अनुप्रस्थतः समदैशिक: Difference between revisions
No edit summary |
m (Sugatha moved page अनुप्रस्थ आइसोट्रॉपी to अनुप्रस्थतः समदैशिक) |
||
(6 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
[[File:USA 10052 Grand Canyon Luca Galuzzi 2007.jpg|thumb|350px|right|लंबी तरंग दैर्ध्य पर | [[File:USA 10052 Grand Canyon Luca Galuzzi 2007.jpg|thumb|350px|right|लंबी तरंग दैर्ध्य पर चट्टानों में अनुप्रस्थ समदैशिकता देखी जाती है। प्रत्येक परत में लगभग समान गुण होते हैं, लेकिन अलग-अलग गुण मोटाई के माध्यम से होते हैं। प्रत्येक परत का तल समदैशिकता का तल है और ऊर्ध्वाधर अक्ष सममिति का अक्ष है।]]'''अनुप्रस्थतः समदैशिक''' '''भौतिकी,''' भौतिक गुणों वाली एक अक्ष के विषय में [[समरूपता|सममित]] है जो [[आइसोट्रॉपी|समदैशिकता]] तल के लिए सामान्य होती है। इस अनुप्रस्थ तल में समरूपता के अनंत तल हैं इस प्रकार, इस तल के भीतर, भौतिक गुण सभी दिशाओं में समान होते हैं। इसलिए, ऐसी भौतिकी को "ध्रुवीय विषमदैशिक" भौतिकी के रूप में भी जाना जाता है। भूभौतिकी में, लंबवत अनुप्रस्थ समदैशिकता (वीटीआई) को त्रिज्यीय [[एनिसोट्रॉपिक|विषमदैशिकता]] के रूप में भी जाना जाता है। | ||
इस प्रकार की भौतिकी [[हेक्सागोनल समरूपता|षट्कोणीय समरूपता]] प्रदर्शित करती है (हालांकि तकनीकी रूप से यह 6 और | इस प्रकार की भौतिकी [[हेक्सागोनल समरूपता|षट्कोणीय समरूपता]] प्रदर्शित करती है (हालांकि तकनीकी रूप से यह 6 और उच्च प्रकार के टेंसरों (प्रदिश) के लिए सही नहीं है इसलिए (4 स्थिति) [[लोच टेंसर|प्रत्यास्थाता टेंसर]] में स्वतंत्र स्थिरांक की संख्या 5 तक कम हो जाती है सभी प्रकार से विषमदैशिक [[ठोस]] की स्थिति में स्थिरांक विद्युत प्रतिरोधकता, पारगम्यता आदि के टेंसरों में दो स्वतंत्र स्थिरांक होते हैं। | ||
== अनुप्रस्थतः समदैशिक भौतिकी का उदाहरण == | == अनुप्रस्थतः समदैशिक भौतिकी का उदाहरण == | ||
[[File:Transverse Isotropy.svg|right|thumb|350px|एक अनुप्रस्थतः समदैशिक | [[File:Transverse Isotropy.svg|right|thumb|350px|एक अनुप्रस्थतः समदैशिक प्रत्यास्थाता भौतिकी।]]अनुप्रस्थतः समदैशिक भौतिकी का एक उदाहरण तथाकथित अक्ष पर एकदिशीय सम्मिश्र लैमिना है जहां सम्मिश्र अनुप्रस्थ काट में वृत्ताकार होते हैं। एक एकदिशीय सम्मिश्र में, एकदिशीय सम्मिश्र के सामान्य तल को उत्तेजना के लंबे तरंग दैर्ध्य (कम आवृत्तियों) पर समदैशिक तल के रूप में माना जा सकता है। दाईं ओर की आकृति में, तंतुओं को <math>x_2</math> अक्ष के साथ संरेखित किया जाएगा, जो समदैशिकता के तल के लिए सामान्य है। | ||
प्रभावी गुणों के संदर्भ में, चट्टानों की भूवैज्ञानिक परतों को प्रायः अनुप्रस्थतः समदैशिक के रूप में व्याख्यायित किया जाता है। | प्रभावी गुणों के संदर्भ में, चट्टानों की भूवैज्ञानिक परतों को प्रायः अनुप्रस्थतः समदैशिक के रूप में व्याख्यायित किया जाता है। शैलविज्ञान में ऐसी परतों के प्रभावी प्रत्यास्थाता गुणों की गणना के लिए "बैकस प्रक्रम" को निर्मित किया गया है जिसका वर्णन नीचे किया गया है। | ||
== भौतिकी | == भौतिकी सममित आव्यूह == | ||
भौतिकी आव्यूह <math>\underline{\underline{\boldsymbol{K}}}</math> किसी दिए गए [[ऑर्थोगोनल परिवर्तन|लंबकोणीय रूपांतरण]] के संबंध में | भौतिकी आव्यूह <math>\underline{\underline{\boldsymbol{K}}}</math> किसी दिए गए [[ऑर्थोगोनल परिवर्तन|लंबकोणीय रूपांतरण]] के संबंध में <math>\boldsymbol{A}</math> सममित है यदि यह उस परिवर्तन के अधीन होने पर नहीं परिवर्तित होता है। इस प्रकार के परिवर्तन के अंतर्गत भौतिक गुणों के प्रतिलोम के लिए हमें आवश्यकता होती है: | ||
इस | |||
:<math> | :<math> | ||
\boldsymbol{A}\cdot\mathbf{f} = \boldsymbol{K}\cdot(\boldsymbol{A}\cdot\boldsymbol{d}) \implies \mathbf{f} = (\boldsymbol{A}^{-1}\cdot\boldsymbol{K}\cdot\boldsymbol{A})\cdot\boldsymbol{d} | \boldsymbol{A}\cdot\mathbf{f} = \boldsymbol{K}\cdot(\boldsymbol{A}\cdot\boldsymbol{d}) \implies \mathbf{f} = (\boldsymbol{A}^{-1}\cdot\boldsymbol{K}\cdot\boldsymbol{A})\cdot\boldsymbol{d} | ||
</math> | </math> | ||
इसलिए भौतिकी समरूपता | इसलिए भौतिकी समरूपता (लंबकोणीय रूपांतरण की परिभाषा का उपयोग करके) की स्थिति है: | ||
:<math> | :<math> | ||
\boldsymbol{K} = \boldsymbol{A}^{-1}\cdot\boldsymbol{K}\cdot\boldsymbol{A} = \boldsymbol{A}^{T}\cdot\boldsymbol{K}\cdot\boldsymbol{A} | \boldsymbol{K} = \boldsymbol{A}^{-1}\cdot\boldsymbol{K}\cdot\boldsymbol{A} = \boldsymbol{A}^{T}\cdot\boldsymbol{K}\cdot\boldsymbol{A} | ||
</math> | </math> | ||
लंबकोणीय रूपांतरणों को कार्तीय निर्देशांक में | लंबकोणीय रूपांतरणों को कार्तीय निर्देशांक में <math>\boldsymbol{A}</math> द्वारा प्रदर्शित किया जा सकता है: दिया गया <math>3\times 3</math> आव्यूह <math>\underline{\underline{\boldsymbol{A}}}</math> है: | ||
:<math> | :<math> | ||
\underline{\underline{\boldsymbol{A}}} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ | \underline{\underline{\boldsymbol{A}}} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ | ||
A_{31} & A_{32} & A_{33} \end{bmatrix}~. | A_{31} & A_{32} & A_{33} \end{bmatrix}~. | ||
</math> | </math> | ||
इसलिए, समरूपता की स्थिति को आव्यूह रूप में लिखा जा सकता है | इसलिए, समरूपता की स्थिति को आव्यूह रूप में लिखा जा सकता है: | ||
:<math> | :<math> | ||
\underline{\underline{\boldsymbol{K}}} = \underline{\underline{\boldsymbol{A}^T}}~\underline{\underline{\boldsymbol{K}}}~\underline{\underline{\boldsymbol{A}}} | \underline{\underline{\boldsymbol{K}}} = \underline{\underline{\boldsymbol{A}^T}}~\underline{\underline{\boldsymbol{K}}}~\underline{\underline{\boldsymbol{A}}} | ||
</math> | </math> | ||
अनुप्रस्थतः | अनुप्रस्थतः समदैशिक भौतिकी के लिए, आव्यूह रूप <math>\underline{\underline{\boldsymbol{A}}}</math> है: | ||
:<math> | :<math> | ||
\underline{\underline{\boldsymbol{A}}} = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ | \underline{\underline{\boldsymbol{A}}} = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ | ||
0 & 0 & 1 \end{bmatrix}~. | 0 & 0 & 1 \end{bmatrix}~. | ||
</math> | </math> | ||
जहां <math>x_3</math>-अक्ष सममिति का अक्ष है। भौतिक आव्यूह | जहां <math>x_3</math>-अक्ष सममिति का अक्ष है। भौतिक आव्यूह <math>x_3</math> अक्ष के किसी भी कोण <math>\theta</math> से घूर्णन के अंतर्गत अपरिवर्तनीय रहता है। | ||
== भौतिकी में == | == भौतिकी में == | ||
भौतिकी में रेखीय भौतिकी के [[संवैधानिक संबंध]] | भौतिकी में रेखीय भौतिकी के [[संवैधानिक संबंध|संवैधानिक संबंधों]] को निम्न के रूप में व्यक्त किया जा सकता है: | ||
:<math> | :<math> | ||
\mathbf{f} = \boldsymbol{K}\cdot\mathbf{d} | \mathbf{f} = \boldsymbol{K}\cdot\mathbf{d} | ||
</math> | </math> | ||
जहाँ <math>\mathbf{d},\mathbf{f}</math> भौतिक | जहाँ <math>\mathbf{d},\mathbf{f}</math> भौतिक राशि का प्रतिनिधित्व करने वाले दो सदिश हैं और <math>\boldsymbol{K}</math> एक दूसरे क्रम की भौतिकी टेन्सर है। आव्यूह रूप में, | ||
:<math> | :<math> | ||
\underline{\underline{\mathbf{f}}} = \underline{\underline{\boldsymbol{K}}}~\underline{\underline{\mathbf{d}}} | \underline{\underline{\mathbf{f}}} = \underline{\underline{\boldsymbol{K}}}~\underline{\underline{\mathbf{d}}} | ||
Line 45: | Line 43: | ||
K_{31} & K_{32} & K_{33} \end{bmatrix} \begin{bmatrix} d_1\\d_2\\d_3 \end{bmatrix} | K_{31} & K_{32} & K_{33} \end{bmatrix} \begin{bmatrix} d_1\\d_2\\d_3 \end{bmatrix} | ||
</math> | </math> | ||
उपरोक्त | उपरोक्त आकृति में प्रयुक्त होने वाली भौतिक समस्याओं के उदाहरण नीचे दी गई तालिका में सूचीबद्ध हैं।<ref name=Milton>{{cite book |last=Milton|first=G. W.|title=कंपोजिट का सिद्धांत|year=2002|publisher=Cambridge University Press}}</ref> | ||
{| class="wikitable sortable" style="margin:auto;" | {| class="wikitable sortable" style="margin:auto;" | ||
|- | |- | ||
Line 60: | Line 58: | ||
| [[Diffusion|प्रसार]] || [[flux|कण प्रवाह]] <br /><math>\mathbf{J}</math>|| [[Concentration gradient|कम और अधिक घनत्व के बीच में एक घुले हुए पदार्थ का जमाव]]<br /><math>-\boldsymbol{\nabla}c</math> || [[Mass diffusivity|प्रसार]]<br /> <math>\boldsymbol{D}</math> | | [[Diffusion|प्रसार]] || [[flux|कण प्रवाह]] <br /><math>\mathbf{J}</math>|| [[Concentration gradient|कम और अधिक घनत्व के बीच में एक घुले हुए पदार्थ का जमाव]]<br /><math>-\boldsymbol{\nabla}c</math> || [[Mass diffusivity|प्रसार]]<br /> <math>\boldsymbol{D}</math> | ||
|- | |- | ||
| [[porous media| | | [[porous media|माध्यम में प्रवाह]]|| [[velocity|भारित द्रव वेग]] <br /><math>\eta_\mu\mathbf{v}</math>|| [[Pressure gradient|दाब का एक माप]] <br /><math>\boldsymbol{\nabla}P</math>|| [[Fluid permeability|द्रव पारगम्यता]] <br /><math>\boldsymbol{\kappa}</math> | ||
|- | |- | ||
| [[Linear elasticity| | | [[Linear elasticity|प्रत्यास्था]]|| [[Stress (mechanics)|तनाव]] <br /><math>\boldsymbol\sigma</math>|| [[Deformation (mechanics)|तनाव]] <br /><math>\boldsymbol\varepsilon</math>|| [[Stiffness tensor|दुर्नम्यता]] <br /><math>\mathbf{C}</math> | ||
|} | |} | ||
का उपयोग करते हुए <math>\theta=\pi</math> में <math>\underline{\underline{\boldsymbol{A}}}</math> आव्यूह का तात्पर्य | इस तालिका का उपयोग करते हुए <math>\theta=\pi</math> में <math>\underline{\underline{\boldsymbol{A}}}</math> आव्यूह का तात्पर्य <math>K_{13} = K_{31} = K_{23} = K_{32} = 0</math> है जिसका का उपयोग करते हुए <math>\theta=\tfrac{\pi}{2}</math> की ओर जाता है तथा <math>K_{11} = K_{22}</math>, <math>K_{12} = -K_{21}</math> और <math>K_{12}, K_{21} \ge 0</math> और ऊर्जा प्रतिबंधों की सामान्यतः आवश्यकता होती है इसलिए हमारे पास <math>K_{12} = K_{21} = 0</math> होना चाहिए और अनुप्रस्थतः समदैशिक भौतिकी के भौतिक गुणों को आव्यूह द्वारा वर्णित किया गया है: | ||
:<math> | :<math> | ||
\underline{\underline{\boldsymbol{K}}} = \begin{bmatrix} K_{11} & 0 & 0 \\ 0 & K_{11} & 0 \\ | \underline{\underline{\boldsymbol{K}}} = \begin{bmatrix} K_{11} & 0 & 0 \\ 0 & K_{11} & 0 \\ | ||
0 & 0 & K_{33} \end{bmatrix} | 0 & 0 & K_{33} \end{bmatrix} | ||
</math> | </math> | ||
== रैखिक प्रत्यास्थाता में == | == रैखिक प्रत्यास्थाता में == | ||
Line 78: | Line 75: | ||
\underline{\underline{\boldsymbol{\sigma}}} = \underline{\underline{\mathsf{C}}}~\underline{\underline{\boldsymbol{\varepsilon}}} | \underline{\underline{\boldsymbol{\sigma}}} = \underline{\underline{\mathsf{C}}}~\underline{\underline{\boldsymbol{\varepsilon}}} | ||
</math> | </math> | ||
या, [[ वायगट नोटेशन |वायगट | या, [[ वायगट नोटेशन |वायगट संकेत]] का उपयोग करके, | ||
:<math> | :<math> | ||
\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix} = | \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix} = | ||
Line 90: | Line 87: | ||
\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \end{bmatrix} | \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \end{bmatrix} | ||
</math> | </math> | ||
रैखिक | रैखिक प्रत्यास्थाता भौतिकी में भौतिक समरूपता की स्थिति है।<ref name=Slawinski>{{cite book|last=Slawinski|first=M. A.|title=लोचदार निरंतरता में लहरें और किरणें|year=2010|publisher=World Scientific|url=http://samizdat.mines.edu/wavesandrays/WavesAndRays.pdf|archive-url=https://web.archive.org/web/20090210192845/http://samizdat.mines.edu/wavesandrays/WavesAndRays.pdf|url-status=dead|archive-date=2009-02-10}}</ref> | ||
:<math> | :<math> | ||
\underline{\underline{\mathsf{C}}} = \underline{\underline{\mathsf{A}_\varepsilon}}^T~\underline{\underline{\mathsf{C}}}~\underline{\underline{\mathsf{A}_\varepsilon}} | \underline{\underline{\mathsf{C}}} = \underline{\underline{\mathsf{A}_\varepsilon}}^T~\underline{\underline{\mathsf{C}}}~\underline{\underline{\mathsf{A}_\varepsilon}} | ||
Line 104: | Line 101: | ||
2A_{11}A_{21} & 2A_{12}A_{22} & 2A_{13}A_{23} & A_{12}A_{23}+A_{13}A_{22} & A_{11}A_{23}+A_{13}A_{21} & A_{11}A_{22}+A_{12}A_{21} \end{bmatrix} | 2A_{11}A_{21} & 2A_{12}A_{22} & 2A_{13}A_{23} & A_{12}A_{23}+A_{13}A_{22} & A_{11}A_{23}+A_{13}A_{21} & A_{11}A_{22}+A_{12}A_{21} \end{bmatrix} | ||
</math> | </math> | ||
=== प्रत्यास्थाता टेंसर === | |||
{{further| तन्यता प्रदिश}} | |||
आव्यूह <math>\underline{\underline{\boldsymbol{A}}}</math> में <math>\theta</math> के विशिष्ट मानों का उपयोग करके यह दिखाया जा सकता है<ref name="note1">We can use the values <math>\theta=\pi</math> and <math>\theta=\tfrac{\pi}{2}</math> for a derivation of the stiffness matrix for transversely isotropic materials. Specific values are chosen to make the calculation easier.</ref> कि चौथी स्थिति प्रत्यास्थाता कठोरता टेंसर को 2-सारणी [[ वायगट नोटेशन |वायगट संकेत]] में आव्यूह के रूप में लिखा जा सकता है: | |||
:<math> \underline{\underline{\mathsf{C}}} = | :<math> \underline{\underline{\mathsf{C}}} = | ||
\begin{bmatrix} | \begin{bmatrix} | ||
Line 126: | Line 123: | ||
\end{bmatrix}. | \end{bmatrix}. | ||
</math> | </math> | ||
प्रत्यास्थाता कठोरता आव्यूह <math>C_{ij}</math> 5 स्वतंत्र स्थिरांक हैं, जो निम्नलिखित तरीके से प्रसिद्ध | प्रत्यास्थाता कठोरता आव्यूह <math>C_{ij}</math> 5 स्वतंत्र स्थिरांक हैं, जो निम्नलिखित तरीके से प्रसिद्ध तकनीकी [[लोचदार मापांक|प्रत्यास्थाता मापांक]] से संबंधित हैं। ये तकनीकी मॉड्यूल प्रयोगात्मक रूप से निर्धारित किए गए हैं। अनुफलन आव्यूह प्रत्यास्थाता समिश्र आव्यूह का व्युत्क्रम है: | ||
:<math> | :<math> | ||
\underline{\underline{\mathsf{C}}}^{-1} = \frac{1}{\Delta} | \underline{\underline{\mathsf{C}}}^{-1} = \frac{1}{\Delta} | ||
Line 140: | Line 135: | ||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> | ||
जहाँ <math>\Delta := (C_{11} - C_{12}) [(C_{11} + C_{12}) C_{33} -2 C_{13}C_{13}]</math> | जहाँ <math>\Delta := (C_{11} - C_{12}) [(C_{11} + C_{12}) C_{33} -2 C_{13}C_{13}]</math> तकनीकी संकेत में, | ||
:<math> | :<math> | ||
\underline{\underline{\mathsf{C}}}^{-1} = \begin{bmatrix} | \underline{\underline{\mathsf{C}}}^{-1} = \begin{bmatrix} | ||
Line 151: | Line 146: | ||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> | ||
अनुफलन आव्यूह के इन दो रूपों की तुलना करने से हमें पता चलता है कि अनुदैर्ध्य यंग का मापांक किसके द्वारा दिया गया है: | |||
:<math>E_L = E_{\rm z} = C_{33}-2C_{13}C_{13}/(C_{11}+C_{12})</math> | :<math>E_L = E_{\rm z} = C_{33}-2C_{13}C_{13}/(C_{11}+C_{12})</math> | ||
इसी प्रकार, अनुप्रस्थ यंग का मापांक है | इसी प्रकार, अनुप्रस्थ यंग का मापांक है | ||
:<math>E_T= E_{\rm x} = E_{\rm y} = (C_{11}-C_{12})(C_{11}C_{33}+C_{12}C_{33}-2C_{13}C_{13})/(C_{11}C_{33}-C_{13}C_{13})</math> | :<math>E_T= E_{\rm x} = E_{\rm y} = (C_{11}-C_{12})(C_{11}C_{33}+C_{12}C_{33}-2C_{13}C_{13})/(C_{11}C_{33}-C_{13}C_{13})</math> | ||
अंतर्देशीय अपरूपण मापांक है | |||
:<math>G_{xy}=(C_{11}-C_{12})/2=C_{66}</math> | :<math>G_{xy}=(C_{11}-C_{12})/2=C_{66}</math> | ||
और ध्रुवीय अक्ष के साथ लोड करने के लिए प्वासों का अनुपात है | और ध्रुवीय अक्ष के साथ लोड करने के लिए प्वासों का अनुपात है | ||
Line 163: | Line 158: | ||
== भूभौतिकी में == | == भूभौतिकी में == | ||
भूभौतिकी में, एक | भूभौतिकी में, एक सामान्य धारणा यह है कि भूपर्पटी की चट्टानें स्थानीय रूप से रैखिक प्रत्यास्थाता विषमदैशिक सजातीय माध्यम (अनुप्रस्थतः समदैशिक) हैं यह भूभौतिकीय रुचि की सबसे सरल स्थिति है। बैकस प्रकम<ref name =Backus/> लंबी तरंग दैर्ध्य भूकंपीय तरंगों के लिए स्तरित माध्यम के प्रभावी अनुप्रस्थतः समदैशिक प्रत्यास्थाता स्थिरांक को निर्धारित करने के लिए प्रायः उपयोग किया जाता है। | ||
बैकस सन्निकटन में किए गए अनुमान हैं: | बैकस सन्निकटन में किए गए अनुमान हैं: | ||
* सभी भौतिकी रैखिक रूप से | * सभी भौतिकी रैखिक रूप से प्रत्यास्थाता हैं। | ||
* आंतरिक ऊर्जा अपव्यय का कोई स्रोत नहीं (जैसे घर्षण) | * आंतरिक ऊर्जा अपव्यय का कोई स्रोत नहीं (जैसे घर्षण) है। | ||
* अनंत तरंग दैर्ध्य सीमा में मान्य, इसलिए अच्छे परिणाम तभी | * अनंत तरंग दैर्ध्य सीमा में मान्य, इसलिए अच्छे परिणाम तभी प्राप्त होते हैं जब परत की मोटाई तरंग दैर्ध्य से बहुत कम हो। | ||
* परत | * परत प्रत्यास्थाता गुणों के वितरण के आँकड़े स्थिर हैं, अर्थात इन गुणों में कोई सहसंबद्ध प्रवृत्ति नहीं होती है। | ||
कम तरंग दैर्ध्य के लिए, भूकंपीय तरंगों | कम तरंग दैर्ध्य के लिए, भूकंपीय तरंगों को समतल तरंगों के अध्यारोपण का उपयोग करके वर्णित किया जाता है। अनुप्रस्थतः समदैशिक माध्यम तीन प्रकार की प्रत्यास्थाता समतल तरंगों का समर्थन करता है: | ||
* | * अर्ध-[[पी लहर|P तरंग]] (ध्रुवीकरण (तरंगें) दिशा लगभग प्रसार दिशा के बराबर) | ||
* | *अर्ध-S तरंग | ||
* | * S तरंग (ध्रुवीकृत लंबकोणीय अर्ध-S तरंग के लिए, समरूपता अक्ष के लिए, और प्रसार की दिशा में)। | ||
[[फूरियर विश्लेषण]] का उपयोग करते हुए, इन समतल तरंगों से ऐसे | [[फूरियर विश्लेषण]] का उपयोग करते हुए, इन समतल तरंगों से ऐसे माध्यम में तरंग प्रसार समस्याओं के समाधान का निर्माण किया जा सकता है। | ||
=== बैकस | === बैकस सन्निकटन (लंबी तरंग दैर्ध्य सन्निकटन) === | ||
सजातीय और समदैशिक भौतिकी का एक स्तरित मॉडल, बैकस द्वारा प्रस्तावित अनुप्रस्थ समदैशिक माध्यम में | सजातीय और समदैशिक भौतिकी का एक स्तरित मॉडल, बैकस द्वारा प्रस्तावित अनुप्रस्थ समदैशिक माध्यम में प्रसारित किया जा सकता है।<ref name =Backus>Backus, G. E. (1962), Long-Wave Elastic Anisotropy Produced by Horizontal Layering, J. Geophys. Res., 67(11), 4427–4440</ref> | ||
यदि प्रत्येक परत <math>i</math> 5 अनुप्रस्थतः समदैशिक मापदंडों | बैकस ने एक समतुल्य माध्यम सिद्धांत प्रस्तुत किया, एक विषम माध्यम को एक सजातीय द्वारा प्रतिस्थापित किया जा सकता है जो वास्तविक माध्यम में तरंग प्रसार का पूर्वानुमान करता है।<ref>Ikelle, Luc T. and Amundsen, Lasse (2005),Introduction to petroleum seismology, SEG Investigations in Geophysics No. 12</ref> बैकस ने दिखाया कि तरंग दैर्ध्य की तुलना में अपेक्षाकृत पैमाने के स्तर पर प्रभाव पड़ता है और कई समदैशिक परतों को एक सजातीय अनुप्रस्थतः समदैशिक माध्यम से परिवर्तित किया जा सकता है जो अनंत तरंग दैर्ध्य सीमा में स्थिर भार के अंतर्गत वास्तविक माध्यम के समान ही व्यवहार करता है। | ||
यदि प्रत्येक परत <math>i</math> को 5 अनुप्रस्थतः समदैशिक मापदंडों <math>(a_i, b_i, c_i, d_i, e_i)</math> द्वारा वर्णित किया जाता है तो आव्यूह निर्दिष्ट करता है: | |||
:<math> \underline{\underline{\mathsf{C}_i}} =\begin{bmatrix} | :<math> \underline{\underline{\mathsf{C}_i}} =\begin{bmatrix} | ||
a_i & a_i - 2e_i & b_i & 0 & 0 & 0 \\ | a_i & a_i - 2e_i & b_i & 0 & 0 & 0 \\ | ||
Line 216: | Line 212: | ||
<math>\langle \cdot\rangle</math> सभी परतों पर आयतन भारित औसत दर्शाता है। | <math>\langle \cdot\rangle</math> सभी परतों पर आयतन भारित औसत दर्शाता है। | ||
इसमें समदैशिक परतें | इसमें समदैशिक परतें सम्मिलित हैं, क्योंकि परत समदैशिक है यदि <math>b_i = a_i - 2e_i</math>, <math>a_i = c_i</math> और <math>d_i = e_i</math> है। | ||
=== लघु और मध्यम तरंग दैर्ध्य सन्निकटन === | === लघु और मध्यम तरंग दैर्ध्य सन्निकटन === | ||
रैखिक | रैखिक प्रत्यास्थाता अनुप्रस्थतः समदैशिक माध्यम में तरंग प्रसार समस्याओं के समाधान अर्ध-P तरंग, अर्ध S तरंग, और S तरंग ध्रुवीकृत लंबकोणीय को अर्ध S तरंग के लिए अध्यारोपण समाधानों द्वारा निर्मित किया जा सकता है। हालाँकि, वेग की कोणीय भिन्नता के समीकरण बीजगणितीय रूप से समिश्र हैं और समतल-तरंग वेग प्रसार कोण <math>\theta</math> हैं।<ref>{{cite book|last=Nye|first= J. F.|year=2000|title=Physical Properties of Crystals: Their Representation by Tensors and Matrices | publisher= Oxford University Press }}</ref> भौतिकी के माध्यम से प्रत्यास्थाता तरंगों के लिए दिशा निर्भर संकेत वेग रैखिक प्रत्यास्थाता का उपयोग करके पाया जा सकता है और इसके द्वारा दिया जाता है:<ref>G. Mavko, T. Mukerji, J. Dvorkin. ''The Rock Physics Handbook''. Cambridge University Press 2003 (paperback). {{ISBN|0-521-54344-4}}</ref> | ||
हालाँकि, वेग की कोणीय भिन्नता के समीकरण बीजगणितीय रूप से | |||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Line 234: | Line 228: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
जहाँ <math>\begin{align}\theta\end{align}</math> समरूपता के अक्ष और तरंग प्रसार दिशा के बीच का कोण है, <math>\rho</math> द्रव्यमान घनत्व है और <math>C_{ij}</math> रैखिक प्रत्यास्थाता # विषमदैशिक सजातीय | जहाँ <math>\begin{align}\theta\end{align}</math> समरूपता के अक्ष और तरंग प्रसार दिशा के बीच का कोण है, <math>\rho</math> द्रव्यमान घनत्व है और <math>C_{ij}</math> रैखिक प्रत्यास्थाता # विषमदैशिक सजातीय माध्यम के तत्व हैं। इन अभिव्यक्तियों को सरल बनाने और उन्हें समझने में आसान बनाने के लिए थॉमसन पैरामीटर का उपयोग किया जाता है। | ||
==== थॉमसन पैरामीटर ==== | ==== थॉमसन पैरामीटर ==== | ||
थॉमसन पैरामीटर<ref name="T86">{{cite journal |last=Thomsen|first= Leon|year=1986|title=कमजोर लोचदार अनिसोट्रॉपी|journal=Geophysics |volume=51|issue= 10|pages=1954–1966 |doi=10.1190/1.1442051 |bibcode = 1986Geop...51.1954T }}</ref> [[ लोचदार मोडुली | | थॉमसन पैरामीटर<ref name="T86">{{cite journal |last=Thomsen|first= Leon|year=1986|title=कमजोर लोचदार अनिसोट्रॉपी|journal=Geophysics |volume=51|issue= 10|pages=1954–1966 |doi=10.1190/1.1442051 |bibcode = 1986Geop...51.1954T }}</ref> [[ लोचदार मोडुली |प्रत्यास्थाता मोडुली]] के आयाम रहित संयोजन हैं जो अनुप्रस्थतः समदैशिक भौतिकी की विशेषता रखते हैं जिनका सामना किया जाता है, उदाहरण के लिए, [[भूभौतिकी]] में प्रत्यास्थाता हुक के नियम के घटकों के संदर्भ में आव्यूह प्रतिनिधित्व को इन मापदंडों मे इस प्रकार परिभाषित किया गया है: | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Line 245: | Line 239: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
जहाँ सूचकांक 3 सममिति के अक्ष को इंगित करता है (<math>\mathbf{e}_3</math>) | जहाँ सूचकांक 3 सममिति के अक्ष को इंगित करता है (<math>\mathbf{e}_3</math>) संबद्ध पी-तरंग और S तरंग वेग के संयोजन के साथ इन मापदंडों का उपयोग विषमदैशिक, स्तरित माध्यम के माध्यम से तरंग प्रसार को चिह्नित करने के लिए किया जा सकता है। अनुभवजन्य रूप से, अधिकांश स्तरित रॉक संरचनाओं के लिए थॉमसन पैरामीटर 1 से अपेक्षाकृत कम हैं। | ||
नाम [[ह्यूस्टन विश्वविद्यालय]] में भूभौतिकी के | नाम [[ह्यूस्टन विश्वविद्यालय]] में भूभौतिकी के प्राध्यापक लियोन थॉमसन को संदर्भित करता है जिन्होंने अपने 1986 के पेपर प्रत्यास्थ विषमदैशिक में इन मापदंडों का प्रस्ताव रखा था। | ||
==== तरंग वेगों के लिए सरलीकृत भाव ==== | ==== तरंग वेगों के लिए सरलीकृत भाव ==== | ||
भूभौतिकी में | भूभौतिकी में प्रत्यास्थाता गुणों में विषमदैशिकता सामान्यतः समिश्र होती है इस स्थिति में <Math>\delta, \gamma, \epsilon \ll 1</math> जब उपरोक्त तरंग वेगों के सटीक भावों को इन छोटी राशियों में रेखीयकृत किया जाता है, तो वे सरल हो जाते हैं: | ||
:<math> | :<math> | ||
Line 263: | Line 257: | ||
V_{P0}= \sqrt{C_{33}/\rho} ~;~~ V_{S0}= \sqrt{C_{44}/\rho} | V_{P0}= \sqrt{C_{33}/\rho} ~;~~ V_{S0}= \sqrt{C_{44}/\rho} | ||
</math> | </math> | ||
समरूपता के अक्ष की दिशा में P और S तरंग वेग <math>\mathbf{e}_3</math> हैं भूभौतिकी में, यह सामान्यतः लेकिन सदैव नहीं, लंबवत दिशा होती है)। ध्यान दें कि <math>\delta</math> आगे और रैखिक किया जा सकता है, लेकिन इससे और सरलीकरण नहीं होता है। | समरूपता के अक्ष की दिशा में P और S तरंग वेग <math>\mathbf{e}_3</math> हैं भूभौतिकी में, यह सामान्यतः लेकिन सदैव नहीं, लंबवत दिशा होती है)। ध्यान दें कि <math>\delta</math> आगे और रैखिक किया जा सकता है, लेकिन इससे और सरलीकरण नहीं होता है। तरंग वेगों के लिए अनुमानित भाव की भौतिक रूप से व्याख्या करने के लिए अपेक्षाकृत सरल हैं और अधिकांश भूभौतिकीय अनुप्रयोगों के लिए पर्याप्त रूप से शुद्ध हैं। ये अभिव्यक्तियाँ कुछ संदर्भों में भी उपयोगी होती हैं जहाँ विषमदैशिकता नहीं होती है। | ||
तरंग वेगों के लिए अनुमानित भाव भौतिक रूप से व्याख्या करने के लिए | |||
== यह भी देखें == | == यह भी देखें == | ||
* हुक का नियम | * हुक का नियम | ||
* रैखिक प्रत्यास्थाता | * रैखिक प्रत्यास्थाता | ||
* [[ऑर्थोट्रोपिक सामग्री| | * [[ऑर्थोट्रोपिक सामग्री|लंबकोणीय भौतिकी]] | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | |||
[[Category:Created On 23/03/2023]] | [[Category:Created On 23/03/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:अभिविन्यास (ज्यामिति)]] | |||
[[Category:क्रिस्टलोग्राफी]] | |||
[[Category:लोच (भौतिकी)]] |
Latest revision as of 17:46, 29 August 2023
अनुप्रस्थतः समदैशिक भौतिकी, भौतिक गुणों वाली एक अक्ष के विषय में सममित है जो समदैशिकता तल के लिए सामान्य होती है। इस अनुप्रस्थ तल में समरूपता के अनंत तल हैं इस प्रकार, इस तल के भीतर, भौतिक गुण सभी दिशाओं में समान होते हैं। इसलिए, ऐसी भौतिकी को "ध्रुवीय विषमदैशिक" भौतिकी के रूप में भी जाना जाता है। भूभौतिकी में, लंबवत अनुप्रस्थ समदैशिकता (वीटीआई) को त्रिज्यीय विषमदैशिकता के रूप में भी जाना जाता है।
इस प्रकार की भौतिकी षट्कोणीय समरूपता प्रदर्शित करती है (हालांकि तकनीकी रूप से यह 6 और उच्च प्रकार के टेंसरों (प्रदिश) के लिए सही नहीं है इसलिए (4 स्थिति) प्रत्यास्थाता टेंसर में स्वतंत्र स्थिरांक की संख्या 5 तक कम हो जाती है सभी प्रकार से विषमदैशिक ठोस की स्थिति में स्थिरांक विद्युत प्रतिरोधकता, पारगम्यता आदि के टेंसरों में दो स्वतंत्र स्थिरांक होते हैं।
अनुप्रस्थतः समदैशिक भौतिकी का उदाहरण
अनुप्रस्थतः समदैशिक भौतिकी का एक उदाहरण तथाकथित अक्ष पर एकदिशीय सम्मिश्र लैमिना है जहां सम्मिश्र अनुप्रस्थ काट में वृत्ताकार होते हैं। एक एकदिशीय सम्मिश्र में, एकदिशीय सम्मिश्र के सामान्य तल को उत्तेजना के लंबे तरंग दैर्ध्य (कम आवृत्तियों) पर समदैशिक तल के रूप में माना जा सकता है। दाईं ओर की आकृति में, तंतुओं को अक्ष के साथ संरेखित किया जाएगा, जो समदैशिकता के तल के लिए सामान्य है।
प्रभावी गुणों के संदर्भ में, चट्टानों की भूवैज्ञानिक परतों को प्रायः अनुप्रस्थतः समदैशिक के रूप में व्याख्यायित किया जाता है। शैलविज्ञान में ऐसी परतों के प्रभावी प्रत्यास्थाता गुणों की गणना के लिए "बैकस प्रक्रम" को निर्मित किया गया है जिसका वर्णन नीचे किया गया है।
भौतिकी सममित आव्यूह
भौतिकी आव्यूह किसी दिए गए लंबकोणीय रूपांतरण के संबंध में सममित है यदि यह उस परिवर्तन के अधीन होने पर नहीं परिवर्तित होता है। इस प्रकार के परिवर्तन के अंतर्गत भौतिक गुणों के प्रतिलोम के लिए हमें आवश्यकता होती है:
इसलिए भौतिकी समरूपता (लंबकोणीय रूपांतरण की परिभाषा का उपयोग करके) की स्थिति है:
लंबकोणीय रूपांतरणों को कार्तीय निर्देशांक में द्वारा प्रदर्शित किया जा सकता है: दिया गया आव्यूह है:
इसलिए, समरूपता की स्थिति को आव्यूह रूप में लिखा जा सकता है:
अनुप्रस्थतः समदैशिक भौतिकी के लिए, आव्यूह रूप है:
जहां -अक्ष सममिति का अक्ष है। भौतिक आव्यूह अक्ष के किसी भी कोण से घूर्णन के अंतर्गत अपरिवर्तनीय रहता है।
भौतिकी में
भौतिकी में रेखीय भौतिकी के संवैधानिक संबंधों को निम्न के रूप में व्यक्त किया जा सकता है:
जहाँ भौतिक राशि का प्रतिनिधित्व करने वाले दो सदिश हैं और एक दूसरे क्रम की भौतिकी टेन्सर है। आव्यूह रूप में,
उपरोक्त आकृति में प्रयुक्त होने वाली भौतिक समस्याओं के उदाहरण नीचे दी गई तालिका में सूचीबद्ध हैं।[1]
इस तालिका का उपयोग करते हुए में आव्यूह का तात्पर्य है जिसका का उपयोग करते हुए की ओर जाता है तथा , और और ऊर्जा प्रतिबंधों की सामान्यतः आवश्यकता होती है इसलिए हमारे पास होना चाहिए और अनुप्रस्थतः समदैशिक भौतिकी के भौतिक गुणों को आव्यूह द्वारा वर्णित किया गया है:
रैखिक प्रत्यास्थाता में
भौतिक समरूपता के लिए शर्त
रैखिक प्रत्यास्थाता में, तनाव (भौतिकी) और अतिसूक्ष्म तनाव सिद्धांत हुक के नियम से संबंधित हैं, अर्थात
या, वायगट संकेत का उपयोग करके,
रैखिक प्रत्यास्थाता भौतिकी में भौतिक समरूपता की स्थिति है।[2]
जहाँ
प्रत्यास्थाता टेंसर
आव्यूह में के विशिष्ट मानों का उपयोग करके यह दिखाया जा सकता है[3] कि चौथी स्थिति प्रत्यास्थाता कठोरता टेंसर को 2-सारणी वायगट संकेत में आव्यूह के रूप में लिखा जा सकता है:
प्रत्यास्थाता कठोरता आव्यूह 5 स्वतंत्र स्थिरांक हैं, जो निम्नलिखित तरीके से प्रसिद्ध तकनीकी प्रत्यास्थाता मापांक से संबंधित हैं। ये तकनीकी मॉड्यूल प्रयोगात्मक रूप से निर्धारित किए गए हैं। अनुफलन आव्यूह प्रत्यास्थाता समिश्र आव्यूह का व्युत्क्रम है:
जहाँ तकनीकी संकेत में,
अनुफलन आव्यूह के इन दो रूपों की तुलना करने से हमें पता चलता है कि अनुदैर्ध्य यंग का मापांक किसके द्वारा दिया गया है:
इसी प्रकार, अनुप्रस्थ यंग का मापांक है
अंतर्देशीय अपरूपण मापांक है
और ध्रुवीय अक्ष के साथ लोड करने के लिए प्वासों का अनुपात है
- .
यहाँ, L अनुदैर्ध्य (ध्रुवीय) दिशा का प्रतिनिधित्व करता है और T अनुप्रस्थ दिशा का प्रतिनिधित्व करता है।
भूभौतिकी में
भूभौतिकी में, एक सामान्य धारणा यह है कि भूपर्पटी की चट्टानें स्थानीय रूप से रैखिक प्रत्यास्थाता विषमदैशिक सजातीय माध्यम (अनुप्रस्थतः समदैशिक) हैं यह भूभौतिकीय रुचि की सबसे सरल स्थिति है। बैकस प्रकम[4] लंबी तरंग दैर्ध्य भूकंपीय तरंगों के लिए स्तरित माध्यम के प्रभावी अनुप्रस्थतः समदैशिक प्रत्यास्थाता स्थिरांक को निर्धारित करने के लिए प्रायः उपयोग किया जाता है।
बैकस सन्निकटन में किए गए अनुमान हैं:
- सभी भौतिकी रैखिक रूप से प्रत्यास्थाता हैं।
- आंतरिक ऊर्जा अपव्यय का कोई स्रोत नहीं (जैसे घर्षण) है।
- अनंत तरंग दैर्ध्य सीमा में मान्य, इसलिए अच्छे परिणाम तभी प्राप्त होते हैं जब परत की मोटाई तरंग दैर्ध्य से बहुत कम हो।
- परत प्रत्यास्थाता गुणों के वितरण के आँकड़े स्थिर हैं, अर्थात इन गुणों में कोई सहसंबद्ध प्रवृत्ति नहीं होती है।
कम तरंग दैर्ध्य के लिए, भूकंपीय तरंगों को समतल तरंगों के अध्यारोपण का उपयोग करके वर्णित किया जाता है। अनुप्रस्थतः समदैशिक माध्यम तीन प्रकार की प्रत्यास्थाता समतल तरंगों का समर्थन करता है:
- अर्ध-P तरंग (ध्रुवीकरण (तरंगें) दिशा लगभग प्रसार दिशा के बराबर)
- अर्ध-S तरंग
- S तरंग (ध्रुवीकृत लंबकोणीय अर्ध-S तरंग के लिए, समरूपता अक्ष के लिए, और प्रसार की दिशा में)।
फूरियर विश्लेषण का उपयोग करते हुए, इन समतल तरंगों से ऐसे माध्यम में तरंग प्रसार समस्याओं के समाधान का निर्माण किया जा सकता है।
बैकस सन्निकटन (लंबी तरंग दैर्ध्य सन्निकटन)
सजातीय और समदैशिक भौतिकी का एक स्तरित मॉडल, बैकस द्वारा प्रस्तावित अनुप्रस्थ समदैशिक माध्यम में प्रसारित किया जा सकता है।[4]
बैकस ने एक समतुल्य माध्यम सिद्धांत प्रस्तुत किया, एक विषम माध्यम को एक सजातीय द्वारा प्रतिस्थापित किया जा सकता है जो वास्तविक माध्यम में तरंग प्रसार का पूर्वानुमान करता है।[5] बैकस ने दिखाया कि तरंग दैर्ध्य की तुलना में अपेक्षाकृत पैमाने के स्तर पर प्रभाव पड़ता है और कई समदैशिक परतों को एक सजातीय अनुप्रस्थतः समदैशिक माध्यम से परिवर्तित किया जा सकता है जो अनंत तरंग दैर्ध्य सीमा में स्थिर भार के अंतर्गत वास्तविक माध्यम के समान ही व्यवहार करता है।
यदि प्रत्येक परत को 5 अनुप्रस्थतः समदैशिक मापदंडों द्वारा वर्णित किया जाता है तो आव्यूह निर्दिष्ट करता है:
प्रभावी माध्यम के लिए प्रत्यास्थता गुणांक होगा
जहाँ
सभी परतों पर आयतन भारित औसत दर्शाता है।
इसमें समदैशिक परतें सम्मिलित हैं, क्योंकि परत समदैशिक है यदि , और है।
लघु और मध्यम तरंग दैर्ध्य सन्निकटन
रैखिक प्रत्यास्थाता अनुप्रस्थतः समदैशिक माध्यम में तरंग प्रसार समस्याओं के समाधान अर्ध-P तरंग, अर्ध S तरंग, और S तरंग ध्रुवीकृत लंबकोणीय को अर्ध S तरंग के लिए अध्यारोपण समाधानों द्वारा निर्मित किया जा सकता है। हालाँकि, वेग की कोणीय भिन्नता के समीकरण बीजगणितीय रूप से समिश्र हैं और समतल-तरंग वेग प्रसार कोण हैं।[6] भौतिकी के माध्यम से प्रत्यास्थाता तरंगों के लिए दिशा निर्भर संकेत वेग रैखिक प्रत्यास्थाता का उपयोग करके पाया जा सकता है और इसके द्वारा दिया जाता है:[7]
जहाँ समरूपता के अक्ष और तरंग प्रसार दिशा के बीच का कोण है, द्रव्यमान घनत्व है और रैखिक प्रत्यास्थाता # विषमदैशिक सजातीय माध्यम के तत्व हैं। इन अभिव्यक्तियों को सरल बनाने और उन्हें समझने में आसान बनाने के लिए थॉमसन पैरामीटर का उपयोग किया जाता है।
थॉमसन पैरामीटर
थॉमसन पैरामीटर[8] प्रत्यास्थाता मोडुली के आयाम रहित संयोजन हैं जो अनुप्रस्थतः समदैशिक भौतिकी की विशेषता रखते हैं जिनका सामना किया जाता है, उदाहरण के लिए, भूभौतिकी में प्रत्यास्थाता हुक के नियम के घटकों के संदर्भ में आव्यूह प्रतिनिधित्व को इन मापदंडों मे इस प्रकार परिभाषित किया गया है:
जहाँ सूचकांक 3 सममिति के अक्ष को इंगित करता है () संबद्ध पी-तरंग और S तरंग वेग के संयोजन के साथ इन मापदंडों का उपयोग विषमदैशिक, स्तरित माध्यम के माध्यम से तरंग प्रसार को चिह्नित करने के लिए किया जा सकता है। अनुभवजन्य रूप से, अधिकांश स्तरित रॉक संरचनाओं के लिए थॉमसन पैरामीटर 1 से अपेक्षाकृत कम हैं।
नाम ह्यूस्टन विश्वविद्यालय में भूभौतिकी के प्राध्यापक लियोन थॉमसन को संदर्भित करता है जिन्होंने अपने 1986 के पेपर प्रत्यास्थ विषमदैशिक में इन मापदंडों का प्रस्ताव रखा था।
तरंग वेगों के लिए सरलीकृत भाव
भूभौतिकी में प्रत्यास्थाता गुणों में विषमदैशिकता सामान्यतः समिश्र होती है इस स्थिति में जब उपरोक्त तरंग वेगों के सटीक भावों को इन छोटी राशियों में रेखीयकृत किया जाता है, तो वे सरल हो जाते हैं:
जहाँ
समरूपता के अक्ष की दिशा में P और S तरंग वेग हैं भूभौतिकी में, यह सामान्यतः लेकिन सदैव नहीं, लंबवत दिशा होती है)। ध्यान दें कि आगे और रैखिक किया जा सकता है, लेकिन इससे और सरलीकरण नहीं होता है। तरंग वेगों के लिए अनुमानित भाव की भौतिक रूप से व्याख्या करने के लिए अपेक्षाकृत सरल हैं और अधिकांश भूभौतिकीय अनुप्रयोगों के लिए पर्याप्त रूप से शुद्ध हैं। ये अभिव्यक्तियाँ कुछ संदर्भों में भी उपयोगी होती हैं जहाँ विषमदैशिकता नहीं होती है।
यह भी देखें
- हुक का नियम
- रैखिक प्रत्यास्थाता
- लंबकोणीय भौतिकी
संदर्भ
- ↑ Milton, G. W. (2002). कंपोजिट का सिद्धांत. Cambridge University Press.
- ↑ Slawinski, M. A. (2010). लोचदार निरंतरता में लहरें और किरणें (PDF). World Scientific. Archived from the original (PDF) on 2009-02-10.
- ↑ We can use the values and for a derivation of the stiffness matrix for transversely isotropic materials. Specific values are chosen to make the calculation easier.
- ↑ 4.0 4.1 Backus, G. E. (1962), Long-Wave Elastic Anisotropy Produced by Horizontal Layering, J. Geophys. Res., 67(11), 4427–4440
- ↑ Ikelle, Luc T. and Amundsen, Lasse (2005),Introduction to petroleum seismology, SEG Investigations in Geophysics No. 12
- ↑ Nye, J. F. (2000). Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press.
- ↑ G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4
- ↑ Thomsen, Leon (1986). "कमजोर लोचदार अनिसोट्रॉपी". Geophysics. 51 (10): 1954–1966. Bibcode:1986Geop...51.1954T. doi:10.1190/1.1442051.