांक भी कहा जाता है। अर्ध-पूर्णांक द्विअर्थी परिमेय संख्याओं का एक उपसमुच्चय हैं (एक पूर्णांक को दो की घात से विभाजित करने पर प्राप्त होने वाली संख्याएँ)।<ref>{{cite book |first=Malcolm |last=Sabin |year=2010 |title=Analysis and Design of Univariate Subdivision Schemes |volume=6 |series=Geometry and Computing |publisher=Springer |isbn=9783642136481 |page=51 |url=https://books.google.com/books?id=18UC7d7h0LQC&pg=PA51}}</ref> | ||
== अंकन और बीजगणितीय संरचना == | == अंकन और बीजगणितीय संरचना == | ||
सभी अर्ध-पूर्णांकों के समुच्चय (गणित) को | सभी अर्ध-पूर्णांकों के समुच्चय (गणित) को अधिकांशतः निरूपित किया जाता है | ||
<math display=block>\mathbb Z + \tfrac{1}{2} \quad = \quad \left( \tfrac{1}{2} \mathbb Z \right) \smallsetminus \mathbb Z ~.</math> | |||
पूर्णांक और अर्ध-पूर्णांक मिलकर योग संक्रिया के अंतर्गत एक [[समूह (गणित)]] बनाते हैं, जिसे निरूपित किया जा सकता है<ref>{{cite book |first=Vladimir G. |last=Turaev |year=2010 |title=Quantum Invariants of Knots and 3-Manifolds |edition=2nd |series=De Gruyter Studies in Mathematics |volume=18 |publisher=Walter de Gruyter |isbn=9783110221848 |page=390}}</ref> | |||
<math display=block>\tfrac{1}{2} \mathbb Z ~.</math> | <math display=block>\tfrac{1}{2} \mathbb Z ~.</math> | ||
यद्यपि, ये संख्याएँ एक वलय (गणित) नहीं बनाती हैं क्योंकि दो अर्ध-पूर्णांकों का गुणनफल अधिकांशतः आधा-पूर्णांक नहीं होता है; उदाहरण के लिए. <math>~\tfrac{1}{2} \times \tfrac{1}{2} ~=~ \tfrac{1}{4} ~ \notin ~ \tfrac{1}{2} \mathbb Z ~.</math><ref>{{cite book |first1=George |last1=Boolos |first2=John P. |last2=Burgess |first3=Richard C. |last3=Jeffrey |year=2002 |title=Computability and Logic |page=105 |publisher=Cambridge University Press |isbn=9780521007580 |url=https://books.google.com/books?id=0LpsXQV2kXAC&pg=PA105}}</ref> | |||
== गुण == | == गुण == | ||
* | *n आधे-पूर्णांकों का योग एक आधा-पूर्णांक है यदि और केवल यदि n विषम है। इसमें n=0 भी सम्मलित है क्योंकि खाली योग 0 आधा-पूर्णांक नहीं होता। | ||
*आधे पूर्णांक का ऋणात्मक आधा पूर्णांक होता है। | *आधे पूर्णांक का ऋणात्मक आधा पूर्णांक होता है। | ||
*आधे पूर्णांकों के | *आधे पूर्णांकों के समूह की [[प्रमुखता]] पूर्णांकों के समान होती है। यह पूर्णांकों से अर्ध-पूर्णांकों तक एक आक्षेप के अस्तित्व के कारण है: <math>f:x\to x+0.5</math>, कहाँ <math>x</math> एक पूर्णांक है | ||
== उपयोग करता है == | == उपयोग करता है == | ||
=== क्षेत्र पैकिंग === | === क्षेत्र पैकिंग === | ||
चार आयामों में [[इकाई क्षेत्र]] | चार आयामों में [[इकाई क्षेत्र|इकाई क्षेत्रों]] की सबसे घनी [[जाली पैकिंग]] (जिसे डी4 जाली कहते हैं) प्रत्येक बिंदु पर एक गोला रखता है जिसके निर्देशांक या तो सभी पूर्णांक हैं या सभी अर्ध-पूर्णांक हैं। यह पैकिंग [[हर्विट्ज़ पूर्णांक|हर्विट्ज़ पूर्णांकों]] से निकटता से संबंधित है: चतुष्कोण जिनके वास्तविक गुणांक या तो सभी पूर्णांक हैं या सभी आधे-पूर्णांक हैं।<ref>{{cite journal |first=John C. |last=Baez |authorlink=John C. Baez |year=2005 |title=Review ''On Quaternions and Octonions: Their geometry, arithmetic, and symmetry'' by John H. Conway and Derek A. Smith |type=book review |journal=Bulletin of the American Mathematical Society |volume=42 |pages=229–243 |url=http://math.ucr.edu/home/baez/octonions/conway_smith/ |doi=10.1090/S0273-0979-05-01043-8 |doi-access=free}}</ref> | ||
Line 35: | Line 34: | ||
=== क्षेत्र की मात्रा === | === क्षेत्र की मात्रा === | ||
यद्यपि [[कारख़ाने का]] फ़ंक्शन | यद्यपि [[कारख़ाने का|फैक्टोरियल]] फ़ंक्शन एकमात्र पूर्णांक तर्कों के लिए परिभाषित होता है, यद्यपि [[गामा समारोह|गामा फंक्शन]] का उपयोग करके आंशिक तर्कों के लिए विस्तारित किया जा सकता है। आधे-पूर्णांकों के लिए गामा फलन एक महत्वपूर्ण तत्व है जो त्रिज्या के एक n-आयामी गेंद के आयतन के सूत्र का एक महत्वपूर्ण अंग है। <math>R</math>,<ref>{{cite web |title=Equation 5.19.4 |website=NIST Digital Library of Mathematical Functions |url=http://dlmf.nist.gov/ |publisher=U.S. [[National Institute of Standards and Technology]] |id=Release 1.0.6 |date=2013-05-06}}</ref> | ||
<math display=block>V_n(R) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2} + 1)}R^n~.</math> | <math display=block>V_n(R) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2} + 1)}R^n~.</math> | ||
अर्ध-पूर्णांक पर गामा फ़ंक्शन के मान पाई | अर्ध-पूर्णांक पर गामा फ़ंक्शन के मान पाई की वर्गमूल के पूर्णांक गुणक होते हैं: | ||
<math display=block>\Gamma\left(\tfrac{1}{2} + n\right) ~=~ \frac{\,(2n-1)!!\,}{2^n}\, \sqrt{\pi\,} ~=~ \frac{(2n)!}{\,4^n \, n!\,} \sqrt{\pi\,} ~</math> | <math display=block>\Gamma\left(\tfrac{1}{2} + n\right) ~=~ \frac{\,(2n-1)!!\,}{2^n}\, \sqrt{\pi\,} ~=~ \frac{(2n)!}{\,4^n \, n!\,} \sqrt{\pi\,} ~</math> | ||
यहां <math>n!!</math> [[डबल फैक्टोरियल|दोहरा फैक्टोरियल]] को दर्शाता है। | |||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
[[Category:All articles with unsourced statements]] | |||
[[Category: | [[Category:Articles with unsourced statements from February 2020]] | ||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 13/02/2023]] | [[Category:Created On 13/02/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:प्राथमिक संख्या सिद्धांत]] | |||
[[Category:भिन्नात्मक संख्याएं]] | |||
[[Category:समता (गणित)]] |
Latest revision as of 15:45, 20 October 2023
गणित में, आधा पूर्णांक संख्या का एक रूप है :
ध्यान दें कि एक पूर्णांक को आधा करने से हमेशा आधा पूर्णांक नहीं बनता है; यह एकमात्र विषम पूर्णांकों के लिए सत्य है। इस कारण से, आधे-पूर्णांकों को कभी-कभी आधा-विषम-पूर्णांक भी कहा जाता है। अर्ध-पूर्णांक द्विअर्थी परिमेय संख्याओं का एक उपसमुच्चय हैं (एक पूर्णांक को दो की घात से विभाजित करने पर प्राप्त होने वाली संख्याएँ)।[1]
अंकन और बीजगणितीय संरचना
सभी अर्ध-पूर्णांकों के समुच्चय (गणित) को अधिकांशतः निरूपित किया जाता है
गुण
- n आधे-पूर्णांकों का योग एक आधा-पूर्णांक है यदि और केवल यदि n विषम है। इसमें n=0 भी सम्मलित है क्योंकि खाली योग 0 आधा-पूर्णांक नहीं होता।
- आधे पूर्णांक का ऋणात्मक आधा पूर्णांक होता है।
- आधे पूर्णांकों के समूह की प्रमुखता पूर्णांकों के समान होती है। यह पूर्णांकों से अर्ध-पूर्णांकों तक एक आक्षेप के अस्तित्व के कारण है: , कहाँ एक पूर्णांक है
उपयोग करता है
क्षेत्र पैकिंग
चार आयामों में इकाई क्षेत्रों की सबसे घनी जाली पैकिंग (जिसे डी4 जाली कहते हैं) प्रत्येक बिंदु पर एक गोला रखता है जिसके निर्देशांक या तो सभी पूर्णांक हैं या सभी अर्ध-पूर्णांक हैं। यह पैकिंग हर्विट्ज़ पूर्णांकों से निकटता से संबंधित है: चतुष्कोण जिनके वास्तविक गुणांक या तो सभी पूर्णांक हैं या सभी आधे-पूर्णांक हैं।[4]
भौतिकी
भौतिकी में, पाउली बहिष्करण सिद्धांत का परिणाम उन कणों के रूप में फर्मियन की परिभाषा से होता है, जिनमें स्पिन (भौतिकी) होते हैं जो आधे-पूर्णांक होते हैं।[5] क्वांटम हार्मोनिक ऑसिलेटर का ऊर्जा स्तर आधा-पूर्णांक पर होता है और इस प्रकार इसकी न्यूनतम ऊर्जा शून्य नहीं होती है।[6]
क्षेत्र की मात्रा
यद्यपि फैक्टोरियल फ़ंक्शन एकमात्र पूर्णांक तर्कों के लिए परिभाषित होता है, यद्यपि गामा फंक्शन का उपयोग करके आंशिक तर्कों के लिए विस्तारित किया जा सकता है। आधे-पूर्णांकों के लिए गामा फलन एक महत्वपूर्ण तत्व है जो त्रिज्या के एक n-आयामी गेंद के आयतन के सूत्र का एक महत्वपूर्ण अंग है। ,[7]
संदर्भ
- ↑ Sabin, Malcolm (2010). Analysis and Design of Univariate Subdivision Schemes. Geometry and Computing. Vol. 6. Springer. p. 51. ISBN 9783642136481.
- ↑ Turaev, Vladimir G. (2010). Quantum Invariants of Knots and 3-Manifolds. De Gruyter Studies in Mathematics. Vol. 18 (2nd ed.). Walter de Gruyter. p. 390. ISBN 9783110221848.
- ↑ Boolos, George; Burgess, John P.; Jeffrey, Richard C. (2002). Computability and Logic. Cambridge University Press. p. 105. ISBN 9780521007580.
- ↑ Baez, John C. (2005). "Review On Quaternions and Octonions: Their geometry, arithmetic, and symmetry by John H. Conway and Derek A. Smith". Bulletin of the American Mathematical Society (book review). 42: 229–243. doi:10.1090/S0273-0979-05-01043-8.
- ↑ Mészáros, Péter (2010). The High Energy Universe: Ultra-high energy events in astrophysics and cosmology. Cambridge University Press. p. 13. ISBN 9781139490726.
- ↑ Fox, Mark (2006). Quantum Optics: An introduction. Oxford Master Series in Physics. Vol. 6. Oxford University Press. p. 131. ISBN 9780191524257.
- ↑ "Equation 5.19.4". NIST Digital Library of Mathematical Functions. U.S. National Institute of Standards and Technology. 2013-05-06. Release 1.0.6.