संरचनात्मक यांत्रिकी में परिमित तत्व विधि: Difference between revisions

From Vigyanwiki
No edit summary
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
परिमित तत्व विधि (एफईएम ) [[संरचनात्मक यांत्रिकी]] में जटिल समस्याओं के संख्यात्मक समाधान के लिए मूल रूप से विकसित एक प्रभावशाली तकनीक है, और यह जटिल प्रणालियों के लिए पसंद की विधि बनी हुई है। एफईएम में, संरचनात्मक प्रणाली को उचित परिमित तत्वों का एक समुच्चय द्वारा तैयार किया जाता है जो अलग-अलग बिंदुओं पर जुड़े होते हैं जिन्हें नोड्स कहा जाता है। तत्वों में भौतिक गुण हो सकते हैं जैसे मोटाई, तापीय विस्तार का गुणांक, घनत्व, यंग का मापांक, कतरनी मापांक और पॉइसन का अनुपात।
परिमित तत्व विधि मूल रूप से [[संरचनात्मक यांत्रिकी]] में जटिल समस्याओं के संख्यात्मक समाधान के लिए विकसित एक प्रभावशाली तकनीक है, और यह जटिल प्रणालियों के लिए उपयुक्त विधि मानी जाती है। परिमित तत्व विधि में, संरचनात्मक प्रतिरूप को उचित परिमित तत्वों के एक समुच्चय द्वारा निर्मित किया जाता है जो भिन्न-भिन्न बिंदुओं, जिन्हें दूसरे शब्दों में नोड्स कहा जाता है, पर युग्मित होते हैं। परिमित तत्वों में भौतिक गुण जैसे मोटाई, तापीय विस्तार का गुणांक, घनत्व, यंग का मापांक, कतरनी मापांक और पॉइसन का अनुपात आदि हो सकते हैं ।


== इतिहास ==
== इतिहास ==
परिमित विधि की उत्पत्ति संरचनाओं के मैट्रिक्स विश्लेषण [1] [2] में खोजी जा सकती है जहां एक विस्थापन या कठोरता मैट्रिक्स दृष्टिकोण की अवधारणा प्रस्तुत की गई थी 1950 के दशक में इंजीनियरिंग विधियों के आधार पर परिमित तत्व अवधारणाएँ विकसित की गईं, परिमित तत्व पद्धति ने 1960 और 1970 के दशक में   [[Xoin Argyris|जॉन आरगाईरिस]] और सहकर्मियों द्वारा अपनी वास्तविक प्रेरणा प्राप्त की; रे डब्ल्यू क्लो द्वारा [[स्टटगार्ट विश्वविद्यालय]] में; कैलिफोर्निया विश्वविद्यालय, बर्कले में, [[ओल्गिएर्ड ज़िएनक्यूविज़]] द्वारा, और सहकर्मी [[अर्नेस्ट हिंटन]], ब्रूस आयरन्स <ref>{{Cite journal |last1=Hinton |first1=Ernest |last2=Irons |first2=Bruce |title=कम से कम वर्ग परिमित तत्वों का उपयोग करके प्रायोगिक डेटा को चौरसाई करना|journal=Strain |volume=4 |issue=3 |pages=24–27 |date=July 1968 |doi= 10.1111/j.1475-1305.1968.tb01368.x}}</ref> फिलिप जी सियारलेट द्वारा [[स्वानसी विश्वविद्यालय]] में; [[पियरे-एंड-मैरी-क्यूरी विश्वविद्यालय]] में; [[कॉर्नेल विश्वविद्यालय]] में, रिचर्ड गैलाघेर और सहकर्मियों द्वारा मूल कृतियाँ जैसे कि आरगाईरिस  <ref>Argyris, J.H and Kelsey, S. [https://books.google.com/books?id=PCsDCAAAQBAJ&q=%22finite+element%22 Energy theorems and Structural Analysis] Butterworth Scientific publications, London, 1954</ref> और क्लो <ref>Clough, R.W, “The Finite Element in Plane Stress Analysis.” Proceedings, 2nd ASCE Conference on Electronic Computations, Pittsburgh, Sep 1960</ref> आज के परिमित तत्व संरचनात्मक विश्लेषण विधियों का आधार बन गया।
परिमित विधि की उत्पत्ति संरचनाओं के आव्यूह विश्लेषण द्रारा चिन्हित की जा सकती है जहां एक विस्थापन या कठोरता आव्यूह प्रस्ताव की एक अवधारणा प्रस्तुत की गई थी। 1950 के दशक में अभियांत्रिकी विधियों के आधार पर परिमित तत्व अवधारणाएँ विकसित की गईं। परिमित तत्व पद्धति ने 1960 और 1970 के दशक में [[Xoin Argyris|जॉन आरगाईरिस]] और सहकर्मियों द्वारा अपनी वास्तविक प्रेरणा प्राप्त की; जैसे रे डब्ल्यू क्लो द्वारा [[स्टटगार्ट विश्वविद्यालय]] में; कैलिफोर्निया विश्वविद्यालय, बर्कले में, [[ओल्गिएर्ड ज़िएनक्यूविज़]] द्वारा, और सहकर्मी [[अर्नेस्ट हिंटन]], ब्रूस आयरन्स <ref>{{Cite journal |last1=Hinton |first1=Ernest |last2=Irons |first2=Bruce |title=कम से कम वर्ग परिमित तत्वों का उपयोग करके प्रायोगिक डेटा को चौरसाई करना|journal=Strain |volume=4 |issue=3 |pages=24–27 |date=July 1968 |doi= 10.1111/j.1475-1305.1968.tb01368.x}}</ref> फिलिप जी सियारलेट द्वारा [[स्वानसी विश्वविद्यालय]] में; [[पियरे-एंड-मैरी-क्यूरी विश्वविद्यालय]] में; [[कॉर्नेल विश्वविद्यालय]] में, रिचर्ड गैलाघेर और सहकर्मियों द्वारा इत्यादि। मूल कृतियाँ जैसे कि आरगाईरिस  <ref>Argyris, J.H and Kelsey, S. [https://books.google.com/books?id=PCsDCAAAQBAJ&q=%22finite+element%22 Energy theorems and Structural Analysis] Butterworth Scientific publications, London, 1954</ref> और क्लो <ref>Clough, R.W, “The Finite Element in Plane Stress Analysis.” Proceedings, 2nd ASCE Conference on Electronic Computations, Pittsburgh, Sep 1960</ref> के कार्य आज के परिमित तत्व संरचनात्मक विश्लेषण विधियों का आधार बन गए।


अक्षीय, झुकने और मरोड़ वाली कठोरता जैसे भौतिक गुणों वाले सीधे या घुमावदार एक-आयामी तत्व होता है  इस प्रकार का तत्व प्रतिरूपण तार, गेलिस, ट्रस, बीम, स्टिफ़नर, ग्रिड और फ़्रेम के लिए उपयुक्त है। प्रत्येक छोर पर सामान्यतः दो नोड होते हैं, जबकि घुमावदार तत्वों को अंत-नोड्स सहित कम से कम तीन नोड्स की आवश्यकता होगी। तत्व वास्तविक सदस्यों के [[केन्द्रक]] अक्ष पर स्थित हैं।  
अक्षीय, झुकने और मरोड़ वाली कठोरता जैसे भौतिक गुणों वाले सीधे या घुमावदार एक-आयामी तत्व होते है। इस प्रकार के तत्व प्रतिरूपण तार, दँतपट्टिका, ट्रस, बीम, दृढ़क, ग्रिड और ढांचे के लिए उपयुक्त है। प्रत्येक छोर पर सामान्यतः दो नोड होते हैं, जबकि घुमावदार तत्वों को अंत-नोड्स सहित कम से कम तीन नोड्स की आवश्यकता होती है । तत्व वास्तविक सदस्यों के [[केन्द्रक]] अक्ष पर स्थित होते हैं।  
* द्वि-आयामी तत्व जो झिल्ली क्रिया द्वारा मात्र हवाई जहाज में बलों का विरोध करते हैं, और प्लेटें जो अनुप्रस्थ कतरनी और झुकने की क्रिया द्वारा अनुप्रस्थ भार का विरोध करती हैं। तथा उनके पास कई प्रकार के आकार हो सकते हैं जैसे फ्लैट या घुमावदार [[त्रिकोण]] और चतुर्भुज। नोड्स को सामान्यतः तत्व के कोनों पर रखा जाता है, और यदि उच्च सटीकता के लिए आवश्यक हो, तो अतिरिक्त बिन्दु को तत्व किनारों के साथ या तत्व के भीतर भी रखा जा सकता है। वास्तविक तत्व  मोटाई परत की मध्य-सतह पर स्थित होते हैं।
* द्वि-आयामी तत्व जो केवल झिल्ली क्रिया जैसे समतल तनाव या समतल विकृति द्वारा अंतस्तल बलों का विरोध करते हैं, और प्लेटें जो अनुप्रस्थ कतरनी और झुकने की क्रिया द्वारा अनुप्रस्थ भार का विरोध करती हैं। तथा उनके पास कई प्रकार के आकार हो सकते हैं जैसे समतल या घूर्णित [[त्रिकोण]] और चतुर्भुज। नोड्स को सामान्यतः तत्व के कोनों पर रखा जाता है, और यदि उच्च सटीकता के लिए आवश्यक हो, तो अतिरिक्त बिन्दु को तत्व किनारों के साथ या तत्व के भीतर भी रखा जा सकता है। तत्व वास्तविक परत मोटाई की मध्य-सतह पर स्थित होते हैं।
* झिल्लियों, मोटी प्लेटों, खोलों और ठोसों जैसी अक्षीय समस्याओं के लिए [[ टोरस्र्स |टोरस्र्स]] के आकार के तत्व होते है जो तत्वों का अन्तः वर्ग पहले वर्णित प्रकारों के समान है: पतली प्लेटों और गोले के लिए एक आयामी, और ठोस, मोटी प्लेटों और गोले के लिए द्वि-आयामी तत्व होते है ।
* झिल्लियों, मोटी प्लेटों, आवरणों और ठोसों जैसी अक्षीय समस्याओं के लिए [[ टोरस्र्स |टोरस]] के आकार के तत्व होते है। इन तत्वों का अन्तः वर्ग पहले वर्णित प्रकारों के समान है इस प्रकार पतली प्लेटों और गोले के लिए एक आयामी, और ठोस, मोटी प्लेटों और गोले के लिए द्वि-आयामी तत्व होते है ।
* 3-डी ठोस जैसे यंत्र घटकों, बांधों, [[तटबंध (परिवहन)|तटबंध परिवहन]] या मिट्टी के द्रव्यमान प्रतिरूपण के लिए त्रि-आयामी तत्व होता है तथा सरल तत्व आकृतियों में [[ चतुष्फलकीय |चतुष्फलकीय]] और [[ षट्फलकीय |षट्फलकीय]] तत्व सम्मिलित हैं। जिसमें बिन्दु को शीर्ष् पर रखा जाता है ।
* 3-डी ठोस जैसे यंत्र घटकों, बांधों, [[तटबंध (परिवहन)|तटबंध परिवहन]] या मिट्टी के द्रव्यमान प्रतिरूपण के लिए त्रि-आयामी तत्व का प्रयोग किया जाता है। सरल तत्व आकृतियों में [[ चतुष्फलकीय |चतुष्फलकीय]] और [[ षट्फलकीय |षट्फलकीय]] तत्व सम्मिलित हैं। नोड्स को शीर्ष और संभवतः तत्व के फलकों या तत्व के भीतर रखा जाता है।


=== तत्व अंतर्संबंध और विस्थापन ===
=== तत्व अंतर्संबंध और विस्थापन ===
तत्व केवल बाहरी नोड्स पर परस्पर जुड़े हुए हैं, और कुल मिलाकर उन्हें पूरे डोमेन को यथासंभव उपयुक्त रूप से आच्छादित करना करना चाहिए। नोड्स में नोडल [[विस्थापन (वेक्टर)|विस्थापन]] विस्थापन या [[स्वतंत्रता की डिग्री (इंजीनियरिंग)|स्वतंत्रता की डिग्री (अभियांत्रिकी )]] होगी जिसमें अनुवाद, घुमावदार और विशेष अनुप्रयोगों के लिए विस्थापन के उच्च क्रम [[ यौगिक |यौगिक]] सम्मिलित हो सकते हैं। जब नोड्स विस्थापित होते हैं, तो वे तत्वों को तत्व निर्माण द्वारा निर्धारित एक निश्चित नियमों से साथ खींचेंगे। दूसरे शब्दों में, तत्व में किसी भी बिंदु का विस्थापन नोडल विस्थापन से [[प्रक्षेप]] होगा, और यह समाधान की अनुमानित प्रकृति का मुख्य कारण है।
तत्व केवल बाह्य नोड्स पर परस्पर जुड़े हुए होते हैं, और कुल मिलाकर उन्हें सम्पूर्ण क्षेत्र को यथासंभव उपयुक्त रूप से समाविष्ट करना चाहिए। नोड्स में सदिस नोडल [[विस्थापन (वेक्टर)|विस्थापन]] या [[स्वतंत्रता की डिग्री (इंजीनियरिंग)|स्वतंत्रता की श्रेणी]] होगी जिसमें परिवर्तन, घूर्णन और विशेष अनुप्रयोगों के लिए विस्थापन के उच्च क्रम [[ यौगिक |यौगिक]] सम्मिलित हो सकते हैं। जब नोड्स विस्थापित होते हैं, तो वे तत्वों को एक निश्चित विधि से साथ खींचेंगे जो तत्व निर्माण द्वारा निर्धारित होते हैं। दूसरे शब्दों में, तत्व में किसी भी बिंदु के विस्थापन को नोडल विस्थापन से [[प्रक्षेप|प्रक्षेपित]] किया जाएगा, और यह समाधान की अनुमानित प्रकृति का मुख्य कारण है।


== व्यावहारिक विचार ==
== व्यावहारिक विचार ==
अनुप्रयोग के दृष्टिकोण से, प्रणाली को इस तरह से प्रारूप करना महत्वपूर्ण है:
अनुप्रयोग के दृष्टिकोण से, प्रतिरूप को इस तरह से प्रारूप करना महत्वपूर्ण है, जिससे :
* प्रतिरूप के आकार को कम करने के लिए समरूपता या विरोधी समरूपता स्थितियों का शोषण किया जाता है।
* प्रतिरूप के आकार को कम करने के लिए समरूपता या विरोधी समरूपता स्थितियों का उपयोग किया जाता है।
* विस्थापन संगतता, किसी भी आवश्यक असंतोष सहित, नोड्स पर सुनिश्चित की जाती है, और अधिमानतः, तत्व किनारों के साथ-साथ, विशेष रूप से जब आसन्न तत्व विभिन्न प्रकार, सामग्री या मोटाई के होते हैं। कई नोड्स के विस्थापन की संगतता सामान्यतः बाधा संबंधों के माध्यम से लगाई जा सकती है।
* विस्थापन संगतता, किसी भी आवश्यक असतता सहित, नोड्स पर सुनिश्चित की जाती है, और अधिमानतः, तत्व किनारों के साथ-साथ, विशेष रूप से जब आसन्न तत्व विभिन्न प्रकार, सामग्री या मोटाई के होते हैं तो कई नोड्स के विस्थापन की संगतता सामान्यतः बाधा संबंधों के माध्यम से निर्मित की जा सकती है।
* तत्वों के व्यवहार को स्थानीय और विश्व स्तर पर वास्तविक प्रणाली के प्रमुख कार्यों को पकड़ना चाहिए।
* तत्वों के व्यवहार को स्थानीय और विश्व स्तर पर वास्तविक प्रतिरूप के प्रमुख कार्यों को समर्थित करना होता है।
* स्वीकार्य उपयुक्तता उत्पन्न करने के लिए तत्व जाल पर्याप्त रूप से सुदृढ़ होना चाहिए। उपयुक्तता का आकलन करने के लिए, जाल को तब तक परिष्कृत किया जाता है जब तक कि महत्वपूर्ण परिणाम थोड़ा परिवर्तन नहीं दिखाते। उच्च उपयुक्तता के लिए, तत्वों का [[पहलू अनुपात (छवि)|पहलू अनुपात]] यथासंभव उसके उपयुक्त होना चाहिए, और छोटे तत्वों का उपयोग उच्च प्रतिबल प्रवणता के भागों पर किया जाता है।
* स्वीकार्य उपयुक्तता उत्पन्न करने के लिए तत्व जाल पर्याप्त रूप से सुदृढ़ होने चाहिए। उपयुक्तता का आकलन करने के लिए, जाल को तब तक परिष्कृत किया जाता है जब तक कि महत्वपूर्ण परिणाम या कुछ परिवर्तन नहीं दिखाते। उच्च उपयुक्तता के लिए, तत्वों का मापदंड [[पहलू अनुपात (छवि)|अनुपात]] यथासंभव उसके उपयुक्त होता है, और छोटे तत्वों का उपयोग उच्च प्रतिबल प्रवणता के भागों पर किया जाता है।
* समरूपता कुल्हाड़ियों पर नोड्स पर विशेष ध्यान देने के साथ उचित समर्थन बाधाएं लगाई जाती हैं।
* समरूपता अक्षो के नोड्स पर विशेष ध्यान देने के साथ उचित समर्थन बाधाएं लगाई जाती हैं।
बड़े पैमाने पर वाणिज्यिक सॉफ्टवेयर का संकुल प्रायः जाल उत्पन्न करने और इनपुट और आउटपुट के चित्रमय प्रदर्शन के लिए सुविधाएं प्रदान करते हैं, जो इनपुट डेटा और परिणामों की व्याख्या दोनों के सत्यापन की सुविधा प्रदान करते हैं।
बड़े मानदंडों पर वाणिज्यिक सॉफ्टवेयर का संकुल प्रायः जाल उत्पन्न करने और निविस्ट और निर्गत तत्वों के चित्रमय प्रदर्शन की सुविधा प्रदान करते हैं, जो निविस्ट डेटा और परिणामों की व्याख्या और दोनों के सत्यापन की सुविधा प्रदान करते हैं।


== एफईएम-विस्थापन सूत्रीकरण का सैद्धांतिक अवलोकन: तत्वों से, प्रणाली समाधान तक ==
== परिमित तत्व विधि-विस्थापन सूत्रीकरण का सैद्धांतिक अवलोकन: तत्वों से, प्रतिरूप समाधान तक ==
जबकि एफईएम के सिद्धांत को अलग-अलग दृष्टिकोण या महत्व में प्रस्तुत किया जा सकता है, [[संरचनात्मक विश्लेषण]] के लिए इसका विकास [[आभासी कार्य]] सिद्धांत या [[न्यूनतम कुल संभावित ऊर्जा सिद्धांत]] के माध्यम से अधिक पारंपरिक दृष्टिकोण का अनुसरण करता है। आभासी कार्य सिद्धांत दृष्टिकोण अधिक सामान्य है क्योंकि यह रैखिक और गैर-रैखिक भौतिक व्यवहार दोनों पर लागू होता है। आभासी कार्य पद्धति ऊर्जा के संरक्षण की एक अभिव्यक्ति है: रूढ़िवादी प्रणालियों के लिए, लागू बलों के एक समुच्चय द्वारा प्रणाली में जोड़ा गया और कार्य संरचना के घटकों के प्रतिबल ऊर्जा के रूप में प्रणाली में संग्रहीत ऊर्जा के बराबर होता है।
जबकि परिमित तत्व विधि के सिद्धांत को भिन्न-भिन्न दृष्टिकोण या महत्व में प्रस्तुत किया जा सकता है, [[संरचनात्मक विश्लेषण]] के लिए इसका विकास [[आभासी कार्य]] सिद्धांत या [[न्यूनतम कुल संभावित ऊर्जा सिद्धांत|न्यूनतम सम्पूर्ण संभावित ऊर्जा सिद्धांत]] के माध्यम से अधिक पारंपरिक प्रस्तावों का अनुसरण करता है। आभासी कार्य सिद्धांत प्रस्ताव अधिक सामान्य है क्योंकि यह रैखिक और गैर-रैखिक भौतिक व्यवहार दोनों पर लागू होता है। आभासी कार्य पद्धति ऊर्जा के संरक्षण की एक अभिव्यक्ति है: रूढ़िवादी प्रणालियों के लिए, लागू बलों के एक समुच्चय द्वारा प्रतिरूप में जोड़ा गया और कार्य संरचना के घटकों के प्रतिबल ऊर्जा के रूप में प्रतिरूप में संग्रहीत ऊर्जा के समान होता है।


संरचनात्मक प्रणाली के लिए आभासी कार्य का सिद्धांत बाहरी और आंतरिक आभासी कार्य की गणितीय पहचान को व्यक्त करता है:
संरचनात्मक प्रतिरूप के लिए आभासी कार्य का सिद्धांत बाह्य और आंतरिक आभासी कार्य की गणितीय पहचान को व्यक्त करता है:
{{NumBlk|:|<math>\mbox{External virtual work} = \int_{V}\delta\boldsymbol{\epsilon}^T \boldsymbol{\sigma} \, dV </math>|{{EquationRef|1}}}}
{{NumBlk|:|<math>\mbox{External virtual work} = \int_{V}\delta\boldsymbol{\epsilon}^T \boldsymbol{\sigma} \, dV </math>|{{EquationRef|1}}}}


दूसरे शब्दों में, बाह्य बलों के समुच्चय द्वारा तंत्र पर किए गए कार्य का योग तंत्र को बनाने वाले तत्वों में तनाव ऊर्जा के रूप में संग्रहीत कार्य के बराबर होता है।
दूसरे शब्दों में, बाह्य बलों के समुच्चय द्वारा तंत्र पर किए गए कार्य का योग तंत्र को निर्मित करने वाले तत्वों में तनाव ऊर्जा के रूप में संग्रहीत कार्य के समान होता है।


उपरोक्त समीकरण के दाईं ओर के आभासी आंतरिक कार्य को अलग-अलग तत्वों पर किए गए आभासी कार्य का योग करके पाया जा सकता है। उत्तरार्द्ध की आवश्यकता है कि बल-विस्थापन कार्यों का उपयोग किया जाए जो प्रत्येक व्यक्तिगत तत्व के लिए प्रतिक्रिया का वर्णन करता है। इसलिए, संरचना के विस्थापन को सामूहिक रूप से असतत तत्वों की प्रतिक्रिया से वर्णित किया गया है। समीकरण मात्र एक समीकरण के अतिरिक्त संरचना के अलग-अलग तत्वों के छोटे डोमेन के लिए लिखे गए हैं जो पूरे प्रणाली के रूप में प्रतिक्रिया का वर्णन करता है। उत्तरार्द्ध के परिणामस्वरूप एक जटिल समस्या होगी, इसलिए परिमित तत्व विधि की उपयोगिता है, जैसा कि बाद के अनुभागों में दिखाया गया है, Eq.({{EquationNote|1}}) प्रणाली के लिए निम्नलिखित शासी संतुलन समीकरण की ओर जाता है:
उपरोक्त समीकरण के दाईं ओर के आभासी आंतरिक कार्य को भिन्न-भिन्न तत्वों पर किए गए आभासी कार्य का योग करके प्राप्त किया जा सकता है। उत्तरार्द्ध की आवश्यकता है कि बल-विस्थापन कार्यों का उपयोग किया जाए जो प्रत्येक व्यक्तिगत तत्व के लिए प्रतिक्रिया का वर्णन करता है। इसलिए, संरचना के विस्थापन को सामूहिक रूप से असतत तत्वों की प्रतिक्रिया से वर्णित किया गया है। समीकरण मात्र एक समीकरण के अतिरिक्त संरचना के भिन्न-भिन्न तत्वों के छोटे क्षेत्र के लिए लिखे गए हैं जो पूरे प्रतिरूप  के रूप में प्रतिक्रिया का वर्णन करता है। उत्तरार्द्ध के परिणामस्वरूप एक जटिल समस्या उत्पन्न होगी, इसलिए परिमित तत्व विधि की उपयोगिता है, जैसा कि बाद के अनुभागों में दिखाया गया है, Eq.({{EquationNote|1}}) प्रतिरूप के लिए निम्नलिखित शासी संतुलन समीकरण की पुष्टि करता है:


{{NumBlk|:|<math>\mathbf{R} = \mathbf{Kr} + \mathbf{R}^o </math>|{{EquationRef|2}}}}
{{NumBlk|:|<math>\mathbf{R} = \mathbf{Kr} + \mathbf{R}^o </math>|{{EquationRef|2}}}}
जहाँ
जहाँ
:<math>\mathbf{R} </math> = नोडल बलों का वेक्टर, प्रणाली के नोड्स पर लागू बाहरी बलों का प्रतिनिधित्व करता है।
:<math>\mathbf{R} </math> = नोडल बलों का सदिश , प्रतिरूप के नोड्स पर लागू बाह्य बलों का प्रतिनिधित्व करता है।
:<math>\mathbf{K} </math> = प्रणाली कठोरता मैट्रिक्स, जो अलग-अलग तत्वों की कठोरता मैट्रिक्स का सामूहिक प्रभाव है:<math>\mathbf{k}^e </math>.
:<math>\mathbf{K} </math> = प्रतिरूप कठोरता आव्यूह, जो भिन्न-भिन्न तत्वों की कठोरता आव्यूह <math>\mathbf{k}^e </math> का सामूहिक प्रभाव है:.
:<math>\mathbf{r} </math> = प्रणाली के नोडल विस्थापन का वेक्टर।
:<math>\mathbf{r} </math> = प्रतिरूप के नोडल विस्थापन का सदिश।
:<math>\mathbf{R}^o </math> = समतुल्य नोडल बलों के वेक्टर, नोडल बलों के अलावा अन्य सभी बाहरी प्रभावों का प्रतिनिधित्व करते हैं जो पहले से ही पूर्ववर्ती नोडल बल वेक्टर आर में शामिल हैं। इन बाहरी प्रभावों में वितरित या केंद्रित सतह बल, शरीर बल, थर्मल प्रभाव, प्रारंभिक तनाव और तनाव शामिल हो सकते हैं।
:<math>\mathbf{R}^o </math> = समतुल्य नोडल बलों के सदिश , नोडल बलों के अतिरिक्त अन्य सभी बाह्य प्रभावों का प्रतिनिधित्व करते हैं जो पूर्ववर्ती नोडल बल सदिश आर में सम्मिलित हैं। इन बाह्य प्रभावों में वितरित या केंद्रित सतह बल, भौतिक बल, तापीय प्रभाव, प्रारंभिक तनाव सम्मिलित हो सकते हैं।


एक बार समर्थन की बाधाओं के लिए जिम्मेदार होने के बाद, [[रैखिक समीकरणों की प्रणाली]] को हल करके नोडल विस्थापन पाया जाता है ({{EquationNote|2}}), प्रतीकात्मक रूप से:
प्रतीकात्मक रूप से एक बार समर्थन की बाधाओं के लिए उत्तरदायी होने के उपरांत, [[रैखिक समीकरणों की प्रणाली|रैखिक समीकरणों की प्रतिरूप]] को हल करके नोडल विस्थापन प्राप्त किया जाता है  
{{NumBlk|:|<math>\mathbf{r} = \mathbf{K}^{-1} (\mathbf{R}-\mathbf{R}^o ) </math>|{{EquationRef|3}}}}
{{NumBlk|:|<math>\mathbf{r} = \mathbf{K}^{-1} (\mathbf{R}-\mathbf{R}^o ) </math>|{{EquationRef|3}}}}


इसके बाद, अलग-अलग तत्वों में तनाव और तनाव निम्नानुसार पाया जा सकता है:
इसके उपरांत, भिन्न-भिन्न तत्वों में तनाव निम्नानुसार प्राप्त किया जा सकता है:
{{NumBlk|:|<math>\mathbf{\epsilon} = \mathbf{Bq} </math>|{{EquationRef|4}}}}
{{NumBlk|:|<math>\mathbf{\epsilon} = \mathbf{Bq} </math>|{{EquationRef|4}}}}
{{NumBlk|:|<math>\mathbf{\sigma} = \mathbf{E}(\mathbf{\epsilon} - \mathbf{\epsilon}^o)+\mathbf{\sigma}^o = \mathbf{E}(\mathbf{Bq} - \mathbf{\epsilon}^o)+\mathbf{\sigma}^o </math>|{{EquationRef|5}}}}
{{NumBlk|:|<math>\mathbf{\sigma} = \mathbf{E}(\mathbf{\epsilon} - \mathbf{\epsilon}^o)+\mathbf{\sigma}^o = \mathbf{E}(\mathbf{Bq} - \mathbf{\epsilon}^o)+\mathbf{\sigma}^o </math>|{{EquationRef|5}}}}
जहाँ
जहाँ
:<math>\mathbf{q} </math> = एक नोडल विस्थापन का वेक्टर - प्रणाली विस्थापन वेक्टर आर का एक उपसमुच्चय जो विचाराधीन तत्वों से संबंधित है।
:<math>\mathbf{q} </math> = एक नोडल विस्थापन का सदिश  - प्रतिरूप विस्थापन सदिश आर का एक उपसमुच्चय जो विचाराधीन तत्वों से संबंधित है।
:<math>\mathbf{B} </math> = तनाव-विस्थापन मैट्रिक्स जो तत्व में किसी भी बिंदु पर नोडल विस्थापन क्यू को उपभेदों में बदल देता है।
:<math>\mathbf{B} </math> = तनाव-विस्थापन आव्यूह जो तत्व में किसी भी बिंदु पर नोडल विस्थापन क्यू को उपभेदों में परिवर्तित कर देता है।
:<math>\mathbf{E} </math> = लोच मैट्रिक्स जो प्रभावी उपभेदों को तत्व में किसी भी बिंदु पर तनाव में बदल देता है।
:<math>\mathbf{E} </math> = लोच आव्यूह जो प्रभावी उपभेदों को तत्व में किसी भी बिंदु पर तनाव में परिवर्तित कर देता है।
:<math>\mathbf{\epsilon}^o </math> = तत्वों में प्रारंभिक उपभेदों का वेक्टर।
:<math>\mathbf{\epsilon}^o </math> = तत्वों में प्रारंभिक उपभेदों का सदिश है।
:<math>\mathbf{\sigma}^o </math> = तत्वों में प्रारंभिक तनाव का वेक्टर।
:<math>\mathbf{\sigma}^o </math> = तत्वों में प्रारंभिक तनाव का सदिश है।


आभासी कार्य समीकरण को लागू करने से ({{EquationNote|1}}) प्रणाली के लिए, हम तत्व आव्यूह स्थापित कर सकते हैं <math>\mathbf{B}</math>, <math>\mathbf{k}^e</math> साथ ही प्रणाली मैट्रिसेस को असेंबल करने की तकनीक <math>\mathbf{R}^o</math> और <math>\mathbf{K}</math>. अन्य मैट्रिसेस जैसे <math>\mathbf{\epsilon}^o </math>, <math>\mathbf{\sigma}^o </math>, <math>\mathbf{R} </math> और <math>\mathbf{E} </math> ज्ञात मूल्य हैं और इन्हें सीधे डेटा इनपुट से सेट किया जा सकता है।
आभासी कार्य समीकरण को लागू करने से प्रतिरूप ({{EquationNote|1}}) के लिए, हम तत्व आव्यूह स्थापित कर सकते हैं जहां <math>\mathbf{B}</math>, <math>\mathbf{k}^e</math> के साथ प्रतिरूप आव्यूहों <math>\mathbf{R}^o</math> और <math>\mathbf{K}</math>. को समन्वायोजन करने की तकनीक  है। अन्य आव्यूहों जैसे <math>\mathbf{\epsilon}^o </math>, <math>\mathbf{\sigma}^o </math>, <math>\mathbf{R} </math> और <math>\mathbf{E} </math> ज्ञात मूल्य हैं और इन्हें सीधे डेटा निविष्ट से समायोजित किया जा सकता है।


== प्रक्षेप या आकृति कार्य ==
== प्रक्षेप या आकृति कार्य ==
होने देना <math>\mathbf{q}</math> एक विशिष्ट तत्व के नोडल विस्थापन के वेक्टर बनें। तत्व के किसी भी अन्य बिंदु पर विस्थापन प्रक्षेप कार्यों के उपयोग से प्रतीकात्मक रूप से पाया जा सकता है:
मान लीजिए की  <math>\mathbf{q}</math> एक विशिष्ट तत्व के नोडल विस्थापन का सदिश है। तत्व के किसी भी अन्य बिंदु पर विस्थापन प्रक्षेप कार्यों के उपयोग से प्रतीकात्मक रूप से प्राप्त किया जा सकता है:
{{NumBlk|:|<math>\mathbf{u} = \mathbf{N} \mathbf{q} </math>|{{EquationRef|6}}}}
{{NumBlk|:|<math>\mathbf{u} = \mathbf{N} \mathbf{q} </math>|{{EquationRef|6}}}}
कहाँ
जहाँ
:<math>\mathbf{u} </math> = तत्व के किसी बिंदु {x, y, z} पर विस्थापन का सदिश।
:<math>\mathbf{u} </math> = तत्व के किसी बिंदु {x, y, z} पर विस्थापन का सदिश है।
:<math>\mathbf{N} </math> = प्रक्षेप कार्यों के रूप में कार्य करने वाले आकृति कार्यों का मैट्रिक्स।
:<math>\mathbf{N} </math> = प्रक्षेप कार्यों के रूप में कार्य करने वाले आकृति कार्यों का आव्यूह है।


समीकरण ({{EquationNote|6}}) बहुत रुचि की अन्य मात्राओं को जन्म देता है:
समीकरण ({{EquationNote|6}}) अन्य मात्राओं को उत्पन्न करता है:
<li>आभासी विस्थापन जो आभासी नोडल विस्थापन का एक कार्य है:
 
{{NumBlk|:|<math> \delta \mathbf{u} = \mathbf{N} \delta \mathbf{q}</math>|{{EquationRef|6b}}}}
आभासी विस्थापन जो आभासी नोडल विस्थापन का एक कार्य है:
<li>{{NumBlk|:|<math> \delta \mathbf{u} = \mathbf{N} \delta \mathbf{q}</math>|{{EquationRef|6b}}}}


<li>तत्वों में तनाव जो तत्व के नोड्स के विस्थापन से उत्पन्न होते हैं:
<li>तत्वों में तनाव जो तत्व के नोड्स के विस्थापन से उत्पन्न होते हैं:
{{NumBlk|:|<math>\mathbf{\epsilon} = \mathbf{Du} = \mathbf{DNq}</math>|{{EquationRef|7}}}}
{{NumBlk|:|<math>\mathbf{\epsilon} = \mathbf{Du} = \mathbf{DNq}</math>|{{EquationRef|7}}}}
जहाँ <math>\mathbf{D} </math> = [[तनाव-विस्थापन संबंध]]ों का मैट्रिक्स जो विस्थापन को [[रैखिक लोच]] सिद्धांत का उपयोग करके तनाव में परिवर्तित करता है। समीकरण ({{EquationNote|7}}) से पता चलता है कि मैट्रिक्स बी में ({{EquationNote|4}}) है
जहाँ <math>\mathbf{D} </math> = [[तनाव-विस्थापन संबंध|तनाव-विस्थापन संबंधो]] का आव्यूह है जो विस्थापन को [[रैखिक लोच]] सिद्धांत का उपयोग करके तनाव में परिवर्तित करता है। समीकरण ({{EquationNote|7}}) से पता चलता है कि आव्यूह बी में समीकरण ({{EquationNote|4}}) उपस्थित है
{{NumBlk|:|<math>\mathbf{B} = \mathbf{DN} </math>|{{EquationRef|8}}}}
{{NumBlk|:|<math>\mathbf{B} = \mathbf{DN} </math>|{{EquationRef|8}}}}


Line 73: Line 74:
</ul>
</ul>


मात्रा के एक विशिष्ट तत्व के लिए <math> V^e </math>, आभासी विस्थापन के कारण आंतरिक आभासी कार्य  ({{EquationNote|5}}) और ({{EquationNote|9}}) में ({{EquationNote|1}}) के प्रतिस्थापन द्वारा प्राप्त किया जाता है:{{NumBlk|:|<math>\mbox{Internal virtual work} = \int_{V^e}\delta\boldsymbol{\epsilon}^T \boldsymbol{\sigma} \, dV^e = \delta\ \mathbf{q}^T \int_{V^e} \mathbf{B}^T \big\{\mathbf{E}(\mathbf{Bq} - \mathbf{\epsilon}^o)+\mathbf{\sigma}^o\big\} \, dV^e </math>|{{EquationRef|10}}}}
मात्रा के एक विशिष्ट तत्व <math> V^e </math> के लिए , आभासी विस्थापन के कारण आंतरिक आभासी कार्य  ({{EquationNote|5}}) और ({{EquationNote|9}}) में ({{EquationNote|1}}) के प्रतिस्थापन द्वारा प्राप्त किया जाता है:{{NumBlk|:|<math>\mbox{Internal virtual work} = \int_{V^e}\delta\boldsymbol{\epsilon}^T \boldsymbol{\sigma} \, dV^e = \delta\ \mathbf{q}^T \int_{V^e} \mathbf{B}^T \big\{\mathbf{E}(\mathbf{Bq} - \mathbf{\epsilon}^o)+\mathbf{\sigma}^o\big\} \, dV^e </math>|{{EquationRef|10}}}}


=== एलिमेंट मेट्रिसेस ===
=== तत्व आव्यूह ===
मुख्य रूप से संदर्भ की सुविधा के लिए, विशिष्ट तत्वों से संबंधित निम्नलिखित मैट्रिक्स को अब परिभाषित किया जा सकता है:
मुख्य रूप से संदर्भ की सुविधा के लिए, विशिष्ट तत्वों से संबंधित निम्नलिखित आव्यूह को अब परिभाषित किया जा सकता है:
: तत्व कठोरता मैट्रिक्स
: तत्व कठोरता आव्यूह
{{NumBlk|::|<math> \mathbf{K}^e = \int_{V^e} \mathbf{B}^T \mathbf{E} \mathbf{B} \, dV^e </math>|{{EquationRef|11}}}}
{{NumBlk|::|<math> \mathbf{K}^e = \int_{V^e} \mathbf{B}^T \mathbf{E} \mathbf{B} \, dV^e </math>|{{EquationRef|11}}}}
: समतुल्य तत्व भार वेक्टर
: समतुल्य तत्व भार सदिश
{{NumBlk|::|<math> \mathbf{Q}^{oe} = \int_{V^e} - \mathbf{B}^T \big( \mathbf{E}\mathbf{\epsilon}^o - \mathbf{\sigma}^o\big ) \, dV^e </math>|{{EquationRef|12}}}}
{{NumBlk|::|<math> \mathbf{Q}^{oe} = \int_{V^e} - \mathbf{B}^T \big( \mathbf{E}\mathbf{\epsilon}^o - \mathbf{\sigma}^o\big ) \, dV^e </math>|{{EquationRef|12}}}}


संख्यात्मक एकीकरण के लिए गॉसियन चतुर्भुज का उपयोग करके सामान्यतः इन मेट्रिसेस का संख्यात्मक रूप से मूल्यांकन किया जाता है। उनका उपयोग निम्नलिखित को सरल करता है (10)
संख्यात्मक एकीकरण के लिए गॉसियन चतुर्भुज का उपयोग करके सामान्यतः इन आव्यूहों का संख्यात्मक रूप से मूल्यांकन किया जाता है। उनका उपयोग निम्नलिखित समीकरणों को सरल करता है (10)
{{NumBlk|:|<math>\mbox{Internal virtual work} = \delta\ \mathbf{q}^T \big( \mathbf{K}^e \mathbf{q} + \mathbf{Q}^{oe} \big) </math>|{{EquationRef|13}}}}
{{NumBlk|:|<math>\mbox{Internal virtual work} = \delta\ \mathbf{q}^T \big( \mathbf{K}^e \mathbf{q} + \mathbf{Q}^{oe} \big) </math>|{{EquationRef|13}}}}


=== प्रणाली नोडल विस्थापन के संदर्भ में तत्व आभासी कार्य ===
=== प्रतिरूप नोडल विस्थापन के संदर्भ में तत्व आभासी कार्य ===
चूंकि नोडल विस्थापन वेक्टर क्यू प्रणाली नोडल विस्थापन आर का एक उपसमुच्चय है, हम नए कॉलम और शून्य की पंक्तियों के साथ तत्व मैट्रिक्स के आकार का विस्तार करके क्यू को आर से बदल सकते हैं:
चूंकि नोडल विस्थापन सदिश क्यू , प्रतिरूप नोडल विस्थापन आर का एक उपसमुच्चय है, हम नए खंड और शून्य की पंक्तियों के साथ तत्व आव्यूह के आकार का विस्तार करके क्यू को आर से परिवर्तित कर सकते हैं:


{{NumBlk|:|<math>\mbox{Internal virtual work} = \delta\ \mathbf{r}^T \left( \mathbf{K}^e \mathbf{r} + \mathbf{Q}^{oe} \right) </math>|{{EquationRef|14}}}}
{{NumBlk|:|<math>\mbox{Internal virtual work} = \delta\ \mathbf{r}^T \left( \mathbf{K}^e \mathbf{r} + \mathbf{Q}^{oe} \right) </math>|{{EquationRef|14}}}}
जहां, सरलता के लिए, हम तत्व आव्यूहों के लिए उन्हीं प्रतीकों का उपयोग करते हैं, जिनका आकार अब विस्तारित हो गया है और साथ ही पंक्तियों और स्तंभों को उचित रूप से पुनर्व्यवस्थित किया गया है।
जहां, सरलता हेतु, हम तत्व आव्यूहों के लिए उन्हीं प्रतीकों का उपयोग करते हैं, जिनका आकार अब विस्तारित हो गया है और साथ ही पंक्तियों और स्तंभों को उचित रूप से पुनर्व्यवस्थित किया गया है।


== प्रणाली आभासी कार्य ==
== प्रणाली आभासी कार्य ==
सभी तत्वों के लिए आंतरिक आभासी कार्य (14) को समेटने से (1) का दाहिना हाथ मिलता है:
सभी तत्वों के लिए आंतरिक आभासी कार्य (14) को समायोजित करने से (1) का दाहिना भाग मिलता है:


{{NumBlk|:|<math>\mbox{System internal virtual work} = \sum_{e} \delta\ \mathbf{r}^T \left( \mathbf{k}^e \mathbf{r} + \mathbf{Q}^{oe} \right) = \delta\ \mathbf{r}^T \left( \sum_{e} \mathbf{k}^e \right)\mathbf{r} + \delta\ \mathbf{r}^T \sum_{e} \mathbf{Q}^{oe} </math>|{{EquationRef|15}}}}
{{NumBlk|:|<math>\mbox{System internal virtual work} = \sum_{e} \delta\ \mathbf{r}^T \left( \mathbf{k}^e \mathbf{r} + \mathbf{Q}^{oe} \right) = \delta\ \mathbf{r}^T \left( \sum_{e} \mathbf{k}^e \right)\mathbf{r} + \delta\ \mathbf{r}^T \sum_{e} \mathbf{Q}^{oe} </math>|{{EquationRef|15}}}}


अब (1) के बायीं ओर को ध्यान में रखते हुए, प्रणाली बाहरी आभासी कार्य में निम्न सम्मिलित हैं:
अब (1) के बायीं ओर को ध्यान में रखते हुए, प्रतिरूप बाह्य आभासी कार्य में निम्न सम्मिलित हैं:
 
 
 
 


<li>नोडल बलों R द्वारा किया गया कार्य:
<li>नोडल बलों R द्वारा किया गया कार्य:
{{NumBlk|:|<math> \delta\ \mathbf{r}^T \mathbf{R} </math>|{{EquationRef|16}}}}
{{NumBlk|:|<math> \delta\ \mathbf{r}^T \mathbf{R} </math>|{{EquationRef|16}}}}


<li>बाह्य बलों द्वारा किया गया कार्य <math> \mathbf{T}^e </math> भार पर <math> \mathbf{S}^e </math> तत्वों के किनारों या सतहों और शरीर बलों द्वारा <math> \mathbf{f}^e </math>
<li>तत्वों के किनारों या सतहों के भाग <math> \mathbf{S}^e </math> पर बाहरी बलों <math> \mathbf{T}^e </math> द्वारा किया गया कार्य और भौतिक बलों <math> \mathbf{f}^e </math> द्वारा किया गया कार्य;
:<math> \sum_{e} \int_{S^e} \delta\ \mathbf{u}^T \mathbf{T}^e \, dS^e +  \sum_{e} \int_{V^e} \delta\ \mathbf{u}^T \mathbf{f}^e \, dV^e </math>
:<math> \sum_{e} \int_{S^e} \delta\ \mathbf{u}^T \mathbf{T}^e \, dS^e +  \sum_{e} \int_{V^e} \delta\ \mathbf{u}^T \mathbf{f}^e \, dV^e </math>
का प्रतिस्थापन ({{EquationNote|6b}}) देता है:
का प्रतिस्थापन ({{EquationNote|6b}}) देता है:
Line 107: Line 112:
या
या
{{NumBlk|:|<math> -\delta\ \mathbf{q}^T \sum_{e} \left(\mathbf{Q}^{te} +  \mathbf{Q}^{fe}\right) </math>|{{EquationRef|17a}}}}
{{NumBlk|:|<math> -\delta\ \mathbf{q}^T \sum_{e} \left(\mathbf{Q}^{te} +  \mathbf{Q}^{fe}\right) </math>|{{EquationRef|17a}}}}
जहां हमने नीचे परिभाषित अतिरिक्त तत्व के मैट्रिसेस प्रस्तुत किए हैं:
जहां हमने नीचे परिभाषित अतिरिक्त तत्व के आव्यूह प्रस्तुत किए हैं:
{{NumBlk|:| <math> \mathbf{Q}^{te} =  -\int_{S^e} \mathbf{N}^T \mathbf{T}^e \, dS^e </math>|{{EquationRef|18a}}}}
{{NumBlk|:| <math> \mathbf{Q}^{te} =  -\int_{S^e} \mathbf{N}^T \mathbf{T}^e \, dS^e </math>|{{EquationRef|18a}}}}
{{NumBlk|:| <math> \mathbf{Q}^{fe} =  -\int_{V^e} \mathbf{N}^T \mathbf{f}^e \, dV^e </math>|{{EquationRef|18b}}}}
{{NumBlk|:| <math> \mathbf{Q}^{fe} =  -\int_{V^e} \mathbf{N}^T \mathbf{f}^e \, dV^e </math>|{{EquationRef|18b}}}}
पुनः,संख्यात्मक एकीकरण उनके मूल्यांकन के लिए सुविधाजनक है। क्यू का एक समान प्रतिस्थापन ({{EquationNote|17a}}) r के साथ सदिशों को पुनर्व्यवस्थित और विस्तारित करने के बाद देता है <math> \mathbf{Q}^{te}, \mathbf{Q}^{fe} </math>:
:
{{NumBlk|:|<math> -\delta\ \mathbf{r}^T \sum_{e} \left(\mathbf{Q}^{te} +  \mathbf{Q}^{fe}\right) </math>|{{EquationRef|17b}}}}पुनः,संख्यात्मक एकीकरण उनके मूल्यांकन के लिए सुविधाजनक है। क्यू का एक समान प्रतिस्थापन ({{EquationNote|17a}}) के साथ r सदिशों को पुनर्व्यवस्थित और विस्तारित करने के बाद <math> \mathbf{Q}^{te}, \mathbf{Q}^{fe} </math> देता है :
{{NumBlk|:|<math> -\delta\ \mathbf{r}^T \sum_{e} \left(\mathbf{Q}^{te} +  \mathbf{Q}^{fe}\right) </math>|{{EquationRef|17b}}}}
{{NumBlk|:|<math> -\delta\ \mathbf{r}^T \sum_{e} \left(\mathbf{Q}^{te} +  \mathbf{Q}^{fe}\right) </math>|{{EquationRef|17b}}}}


</ul>
</ul>


== प्रणाली मैट्रिसेस की असेंबली ==
== प्रतिरूप आव्यूहों की समन्वायोजन ==
जोड़ना ({{EquationNote|16}}), ({{EquationNote|17b}}) और योग के बराबर ({{EquationNote|15}}) देता है:
({{EquationNote|16}}), ({{EquationNote|17b}}) को जोड़ने और योग को (15) के समान करने पर: ({{EquationNote|15}}) देता है:
<math> \delta\ \mathbf{r}^T \mathbf{R} -\delta\ \mathbf{r}^T \sum_{e} \left( \mathbf{Q}^{te} +  \mathbf{Q}^{fe} \right) =  \delta\ \mathbf{r}^T \left( \sum_{e} \mathbf{k}^e \right)\mathbf{r} + \delta\ \mathbf{r}^T \sum_{e} \mathbf{Q}^{oe}  </math>आभासी विस्थापन के बाद से <math> \delta\ \mathbf{r}</math> मनमाने हैं, पूर्ववर्ती समानता कम हो जाती है:
<li><math> \delta\ \mathbf{r}^T \mathbf{R} -\delta\ \mathbf{r}^T \sum_{e} \left( \mathbf{Q}^{te} +  \mathbf{Q}^{fe} \right) =  \delta\ \mathbf{r}^T \left( \sum_{e} \mathbf{k}^e \right)\mathbf{r} + \delta\ \mathbf{r}^T \sum_{e} \mathbf{Q}^{oe}  </math>


<math> \mathbf{R} = \left( \sum_{e} \mathbf{k}^e \right)\mathbf{r} + \sum_{e} \left( \mathbf{Q}^{oe} + \mathbf{Q}^{te} +  \mathbf{Q}^{fe} \right) </math>इसके साथ तुलना ({{EquationNote|2}}) पता चलता है कि:
 
* प्रणाली कठोरता मैट्रिक्स तत्वों की कठोरता मैट्रिक्स को जोड़कर प्राप्त की जाती है:
<li>
<li>चूंकि आभासी विस्थापन <math> \delta\ \mathbf{r}</math> यादृच्छिक है, पूर्ववर्ती समानता कम हो जाती है:
 
<math> \mathbf{R} = \left( \sum_{e} \mathbf{k}^e \right)\mathbf{r} + \sum_{e} \left( \mathbf{Q}^{oe} + \mathbf{Q}^{te} +  \mathbf{Q}^{fe} \right) </math> इसके साथ तुलना ({{EquationNote|2}}) पता चलता है कि:
* प्रतिरूप कठोरता आव्यूह तत्वों की कठोरता आव्यूह को जोड़कर प्राप्त की जाती है:
*:<math> \mathbf{K} = \sum_{e} \mathbf{k}^e </math>
*:<math> \mathbf{K} = \sum_{e} \mathbf{k}^e </math>
* समतुल्य नोडल बलों का वेक्टर तत्वों के लोड वैक्टर को जोड़कर प्राप्त किया जाता है:
* समतुल्य नोडल बलों का सदिश तत्वों के भार को जोड़कर प्राप्त किया जाता है:
*:<math> \mathbf{R}^o = \sum_{e} \left( \mathbf{Q}^{oe} + \mathbf{Q}^{te} +  \mathbf{Q}^{fe} \right) </math>
*:<math> \mathbf{R}^o = \sum_{e} \left( \mathbf{Q}^{oe} + \mathbf{Q}^{te} +  \mathbf{Q}^{fe} \right) </math>
व्यवहार में, तत्व मैट्रिसेस न तो विस्तारित होते हैं और न ही पुनर्व्यवस्थित होते हैं। इसके अतिरिक्त, प्रणाली कठोरता मैट्रिक्स <math> \mathbf{K} </math> अलग-अलग गुणांक जोड़कर इकट्ठा किया जाता है <math> {k}_{ij}^e </math> को <math> {K}_{kl} </math> जहां सबस्क्रिप्ट ij, kl का अर्थ है कि तत्व का नोडल विस्थापन <math> {q}_{i}^e, {q}_{j}^e </math> प्रणाली के नोडल विस्थापन के साथ क्रमशः मेल खाते हैं <math> {r}_{k}, {r}_{l} </math>. इसी प्रकार, <math> \mathbf{R}^o </math> अलग-अलग गुणांक जोड़कर इकट्ठा किया जाता है <math> {Q}_{i}^e </math> को <math> {R}^o_{k} </math> जहाँ <math> {q}_{i}^e </math> माचिस <math> {r}_{k} </math>. इसका सीधा जोड़ <math> {k}_{ij}^e </math> में <math> {K}_{kl} </math> प्रक्रिया को [[प्रत्यक्ष कठोरता विधि]] का नाम देता है।
व्यवहार में, तत्व आव्यूह न तो विस्तारित होते हैं और न ही पुनर्व्यवस्थित होते हैं। इसके अतिरिक्त, प्रतिरूप कठोरता आव्यूह <math> \mathbf{K} </math> भिन्न-भिन्न गुणांक <math> {k}_{ij}^e </math> को <math> {K}_{kl} </math> से जोड़कर एकत्रित किया जाता है  जहां सबस्क्रिप्ट ij, kl का अर्थ है कि तत्व का नोडल विस्थापन <math> {q}_{i}^e, {q}_{j}^e </math> प्रतिरूप के नोडल विस्थापन <math> {r}_{k}, {r}_{l} </math> के साथ क्रमशः समान  हैं। इसी प्रकार, <math> \mathbf{R}^o </math> भिन्न-भिन्न गुणांक <math> {Q}_{i}^e </math> को <math> {R}^o_{k} </math> से जोड़कर एकत्रित किया जाता है जहाँ <math> {q}_{i}^e </math>, <math> {r}_{k} </math> के समान है।  <math> {k}_{ij}^e </math> में <math> {K}_{kl} </math> का सीधा जोड़  प्रक्रिया को [[प्रत्यक्ष कठोरता विधि]] का नाम देता है।


== यह भी देखें ==
== यह भी देखें ==
*सीमित तत्व विधि
*सीमित तत्व विधि
*[[लचीलापन विधि]]
*[[लचीलापन विधि]]
* [[मैट्रिक्स कठोरता विधि]]
* [[मैट्रिक्स कठोरता विधि|आव्यूह कठोरता विधि]]
* FEM का उपयोग करके मोडल विश्लेषण
* FEM का उपयोग करके मोडल विश्लेषण
* [[परिमित तत्व सॉफ्टवेयर पैकेजों की सूची]]
* [[परिमित तत्व सॉफ्टवेयर पैकेजों की सूची]]
Line 141: Line 151:
{{Structural engineering topics}}
{{Structural engineering topics}}


{{DEFAULTSORT:Finite Element Method In Structural Mechanics}}[[Category: सीमित तत्व विधि]] [[Category: संख्यात्मक अंतर समीकरण]]
{{DEFAULTSORT:Finite Element Method In Structural Mechanics}}
 
 


[[Category: Machine Translated Page]]
[[Category:Collapse templates|Finite Element Method In Structural Mechanics]]
[[Category:Created On 21/03/2023]]
[[Category:Created On 21/03/2023|Finite Element Method In Structural Mechanics]]
[[Category:Machine Translated Page|Finite Element Method In Structural Mechanics]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Finite Element Method In Structural Mechanics]]
[[Category:Pages with script errors|Finite Element Method In Structural Mechanics]]
[[Category:Sidebars with styles needing conversion|Finite Element Method In Structural Mechanics]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats|Finite Element Method In Structural Mechanics]]
[[Category:Templates that are not mobile friendly|Finite Element Method In Structural Mechanics]]
[[Category:Templates using TemplateData|Finite Element Method In Structural Mechanics]]
[[Category:Wikipedia metatemplates|Finite Element Method In Structural Mechanics]]
[[Category:संख्यात्मक अंतर समीकरण|Finite Element Method In Structural Mechanics]]
[[Category:सीमित तत्व विधि|Finite Element Method In Structural Mechanics]]

Latest revision as of 15:17, 11 April 2023

परिमित तत्व विधि मूल रूप से संरचनात्मक यांत्रिकी में जटिल समस्याओं के संख्यात्मक समाधान के लिए विकसित एक प्रभावशाली तकनीक है, और यह जटिल प्रणालियों के लिए उपयुक्त विधि मानी जाती है। परिमित तत्व विधि में, संरचनात्मक प्रतिरूप को उचित परिमित तत्वों के एक समुच्चय द्वारा निर्मित किया जाता है जो भिन्न-भिन्न बिंदुओं, जिन्हें दूसरे शब्दों में नोड्स कहा जाता है, पर युग्मित होते हैं। परिमित तत्वों में भौतिक गुण जैसे मोटाई, तापीय विस्तार का गुणांक, घनत्व, यंग का मापांक, कतरनी मापांक और पॉइसन का अनुपात आदि हो सकते हैं ।

इतिहास

परिमित विधि की उत्पत्ति संरचनाओं के आव्यूह विश्लेषण द्रारा चिन्हित की जा सकती है जहां एक विस्थापन या कठोरता आव्यूह प्रस्ताव की एक अवधारणा प्रस्तुत की गई थी। 1950 के दशक में अभियांत्रिकी विधियों के आधार पर परिमित तत्व अवधारणाएँ विकसित की गईं। परिमित तत्व पद्धति ने 1960 और 1970 के दशक में जॉन आरगाईरिस और सहकर्मियों द्वारा अपनी वास्तविक प्रेरणा प्राप्त की; जैसे रे डब्ल्यू क्लो द्वारा स्टटगार्ट विश्वविद्यालय में; कैलिफोर्निया विश्वविद्यालय, बर्कले में, ओल्गिएर्ड ज़िएनक्यूविज़ द्वारा, और सहकर्मी अर्नेस्ट हिंटन, ब्रूस आयरन्स [1] फिलिप जी सियारलेट द्वारा स्वानसी विश्वविद्यालय में; पियरे-एंड-मैरी-क्यूरी विश्वविद्यालय में; कॉर्नेल विश्वविद्यालय में, रिचर्ड गैलाघेर और सहकर्मियों द्वारा इत्यादि। मूल कृतियाँ जैसे कि आरगाईरिस [2] और क्लो [3] के कार्य आज के परिमित तत्व संरचनात्मक विश्लेषण विधियों का आधार बन गए।

अक्षीय, झुकने और मरोड़ वाली कठोरता जैसे भौतिक गुणों वाले सीधे या घुमावदार एक-आयामी तत्व होते है। इस प्रकार के तत्व प्रतिरूपण तार, दँतपट्टिका, ट्रस, बीम, दृढ़क, ग्रिड और ढांचे के लिए उपयुक्त है। प्रत्येक छोर पर सामान्यतः दो नोड होते हैं, जबकि घुमावदार तत्वों को अंत-नोड्स सहित कम से कम तीन नोड्स की आवश्यकता होती है । तत्व वास्तविक सदस्यों के केन्द्रक अक्ष पर स्थित होते हैं।

  • द्वि-आयामी तत्व जो केवल झिल्ली क्रिया जैसे समतल तनाव या समतल विकृति द्वारा अंतस्तल बलों का विरोध करते हैं, और प्लेटें जो अनुप्रस्थ कतरनी और झुकने की क्रिया द्वारा अनुप्रस्थ भार का विरोध करती हैं। तथा उनके पास कई प्रकार के आकार हो सकते हैं जैसे समतल या घूर्णित त्रिकोण और चतुर्भुज। नोड्स को सामान्यतः तत्व के कोनों पर रखा जाता है, और यदि उच्च सटीकता के लिए आवश्यक हो, तो अतिरिक्त बिन्दु को तत्व किनारों के साथ या तत्व के भीतर भी रखा जा सकता है। तत्व वास्तविक परत मोटाई की मध्य-सतह पर स्थित होते हैं।
  • झिल्लियों, मोटी प्लेटों, आवरणों और ठोसों जैसी अक्षीय समस्याओं के लिए टोरस के आकार के तत्व होते है। इन तत्वों का अन्तः वर्ग पहले वर्णित प्रकारों के समान है इस प्रकार पतली प्लेटों और गोले के लिए एक आयामी, और ठोस, मोटी प्लेटों और गोले के लिए द्वि-आयामी तत्व होते है ।
  • 3-डी ठोस जैसे यंत्र घटकों, बांधों, तटबंध परिवहन या मिट्टी के द्रव्यमान प्रतिरूपण के लिए त्रि-आयामी तत्व का प्रयोग किया जाता है। सरल तत्व आकृतियों में चतुष्फलकीय और षट्फलकीय तत्व सम्मिलित हैं। नोड्स को शीर्ष और संभवतः तत्व के फलकों या तत्व के भीतर रखा जाता है।

तत्व अंतर्संबंध और विस्थापन

तत्व केवल बाह्य नोड्स पर परस्पर जुड़े हुए होते हैं, और कुल मिलाकर उन्हें सम्पूर्ण क्षेत्र को यथासंभव उपयुक्त रूप से समाविष्ट करना चाहिए। नोड्स में सदिस नोडल विस्थापन या स्वतंत्रता की श्रेणी होगी जिसमें परिवर्तन, घूर्णन और विशेष अनुप्रयोगों के लिए विस्थापन के उच्च क्रम यौगिक सम्मिलित हो सकते हैं। जब नोड्स विस्थापित होते हैं, तो वे तत्वों को एक निश्चित विधि से साथ खींचेंगे जो तत्व निर्माण द्वारा निर्धारित होते हैं। दूसरे शब्दों में, तत्व में किसी भी बिंदु के विस्थापन को नोडल विस्थापन से प्रक्षेपित किया जाएगा, और यह समाधान की अनुमानित प्रकृति का मुख्य कारण है।

व्यावहारिक विचार

अनुप्रयोग के दृष्टिकोण से, प्रतिरूप को इस तरह से प्रारूप करना महत्वपूर्ण है, जिससे :

  • प्रतिरूप के आकार को कम करने के लिए समरूपता या विरोधी समरूपता स्थितियों का उपयोग किया जाता है।
  • विस्थापन संगतता, किसी भी आवश्यक असतता सहित, नोड्स पर सुनिश्चित की जाती है, और अधिमानतः, तत्व किनारों के साथ-साथ, विशेष रूप से जब आसन्न तत्व विभिन्न प्रकार, सामग्री या मोटाई के होते हैं तो कई नोड्स के विस्थापन की संगतता सामान्यतः बाधा संबंधों के माध्यम से निर्मित की जा सकती है।
  • तत्वों के व्यवहार को स्थानीय और विश्व स्तर पर वास्तविक प्रतिरूप के प्रमुख कार्यों को समर्थित करना होता है।
  • स्वीकार्य उपयुक्तता उत्पन्न करने के लिए तत्व जाल पर्याप्त रूप से सुदृढ़ होने चाहिए। उपयुक्तता का आकलन करने के लिए, जाल को तब तक परिष्कृत किया जाता है जब तक कि महत्वपूर्ण परिणाम या कुछ परिवर्तन नहीं दिखाते। उच्च उपयुक्तता के लिए, तत्वों का मापदंड अनुपात यथासंभव उसके उपयुक्त होता है, और छोटे तत्वों का उपयोग उच्च प्रतिबल प्रवणता के भागों पर किया जाता है।
  • समरूपता अक्षो के नोड्स पर विशेष ध्यान देने के साथ उचित समर्थन बाधाएं लगाई जाती हैं।

बड़े मानदंडों पर वाणिज्यिक सॉफ्टवेयर का संकुल प्रायः जाल उत्पन्न करने और निविस्ट और निर्गत तत्वों के चित्रमय प्रदर्शन की सुविधा प्रदान करते हैं, जो निविस्ट डेटा और परिणामों की व्याख्या और दोनों के सत्यापन की सुविधा प्रदान करते हैं।

परिमित तत्व विधि-विस्थापन सूत्रीकरण का सैद्धांतिक अवलोकन: तत्वों से, प्रतिरूप समाधान तक

जबकि परिमित तत्व विधि के सिद्धांत को भिन्न-भिन्न दृष्टिकोण या महत्व में प्रस्तुत किया जा सकता है, संरचनात्मक विश्लेषण के लिए इसका विकास आभासी कार्य सिद्धांत या न्यूनतम सम्पूर्ण संभावित ऊर्जा सिद्धांत के माध्यम से अधिक पारंपरिक प्रस्तावों का अनुसरण करता है। आभासी कार्य सिद्धांत प्रस्ताव अधिक सामान्य है क्योंकि यह रैखिक और गैर-रैखिक भौतिक व्यवहार दोनों पर लागू होता है। आभासी कार्य पद्धति ऊर्जा के संरक्षण की एक अभिव्यक्ति है: रूढ़िवादी प्रणालियों के लिए, लागू बलों के एक समुच्चय द्वारा प्रतिरूप में जोड़ा गया और कार्य संरचना के घटकों के प्रतिबल ऊर्जा के रूप में प्रतिरूप में संग्रहीत ऊर्जा के समान होता है।

संरचनात्मक प्रतिरूप के लिए आभासी कार्य का सिद्धांत बाह्य और आंतरिक आभासी कार्य की गणितीय पहचान को व्यक्त करता है:

 

 

 

 

(1)

दूसरे शब्दों में, बाह्य बलों के समुच्चय द्वारा तंत्र पर किए गए कार्य का योग तंत्र को निर्मित करने वाले तत्वों में तनाव ऊर्जा के रूप में संग्रहीत कार्य के समान होता है।

उपरोक्त समीकरण के दाईं ओर के आभासी आंतरिक कार्य को भिन्न-भिन्न तत्वों पर किए गए आभासी कार्य का योग करके प्राप्त किया जा सकता है। उत्तरार्द्ध की आवश्यकता है कि बल-विस्थापन कार्यों का उपयोग किया जाए जो प्रत्येक व्यक्तिगत तत्व के लिए प्रतिक्रिया का वर्णन करता है। इसलिए, संरचना के विस्थापन को सामूहिक रूप से असतत तत्वों की प्रतिक्रिया से वर्णित किया गया है। समीकरण मात्र एक समीकरण के अतिरिक्त संरचना के भिन्न-भिन्न तत्वों के छोटे क्षेत्र के लिए लिखे गए हैं जो पूरे प्रतिरूप के रूप में प्रतिक्रिया का वर्णन करता है। उत्तरार्द्ध के परिणामस्वरूप एक जटिल समस्या उत्पन्न होगी, इसलिए परिमित तत्व विधि की उपयोगिता है, जैसा कि बाद के अनुभागों में दिखाया गया है, Eq.(1) प्रतिरूप के लिए निम्नलिखित शासी संतुलन समीकरण की पुष्टि करता है:

 

 

 

 

(2)

जहाँ

= नोडल बलों का सदिश , प्रतिरूप के नोड्स पर लागू बाह्य बलों का प्रतिनिधित्व करता है।
= प्रतिरूप कठोरता आव्यूह, जो भिन्न-भिन्न तत्वों की कठोरता आव्यूह का सामूहिक प्रभाव है:.
= प्रतिरूप के नोडल विस्थापन का सदिश।
= समतुल्य नोडल बलों के सदिश , नोडल बलों के अतिरिक्त अन्य सभी बाह्य प्रभावों का प्रतिनिधित्व करते हैं जो पूर्ववर्ती नोडल बल सदिश आर में सम्मिलित हैं। इन बाह्य प्रभावों में वितरित या केंद्रित सतह बल, भौतिक बल, तापीय प्रभाव, प्रारंभिक तनाव सम्मिलित हो सकते हैं।

प्रतीकात्मक रूप से एक बार समर्थन की बाधाओं के लिए उत्तरदायी होने के उपरांत, रैखिक समीकरणों की प्रतिरूप को हल करके नोडल विस्थापन प्राप्त किया जाता है

 

 

 

 

(3)

इसके उपरांत, भिन्न-भिन्न तत्वों में तनाव निम्नानुसार प्राप्त किया जा सकता है:

 

 

 

 

(4)

 

 

 

 

(5)

जहाँ

= एक नोडल विस्थापन का सदिश - प्रतिरूप विस्थापन सदिश आर का एक उपसमुच्चय जो विचाराधीन तत्वों से संबंधित है।
= तनाव-विस्थापन आव्यूह जो तत्व में किसी भी बिंदु पर नोडल विस्थापन क्यू को उपभेदों में परिवर्तित कर देता है।
= लोच आव्यूह जो प्रभावी उपभेदों को तत्व में किसी भी बिंदु पर तनाव में परिवर्तित कर देता है।
= तत्वों में प्रारंभिक उपभेदों का सदिश है।
= तत्वों में प्रारंभिक तनाव का सदिश है।

आभासी कार्य समीकरण को लागू करने से प्रतिरूप (1) के लिए, हम तत्व आव्यूह स्थापित कर सकते हैं जहां , के साथ प्रतिरूप आव्यूहों और . को समन्वायोजन करने की तकनीक है। अन्य आव्यूहों जैसे , , और ज्ञात मूल्य हैं और इन्हें सीधे डेटा निविष्ट से समायोजित किया जा सकता है।

प्रक्षेप या आकृति कार्य

मान लीजिए की एक विशिष्ट तत्व के नोडल विस्थापन का सदिश है। तत्व के किसी भी अन्य बिंदु पर विस्थापन प्रक्षेप कार्यों के उपयोग से प्रतीकात्मक रूप से प्राप्त किया जा सकता है:

 

 

 

 

(6)

जहाँ

= तत्व के किसी बिंदु {x, y, z} पर विस्थापन का सदिश है।
= प्रक्षेप कार्यों के रूप में कार्य करने वाले आकृति कार्यों का आव्यूह है।

समीकरण (6) अन्य मात्राओं को उत्पन्न करता है:

आभासी विस्थापन जो आभासी नोडल विस्थापन का एक कार्य है:

  •  

     

     

     

    (6b)

  • तत्वों में तनाव जो तत्व के नोड्स के विस्थापन से उत्पन्न होते हैं:

     

     

     

     

    (7)

    जहाँ = तनाव-विस्थापन संबंधो का आव्यूह है जो विस्थापन को रैखिक लोच सिद्धांत का उपयोग करके तनाव में परिवर्तित करता है। समीकरण (7) से पता चलता है कि आव्यूह बी में समीकरण (4) उपस्थित है

     

     

     

     

    (8)

  • तत्व के आभासी नोडल विस्थापन के अनुरूप आभासी तनाव:

     

     

     

     

    (9)

    मात्रा के एक विशिष्ट तत्व के लिए , आभासी विस्थापन के कारण आंतरिक आभासी कार्य (5) और (9) में (1) के प्रतिस्थापन द्वारा प्राप्त किया जाता है:

     

     

     

     

    (10)

    तत्व आव्यूह

    मुख्य रूप से संदर्भ की सुविधा के लिए, विशिष्ट तत्वों से संबंधित निम्नलिखित आव्यूह को अब परिभाषित किया जा सकता है:

    तत्व कठोरता आव्यूह

     

     

     

     

    (11)

    समतुल्य तत्व भार सदिश

     

     

     

     

    (12)

    संख्यात्मक एकीकरण के लिए गॉसियन चतुर्भुज का उपयोग करके सामान्यतः इन आव्यूहों का संख्यात्मक रूप से मूल्यांकन किया जाता है। उनका उपयोग निम्नलिखित समीकरणों को सरल करता है (10)

     

     

     

     

    (13)

    प्रतिरूप नोडल विस्थापन के संदर्भ में तत्व आभासी कार्य

    चूंकि नोडल विस्थापन सदिश क्यू , प्रतिरूप नोडल विस्थापन आर का एक उपसमुच्चय है, हम नए खंड और शून्य की पंक्तियों के साथ तत्व आव्यूह के आकार का विस्तार करके क्यू को आर से परिवर्तित कर सकते हैं:

     

     

     

     

    (14)

    जहां, सरलता हेतु, हम तत्व आव्यूहों के लिए उन्हीं प्रतीकों का उपयोग करते हैं, जिनका आकार अब विस्तारित हो गया है और साथ ही पंक्तियों और स्तंभों को उचित रूप से पुनर्व्यवस्थित किया गया है।

    प्रणाली आभासी कार्य

    सभी तत्वों के लिए आंतरिक आभासी कार्य (14) को समायोजित करने से (1) का दाहिना भाग मिलता है:

     

     

     

     

    (15)

    अब (1) के बायीं ओर को ध्यान में रखते हुए, प्रतिरूप बाह्य आभासी कार्य में निम्न सम्मिलित हैं:



  • नोडल बलों R द्वारा किया गया कार्य:

     

     

     

     

    (16)

  • तत्वों के किनारों या सतहों के भाग पर बाहरी बलों द्वारा किया गया कार्य और भौतिक बलों द्वारा किया गया कार्य;
    का प्रतिस्थापन (6b) देता है:
    या

     

     

     

     

    (17a)

    जहां हमने नीचे परिभाषित अतिरिक्त तत्व के आव्यूह प्रस्तुत किए हैं:

     

     

     

     

    (18a)

     

     

     

     

    (18b)

     

     

     

     

    (17b)

    पुनः,संख्यात्मक एकीकरण उनके मूल्यांकन के लिए सुविधाजनक है। क्यू का एक समान प्रतिस्थापन (17a) के साथ r सदिशों को पुनर्व्यवस्थित और विस्तारित करने के बाद देता है :

     

     

     

     

    (17b)

    प्रतिरूप आव्यूहों की समन्वायोजन

    (16), (17b) को जोड़ने और योग को (15) के समान करने पर: (15) देता है:

  • चूंकि आभासी विस्थापन यादृच्छिक है, पूर्ववर्ती समानता कम हो जाती है: इसके साथ तुलना (2) पता चलता है कि:
    • प्रतिरूप कठोरता आव्यूह तत्वों की कठोरता आव्यूह को जोड़कर प्राप्त की जाती है:
    • समतुल्य नोडल बलों का सदिश तत्वों के भार को जोड़कर प्राप्त किया जाता है:
    व्यवहार में, तत्व आव्यूह न तो विस्तारित होते हैं और न ही पुनर्व्यवस्थित होते हैं। इसके अतिरिक्त, प्रतिरूप कठोरता आव्यूह भिन्न-भिन्न गुणांक को से जोड़कर एकत्रित किया जाता है जहां सबस्क्रिप्ट ij, kl का अर्थ है कि तत्व का नोडल विस्थापन प्रतिरूप के नोडल विस्थापन के साथ क्रमशः समान हैं। इसी प्रकार, भिन्न-भिन्न गुणांक को से जोड़कर एकत्रित किया जाता है जहाँ , के समान है। में का सीधा जोड़ प्रक्रिया को प्रत्यक्ष कठोरता विधि का नाम देता है।

    यह भी देखें

    संदर्भ

    1. Hinton, Ernest; Irons, Bruce (July 1968). "कम से कम वर्ग परिमित तत्वों का उपयोग करके प्रायोगिक डेटा को चौरसाई करना". Strain. 4 (3): 24–27. doi:10.1111/j.1475-1305.1968.tb01368.x.
    2. Argyris, J.H and Kelsey, S. Energy theorems and Structural Analysis Butterworth Scientific publications, London, 1954
    3. Clough, R.W, “The Finite Element in Plane Stress Analysis.” Proceedings, 2nd ASCE Conference on Electronic Computations, Pittsburgh, Sep 1960