लारमोर फॉर्मूला: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Gives the total power radiated by an accelerating, nonrelativistic point charge}} Image:Montreal-tower-top.thumb2.jpg|thumb|right|250px|एक याग...")
 
No edit summary
 
(28 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Gives the total power radiated by an accelerating, nonrelativistic point charge}}
{{short description|Gives the total power radiated by an accelerating, nonrelativistic point charge}}
[[Image:Montreal-tower-top.thumb2.jpg|thumb|right|250px|एक यागी-उदय एंटीना। एंटीना में इलेक्ट्रॉनों को गति देकर रेडियो तरंगों को एंटीना से विकीर्ण किया जा सकता है। यह एक [[जुटना (भौतिकी)]] प्रक्रिया है, इसलिए विकीर्ण की गई कुल शक्ति त्वरण करने वाले इलेक्ट्रॉनों की संख्या के वर्ग के समानुपाती होती है।]]
[[Image:Montreal-tower-top.thumb2.jpg|thumb|right|250px|एक यागी-उदय एंटीना। एंटीना में इलेक्ट्रॉनों को गति देकर रेडियो तरंगों को एंटीना से विकीर्ण किया जा सकता है। यह एक [[जुटना (भौतिकी)]] प्रक्रिया है, इसलिए विकीर्ण की गई कुल ऊर्जा त्वरण करने वाले इलेक्ट्रॉनों की संख्या के वर्ग के समानुपाती होती है।]]
{{confuse|text=the phenomenon in nuclear magnetic resonance known as [[Larmor precession]]}}
[[ बिजली का गतिविज्ञान |वैद्युतगतिकी]] में, लार्मर सूत्र का उपयोग एक गैर-सापेक्ष बिंदु आवेश द्वारा विकीर्ण की गई कुल [[शक्ति (भौतिकी)|ऊर्जा (भौतिकी)]] की गणना करने के लिए किया जाता है क्योंकि यह त्वरित होता है। यह पहली बार 1897 में जे. जे. लार्मर द्वारा प्राप्त किया गया था,<ref>{{cite journal | doi = 10.1080/14786449708621095 | volume=44 | issue=271 | title=LXIII.On the theory of the magnetic influence on spectra; and on the radiation from moving ions | year=1897 | journal=Philosophical Magazine |series= 5 | pages=503–512 | author=Larmor J| url=https://zenodo.org/record/1431241 }} Formula is mentioned in the text on the last page.</ref> प्रकाश के तरंग सिद्धांत के संदर्भ में प्रस्तुत किया गया है।
[[ बिजली का गतिविज्ञान ]] में, लार्मर सूत्र का उपयोग एक गैर-सापेक्ष बिंदु आवेश द्वारा विकिरित कुल [[शक्ति (भौतिकी)]] की गणना करने के लिए किया जाता है क्योंकि यह गतिमान होता है। इसे सबसे पहले जोसेफ लारमोर|जे. 1897 में जे। लार्मर,<ref>{{cite journal | doi = 10.1080/14786449708621095 | volume=44 | issue=271 | title=LXIII.On the theory of the magnetic influence on spectra; and on the radiation from moving ions | year=1897 | journal=Philosophical Magazine |series= 5 | pages=503–512 | author=Larmor J| url=https://zenodo.org/record/1431241 }} Formula is mentioned in the text on the last page.</ref> प्रकाश के तरंग सिद्धांत के संदर्भ में।


जब कोई आवेशित कण (जैसे एक [[इलेक्ट्रॉन]], एक [[प्रोटॉन]], या एक [[आयन]]) त्वरित होता है, तो ऊर्जा [[विद्युत चुम्बकीय तरंग]]ों के रूप में विकीर्ण होती है। एक कण के लिए जिसका वेग [[प्रकाश की गति]] के सापेक्ष छोटा है (अर्थात, गैर-सापेक्षवादी), कुल शक्ति जो कण विकीर्ण करती है (जब एक बिंदु आवेश के रूप में माना जाता है) की गणना Larmor सूत्र द्वारा की जा सकती है:
जब कोई आवेशित कण (जैसे [[इलेक्ट्रॉन]], [[प्रोटॉन]], या [[आयन]]) त्वरित होता है, तो ऊर्जा [[विद्युत चुम्बकीय तरंग|विद्युत चुम्बकीय तरंगों]] के रूप में विकीर्ण होती है। कण के लिए जिसका वेग [[प्रकाश की गति]] के सापेक्ष से छोटा होता है (अर्थात, गैर-सापेक्षवादी), कुल ऊर्जा जो कण को विकीर्ण करती है (जब एक बिंदु आवेश के रूप में माना जाता है) की गणना लार्मर सूत्र द्वारा की जा सकती है:  
<math display="block"> P = {2 \over 3} \frac{q^2}{ 4 \pi \varepsilon_0 c} \left(\frac{\dot v}{c}\right)^2 = {2 \over 3} \frac{q^2 a^2}{ 4 \pi \varepsilon_0 c^3}= \frac{q^2 a^2}{6 \pi \varepsilon_0 c^3} = \mu_0 \frac{q^2 a^2}{6 \pi c} \text{ (SI units)} </math>
<math display="block"> P = {2 \over 3} \frac{q^2}{ 4 \pi \varepsilon_0 c} \left(\frac{\dot v}{c}\right)^2 = {2 \over 3} \frac{q^2 a^2}{ 4 \pi \varepsilon_0 c^3}= \frac{q^2 a^2}{6 \pi \varepsilon_0 c^3} = \mu_0 \frac{q^2 a^2}{6 \pi c} \text{ (SI units)} </math><math display="block"> P = {2 \over 3} \frac{q^2 a^2}{ c^3} \text{ (cgs units)} </math>
<math display="block"> P = {2 \over 3} \frac{q^2 a^2}{ c^3} \text{ (cgs units)} </math>
जहाँ <math> \dot v </math> या <math> a </math> — उचित त्वरण होते है, <math> q </math> - द्वारा आवेशित करना होता है, और <math> c </math> - प्रकाश की गति होती है। सापेक्षवादी सिद्धांत सामान्यीकरण लियानार्ड-विएचर्ट क्षमता द्वारा दिया गया है।
कहाँ <math> \dot v </math> या <math> a </math> — उचित त्वरण है, <math> q </math> - चार्ज है, और <math> c </math> - प्रकाश की गति है। एक सापेक्षवादी सामान्यीकरण लियानार्ड-विएचर्ट क्षमता द्वारा दिया गया है।


किसी भी इकाई प्रणाली में, एकल इलेक्ट्रॉन द्वारा विकीर्ण की गई शक्ति को [[शास्त्रीय इलेक्ट्रॉन त्रिज्या]] और [[इलेक्ट्रॉन द्रव्यमान]] के रूप में व्यक्त किया जा सकता है:
किसी भी इकाई प्रणाली में, एकल इलेक्ट्रॉन द्वारा विकीर्ण की गई ऊर्जा को मौलिक [[शास्त्रीय इलेक्ट्रॉन त्रिज्या|इलेक्ट्रॉन त्रिज्या]] और [[इलेक्ट्रॉन द्रव्यमान]] के रूप में व्यक्त किया जा सकता है:
<math display="block"> P = \frac{2}{3} \frac{m_e r_e a^2}{c} </math>
<math display="block"> P = \frac{2}{3} \frac{m_e r_e a^2}{c} </math>
एक निहितार्थ यह है कि [[बोहर मॉडल]] के रूप में एक नाभिक के चारों ओर परिक्रमा करने वाले एक इलेक्ट्रॉन को ऊर्जा खोनी चाहिए, नाभिक में गिरना चाहिए और परमाणु को ढह जाना चाहिए। [[क्वांटम यांत्रिकी]] पेश किए जाने तक यह पहेली हल नहीं हुई थी।
एक निहितार्थ यह है कि [[बोहर मॉडल|बोह्र मॉडल]] के रूप में एक नाभिक के चारों ओर परिक्रमा करने वाले एक इलेक्ट्रॉन को ऊर्जा खो देनी चाहिए, नाभिक में गिर कर और परमाणु को संचय हो जाना चाहिए। यह पहेली तब तक हल नहीं हुई थी जब तक [[क्वांटम यांत्रिकी]] प्रस्तुत नहीं की गई है।


== व्युत्पत्ति ==
== व्युत्पत्ति ==
Line 17: Line 15:
=== व्युत्पत्ति 1: गणितीय दृष्टिकोण (सीजीएस इकाइयों का उपयोग करके) ===
=== व्युत्पत्ति 1: गणितीय दृष्टिकोण (सीजीएस इकाइयों का उपयोग करके) ===


हमें पहले विद्युत और चुंबकीय क्षेत्र के रूप को खोजने की जरूरत है। खेतों को लिखा जा सकता है (पूर्ण व्युत्पत्ति के लिए लियनार्ड-विचर्ट क्षमता देखें)
हमें पहले विद्युत और चुंबकीय क्षेत्र के रूप को खोजने की जरूरत है। क्षेत्रों को लिखा जा सकता है (पूर्ण व्युत्पत्ति के लिए लियनार्ड-विचर्ट क्षमता देखें)


<math display="block">\mathbf{E}(\mathbf{r},t) = q\left(\frac{\mathbf{n}-\boldsymbol{\beta}}{\gamma^2(1-\boldsymbol{\beta}\cdot\mathbf{n})^3 R^2}\right)_{\rm{ret}} + \frac{q}{c}\left(\frac{\mathbf{n}\times[(\mathbf{n}-\boldsymbol{\beta})\times\dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta}\cdot\mathbf{n})^3R}\right)_{\rm{ret}}</math>
<math display="block">\mathbf{E}(\mathbf{r},t) = q\left(\frac{\mathbf{n}-\boldsymbol{\beta}}{\gamma^2(1-\boldsymbol{\beta}\cdot\mathbf{n})^3 R^2}\right)_{\rm{ret}} + \frac{q}{c}\left(\frac{\mathbf{n}\times[(\mathbf{n}-\boldsymbol{\beta})\times\dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta}\cdot\mathbf{n})^3R}\right)_{\rm{ret}}</math>
और <math display="block"> \mathbf{B} = \mathbf{n}\times\mathbf{E}, </math> कहाँ <math>\boldsymbol{\beta}</math> चार्ज के वेग से विभाजित है <math>c</math>, <math>\dot{\boldsymbol{\beta}}</math> चार्ज के त्वरण से विभाजित है {{math|''c''}}, <math>\mathbf{n}</math> में एक इकाई वेक्टर है <math> \mathbf{r} - \mathbf{r}_0 </math> दिशा, <math>R</math> का परिमाण है <math>\mathbf{r} - \mathbf{r}_0</math>, <math>\mathbf{r}_0</math> चार्ज का स्थान है, और <math> \gamma = (1 - \beta^2 )^{-1/2} </math>. दाईं ओर की शर्तों का मूल्यांकन [[मंद समय]] पर किया जाता है <math>t_\text{r} = t - R/c</math>.
और <math display="block"> \mathbf{B} = \mathbf{n}\times\mathbf{E}, </math> जहाँ <math>\boldsymbol{\beta}</math> आवेशित वेग से विभाजित होता है <math>c</math>, <math>\dot{\boldsymbol{\beta}}</math> आवेश का त्वरण जिसे c से विभाजित किया जाता है, <math>\mathbf{n}</math> में एक इकाई सदिश होती है <math> \mathbf{r} - \mathbf{r}_0 </math> दिशा, <math>R</math> का परिमाण है <math>\mathbf{r} - \mathbf{r}_0</math>, <math>\mathbf{r}_0</math> आवेशित स्थान होता है, और <math> \gamma = (1 - \beta^2 )^{-1/2} </math> दाईं ओर की शर्तों का मूल्यांकन [[मंद समय|कम समय]] पर किया जाता है <math>t_\text{r} = t - R/c</math>


दाहिनी ओर आवेशित कण के वेग और त्वरण से जुड़े विद्युत क्षेत्रों का योग है। वेग क्षेत्र केवल पर निर्भर करता है <math>\boldsymbol{\beta}</math> जबकि त्वरण क्षेत्र दोनों पर निर्भर करता है <math>\boldsymbol{\beta}</math> और <math>\dot{\boldsymbol{\beta}}</math> और दोनों के बीच कोणीय संबंध। चूंकि वेग क्षेत्र आनुपातिक है <math>1/R^2</math>, यह दूरी के साथ बहुत जल्दी गिर जाता है। दूसरी ओर, त्वरण क्षेत्र आनुपातिक है <math>1/R</math>, जिसका अर्थ है कि यह दूरी के साथ और धीरे-धीरे गिरता है। इस वजह से, त्वरण क्षेत्र विकिरण क्षेत्र का प्रतिनिधि है और अधिकांश [[ऊर्जा]] को चार्ज से दूर ले जाने के लिए जिम्मेदार है।
दाहिनी ओर आवेशित कण के वेग और त्वरण में समाहित विद्युत क्षेत्रों का योग है। केवल वेग क्षेत्र पर निर्भर करता है, <math>\boldsymbol{\beta}</math> जबकि त्वरण क्षेत्र दोनों पर निर्भर करता है <math>\boldsymbol{\beta}</math> और <math>\dot{\boldsymbol{\beta}}</math> और दोनों के बीच कोणीय संबंध होता है। चूंकि वेग क्षेत्र आनुपातिक होता है <math>1/R^2</math>, और यह दूरी के साथ बहुत जल्दी गिर जाता है। दूसरी ओर, त्वरण क्षेत्र आनुपातिक होता है <math>1/R</math>, जिसका अर्थ है कि यह दूरी के साथ और धीरे-धीरे गिरता है। इस वजह से, त्वरण क्षेत्र विकिरण क्षेत्र का प्रतिनिधितत्व करता है और अधिकांश [[ऊर्जा]] को आवेशित से दूर ले जाने के लिए जिम्मेदार होता है।


हम इसके [[पॉयंटिंग वेक्टर]] की गणना करके विकिरण क्षेत्र की ऊर्जा प्रवाह घनत्व पा सकते हैं:
हम इसके [[पॉयंटिंग वेक्टर|पॉयंटिंग संवाहक]] की गणना करके विकिरण क्षेत्र की ऊर्जा प्रवाह घनत्व को पा सकते हैं:
<math display="block">\mathbf{S} = \frac{c}{4\pi}\mathbf{E}_\text{a}\times\mathbf{B}_\text{a},</math>
<math display="block">\mathbf{S} = \frac{c}{4\pi}\mathbf{E}_\text{a}\times\mathbf{B}_\text{a},</math>
जहां 'ए' सबस्क्रिप्ट इस बात पर जोर देते हैं कि हम केवल त्वरण क्षेत्र ले रहे हैं। यह मानते हुए कि समय पर कण तुरंत आराम पर है, चुंबकीय और विद्युत क्षेत्रों के बीच संबंध में प्रतिस्थापन <math>t_\text{r}</math> और सरलीकरण देता है<ref group="note">The case where <math>\beta\left(t_\text{r}\right) \neq 0 </math> is more complicated and is treated, for example, in Griffiths's ''Introduction to Electrodynamics''.</ref>
जहां 'ए' अवनिर्देश इस बात महत्व देते हैं कि केवल त्वरण क्षेत्र प्राप्ति कर रहे हैं। यह मानते हुए कि गति पर कण स्थिर होते है, चुंबकीय और विद्युत क्षेत्रों के बीच संबंध में प्रतिस्थापन <math>t_\text{r}</math> और सरलीकरण बना देता है<ref name="note">The case where <math>\beta\left(t_\text{r}\right) \neq 0 </math> is more complicated and is treated, for example, in Griffiths's ''Introduction to Electrodynamics''.</ref>
<math display="block">\mathbf{S} = \frac{q^2}{4\pi c}\left|\frac{\mathbf{n}\times(\mathbf{n}\times\dot{\boldsymbol{\beta}})}{R}\right|^2 \mathbf{n} .</math>
<math display="block">\mathbf{S} = \frac{q^2}{4\pi c}\left|\frac{\mathbf{n}\times(\mathbf{n}\times\dot{\boldsymbol{\beta}})}{R}\right|^2 \mathbf{n} .</math>
यदि हम त्वरण और अवलोकन वेक्टर के बीच के कोण को बराबर होने दें <math>\theta</math>, और हम त्वरण का परिचय देते हैं <math>\mathbf{a} = \dot{\boldsymbol{\beta}} c</math>, तो प्रति इकाई [[ठोस कोण]] से निकलने वाली शक्ति है
यदि त्वरण और अवलोकन संवाहक के बीच के कोण को बराबर होने दें <math>\theta</math>, और त्वरण का प्रस्तुत करते हैं <math>\mathbf{a} = \dot{\boldsymbol{\beta}} c</math>, तो प्रति इकाई [[ठोस कोण]] से निकलने वाली ऊर्जा होती है
<math display="block">\frac{dP}{d\Omega} = \frac{q^2}{4\pi c}\frac{\sin^2(\theta)\, a^2}{c^2}.</math>
<math display="block">\frac{dP}{d\Omega} = \frac{q^2}{4\pi c}\frac{\sin^2(\theta)\, a^2}{c^2}.</math>
इस मात्रा को सभी ठोस कोणों (अर्थात, ऊपर) पर एकीकृत करके विकीर्ण की गई कुल शक्ति पाई जाती है <math>\theta</math> और <math>\phi</math>). यह देता है
इस मात्रा को सभी ठोस कोणों (अर्थात, ऊपर) पर एकीकृत करके विकीर्ण की गई कुल ऊर्जा पाई जाती है <math>\theta</math> और <math>\phi</math>). यह देता है
<math display="block">P = \frac{2}{3}\frac{q^2 a^2}{c^3},</math>
<math display="block">P = \frac{2}{3}\frac{q^2 a^2}{c^3},</math>
जो गैर-सापेक्ष त्वरित चार्ज के लिए Larmor परिणाम है। यह कण द्वारा विकरित शक्ति को उसके त्वरण से संबंधित करता है। यह स्पष्ट रूप से दर्शाता है कि चार्ज जितनी तेजी से बढ़ता है, विकिरण उतना ही अधिक होगा। हम इसकी अपेक्षा करेंगे क्योंकि विकिरण क्षेत्र त्वरण पर निर्भर है।
जो गैर-सापेक्ष त्वरित आवेशित के लिए लार्मर परिणाम होते है। यह कण द्वारा विकरित ऊर्जा को उसके त्वरण से संबंधित होता है। यह स्पष्ट रूप से दर्शाता है कि आवेशित जितनी तेजी से बढ़ता है, विकिरण उतना ही अधिक होगा। हम इसकी अपेक्षा करेंगे क्योंकि विकिरण क्षेत्र त्वरण पर निर्भर करता है।


== सापेक्षवादी सामान्यीकरण ==
== सापेक्षवादी सामान्यीकरण ==
Line 38: Line 36:
=== सहपरिवर्ती रूप ===
=== सहपरिवर्ती रूप ===


गति के संदर्भ में लिखा गया है, {{math|'''p'''}}, असापेक्षतावादी Larmor सूत्र है (CGS इकाइयों में)<ref name="jackson665">{{citation | last=Jackson|first=J.D.|title=Classical Electrodynamics|edition=3rd|pages=665&ndash;8}}</ref>
संवेग के संदर्भ में लिखा गया है, {{math|'''p'''}}, असापेक्षतावादी लार्मर सूत्र है (CGS इकाइयों में)<ref name="jackson665">{{citation | last=Jackson|first=J.D.|title=Classical Electrodynamics|edition=3rd|pages=665&ndash;8}}</ref>
<math display="block"> P = \frac{2}{3}\frac{q^2}{m^2 c^3} |\dot {\mathbf p}|^2.</math>
<math display="block"> P = \frac{2}{3}\frac{q^2}{m^2 c^3} |\dot {\mathbf p}|^2.</math>
शक्ति {{math|''P''}} को [[लोरेंत्ज़ अपरिवर्तनीय]] दिखाया जा सकता है।<ref name="jackson665" />लार्मर सूत्र के किसी भी सापेक्षवादी सामान्यीकरण को संबंधित होना चाहिए {{math|''P''}} कुछ अन्य लोरेंत्ज़ अपरिवर्तनीय मात्रा में। मात्रा <math>|\dot{\mathbf p}|^2</math> गैर-सापेक्षवादी सूत्र में प्रकट होने से पता चलता है कि सापेक्षतावादी रूप से सही सूत्र में [[चार-त्वरण]] के आंतरिक उत्पाद को ले कर पाया जाने वाला लोरेंट्ज़ स्केलर शामिल होना चाहिए {{math|''a''<sup>μ</sup> {{=}} ''dp''<sup>μ</sup>/''d''τ}} खुद के साथ [यहाँ {{math|''p''<sup>μ</sup> {{=}} (γ''mc'', γ''m'''''v''')}} [[चार गति]] है]। Larmor सूत्र का सही आपेक्षिक सामान्यीकरण है (CGS इकाइयों में)<ref name="jackson665" />
ऊर्जा {{math|''P''}} को [[लोरेंत्ज़ अपरिवर्तनीय]] दिखाया जा सकता है।<ref name="jackson665" /> लार्मर सूत्र के किसी भी सापेक्षवादी सामान्यीकरण {{math|''P''}} को कुछ मात्रा में लोरेंत्ज़ अपरिवर्तनीय मात्रा से संबंधित होना चाहिए । <math>|\dot{\mathbf p}|^2</math> गैर-सापेक्षवादी सूत्र में प्रकट होने से पता चलता है कि सापेक्षतावादी रूप से सही सूत्र में [[चार-त्वरण]] {{math|''a''<sup>μ</sup> {{=}} ''dp''<sup>μ</sup>/''d''τ}} के आंतरिक गुणनफल को लेकर पाया गया लोरेंत्ज़ अदिश सम्मलित होना चाहिए स्वयं  [यहाँ {{math|''p''<sup>μ</sup> {{=}} (γ''mc'', γ''m'''''v''')}} [[चार गति|चार-संवेग होते]] है]। लार्मर सूत्र का सही आपेक्षिक सामान्यीकरण होता है (CGS इकाइयों में)<ref name="jackson665" />


{{equation box 1|equation=<math>P = -\frac{2}{3}\frac{q^2}{m^2c^3}\frac{dp_{\mu}}{d\tau}\frac{dp^{\mu}}{d\tau}.</math>}}
{{equation box 1|equation=<math>P = -\frac{2}{3}\frac{q^2}{m^2c^3}\frac{dp_{\mu}}{d\tau}\frac{dp^{\mu}}{d\tau}.</math>}}


यह दिखाया जा सकता है कि यह आंतरिक उत्पाद किसके द्वारा दिया गया है<ref name="jackson665" />
यह दिखाया जा सकता है कि यह आंतरिक गुणन किसके द्वारा दिया गया है<ref name="jackson665" />


<math display="block">\frac{dp_{\mu}}{d\tau}\frac{dp^{\mu}}{d\tau} = \beta^2\left(\frac{dp}{d\tau}\right)^2 - \left(\frac{d{\mathbf p}}{d\tau}\right)^2,</math>
<math display="block">\frac{dp_{\mu}}{d\tau}\frac{dp^{\mu}}{d\tau} = \beta^2\left(\frac{dp}{d\tau}\right)^2 - \left(\frac{d{\mathbf p}}{d\tau}\right)^2,</math>
और इसलिए सीमा में {{math|''β'' ≪ 1}}, यह कम हो जाता है <math>-|\dot{\mathbf p}|^2</math>, इस प्रकार गैर-सापेक्षवादी मामले को पुन: प्रस्तुत करना।
और इसलिए {{math|''β'' ≪ 1}},की सीमा में, यह कम हो जाता है<math>-|\dot{\mathbf p}|^2</math>, इस प्रकार गैर-सापेक्षवादी स्थिति को पुन: उत्पन्न करता है। लोरेंत्ज़ अपरिवर्तनीय उचित त्वरण के संदर्भ में व्यक्त किया गया है, सापेक्षतावादी लार्मर ऊर्जा होती है (सीजीएस में अभी भी)


=== गैर-सहसंयोजक रूप ===
=== गैर-सहसंयोजक रूप ===


उपरोक्त आंतरिक गुणनफल को के संदर्भ में भी लिखा जा सकता है {{math|'''''β'''''}} और इसका समय व्युत्पन्न। फिर Larmor सूत्र का सापेक्षिक सामान्यीकरण है (CGS इकाइयों में)<ref name="jackson665" />
उपरोक्त आंतरिक गुणनफल {{math|'''''β'''''}} और इसका समय व्युत्पन्न को इसके संदर्भ में भी लिखा जा सकता है। फिर लार्मर सूत्र का सापेक्षिक सामान्यीकरण है (CGS इकाइयों में)<ref name="jackson665" />


{{equation box 1|equation=<math>P = \frac{2q^2\gamma^6}{3c}\left[(\dot{\boldsymbol \beta})^2 - ({\boldsymbol \beta} \times \dot{\boldsymbol \beta})^2\right].</math>}}
{{equation box 1|equation=<math>P = \frac{2q^2\gamma^6}{3c}\left[(\dot{\boldsymbol \beta})^2 - ({\boldsymbol \beta} \times \dot{\boldsymbol \beta})^2\right].</math>}}


यह लियोनार्ड परिणाम है, जो पहली बार 1898 में प्राप्त हुआ था। <math>\gamma^6</math> h> का अर्थ है कि जब [[लोरेंत्ज़ कारक]] <math display="inline">\gamma=1/\sqrt{1-\beta^2}</math> शून्य के बहुत करीब है (यानी <math>\beta \ll 1</math>) कण द्वारा उत्सर्जित विकिरण नगण्य होने की संभावना है। हालाँकि, जैसा <math>\beta \rightarrow 1</math> विकिरण की तरह बढ़ता है <math>\gamma^6</math> चूंकि कण ईएम तरंगों के रूप में अपनी ऊर्जा खोने की कोशिश करता है। इसके अलावा, जब त्वरण और वेग ओर्थोगोनल होते हैं तो शक्ति एक कारक से कम हो जाती है <math>1-\beta^2=1/\gamma^2</math>, अर्थात् कारक <math>\gamma^6</math> बन जाता है <math>\gamma^4</math>. गति जितनी तेज होती है, यह कमी उतनी ही अधिक होती जाती है।
यह लियोनार्ड परिणाम है, जो पहली बार 1898 में प्राप्त हुआ था। <math>\gamma^6</math> h> का अर्थ है कि जब [[लोरेंत्ज़ कारक]] <math display="inline">\gamma=1/\sqrt{1-\beta^2}</math> शून्य के बहुत समीप है (अर्थात <math>\beta \ll 1</math>) कण द्वारा उत्सर्जित विकिरण नगण्य होने की संभावना होती है। चूँकि, जैसा <math>\beta \rightarrow 1</math> विकिरण की तरह बढ़ता है <math>\gamma^6</math> चूंकि कण ईएम तरंगों के रूप में अपनी ऊर्जा खोने की कोशिश करता है। इसके अतिरिक्त, जब त्वरण और वेग ओर्थोगोनल होते हैं तो ऊर्जा एक कारक से कम हो जाती है <math>1-\beta^2=1/\gamma^2</math>, अर्थात् कारक <math>\gamma^6</math>हो जाता है <math>\gamma^4</math>. गति जितनी तेज होती है, यह कमी उतनी ही अधिक होती जाती है।


विभिन्न प्रकार की गति में किस प्रकार के विकिरण नुकसान की उम्मीद की जा सकती है, इसका अनुमान लगाने के लिए हम लियोनार्ड के परिणाम का उपयोग कर सकते हैं।
विभिन्न प्रकार की गति में किस प्रकार के विकिरण नुकसान की उम्मीद की जा सकती है, इसका अनुमान लगाने के लिए हम लियोनार्ड के परिणाम का उपयोग कर सकते हैं।
Line 61: Line 59:
=== कोणीय वितरण ===
=== कोणीय वितरण ===


विकिरणित शक्ति का कोणीय वितरण एक सामान्य सूत्र द्वारा दिया जाता है, चाहे कण सापेक्षवादी हो या नहीं। सीजीएस इकाइयों में, यह सूत्र है<ref>Jackson eq (14.38)</ref>
विकिरणित ऊर्जा का कोणीय वितरण एक सामान्य सूत्र द्वारा दिया जाता है, चाहे कण सापेक्षवादी हो या नहीं। सीजीएस इकाइयों में, यह सूत्र है<ref>Jackson eq (14.38)</ref>
<math display="block">\frac{d P}{d\Omega} = \frac{q^2}{4\pi c} \frac{|\mathbf{\hat{n}} \times [(\mathbf{\hat{n}} - \boldsymbol{\beta})\times \dot{\boldsymbol{\beta}}]|^2}{(1-\mathbf{\hat{n}}\cdot\boldsymbol{\beta})^5},</math>
<math display="block">\frac{d P}{d\Omega} = \frac{q^2}{4\pi c} \frac{|\mathbf{\hat{n}} \times [(\mathbf{\hat{n}} - \boldsymbol{\beta})\times \dot{\boldsymbol{\beta}}]|^2}{(1-\mathbf{\hat{n}}\cdot\boldsymbol{\beta})^5},</math>
कहाँ <math>\mathbf{\hat{n}}</math> एक इकाई वेक्टर है जो कण से प्रेक्षक की ओर इशारा करता है। रैखिक गति (त्वरण के समानांतर वेग) के मामले में, यह सरल हो जाता है<ref>Jackson eq (14.39)</ref>
जहाँ <math>\mathbf{\hat{n}}</math> कण से पर्यवेक्षक की ओर इंगित करते हुए एक इकाई वेक्टर होता है। रैखिक गति (त्वरण के समानांतर वेग) के स्थितियों में, यह सरल हो जाता है<ref>Jackson eq (14.39)</ref>
<math display="block">\frac{d P}{d\Omega} = \frac{q^2a^2}{4\pi c^3}\frac{\sin^2 \theta}{(1-\beta \cos\theta)^5},</math>
<math display="block">\frac{d P}{d\Omega} = \frac{q^2a^2}{4\pi c^3}\frac{\sin^2 \theta}{(1-\beta \cos\theta)^5},</math>
कहाँ <math>\theta</math> पर्यवेक्षक और कण की गति के बीच का कोण है।
जहाँ <math>\theta</math> प्रेक्षक और कण की गति के बीच का कोण होता  है।
<!--==अनुप्रयोग ==
{{cleanup|section|date=May 2010}}
{{Expand section|date=May 2010}}


== मुद्दे और निहितार्थ ==
<references />


===विकिरण प्रतिक्रिया===
[[Category:Lua-based templates]]
आवेशित कण से निकलने वाला विकिरण ऊर्जा और संवेग वहन करता है। ऊर्जा और संवेग संरक्षण को संतुष्ट करने के लिए, आवेशित कण को ​​उत्सर्जन के समय एक प्रतिक्षेप का अनुभव करना चाहिए। विकिरण को आवेशित कण पर अतिरिक्त बल लगाना चाहिए। इस बल को अब्राहम-लोरेंत्ज़ बल | अब्राहम-लोरेंत्ज़ बल के रूप में जाना जाता है, जबकि इसकी गैर-सापेक्षतावादी सीमा को लोरेंत्ज़ आत्म-बल के रूप में जाना जाता है और सापेक्षतावादी रूपों को लोरेंत्ज़-डिराक बल या अब्राहम-लोरेंत्ज़-डिराक बल के रूप में जाना जाता है।<ref name=":1">{{Cite web |last=Kirk |first=McDonald |date=6 May 2017 |title=विकिरण प्रतिक्रिया के इतिहास पर 1|url=http://kirkmcd.princeton.edu/examples/selfforce.pdf |url-status=live |archive-url=https://web.archive.org/web/20221017154015/http://kirkmcd.princeton.edu/examples/selfforce.pdf |archive-date=17 October 2022 |access-date=20 November 2022 |website=Princeton}}</ref>
[[Category:Machine Translated Page]]
 
[[Category:Pages with reference errors]]
 
[[Category:Pages with script errors|Short description/doc]]
=== [[परमाणु भौतिकी]] ===
[[Category:Short description with empty Wikidata description]]
बोह्र मॉडल में एक नाभिक की परिक्रमा करने वाला शास्त्रीय इलेक्ट्रॉन त्वरण का अनुभव करता है और उसे विकीर्ण करना चाहिए। नतीजतन, इलेक्ट्रॉन ऊर्जा खो देता है और इलेक्ट्रॉन को अंततः नाभिक में सर्पिल होना चाहिए। शास्त्रीय यांत्रिकी के अनुसार, परमाणु अस्थिर होते हैं। स्थिर इलेक्ट्रॉन कक्षाओं के अवलोकन से इस शास्त्रीय भविष्यवाणी का उल्लंघन होता है। समस्या को परमाणु भौतिकी के क्वांटम यांत्रिकी विवरण के साथ हल किया गया है, जो शुरू में बोह्र मॉडल द्वारा प्रदान किया गया था। इलेक्ट्रॉन ऑर्बिटल्स की स्थिरता के शास्त्रीय समाधान को गैर-विकिरण स्थिति | गैर-विकिरण स्थितियों और ज्ञात भौतिक कानूनों के अनुसार प्रदर्शित किया जा सकता है।<ref>{{cite journal |author=Goedecke, G. H. |year=1964 |title=क्वांटम थ्योरी के लिए शास्त्रीय रूप से विकिरण रहित गति और संभावित प्रभाव|journal=Physical Review |volume=135 |issue=1B |pages=B281–B288 |bibcode=1964PhRv..135..281G |doi=10.1103/PhysRev.135.B281}}</ref>
[[Category:Template documentation pages|Short description/doc]]
 
[[Category:Templates Vigyan Ready]]
 
[[Category:Templates that add a tracking category]]
== यह भी देखें ==
[[Category:Templates that generate short descriptions]]
*[[आणविक सिद्धांत]]
[[Category:Templates using TemplateData]]
* [[साइक्लोट्रॉन विकिरण]]
*विद्युत चुम्बकीय [[तरंग समीकरण]]
* घुमावदार स्पेसटाइम में मैक्सवेल के समीकरण
*[[विकिरण प्रतिक्रिया]]
* तरंग समीकरण
* व्हीलर-फेनमैन अवशोषक सिद्धांत
 
==टिप्पणियाँ==
{{reflist|group="note"}}
 
 
==संदर्भ==
{{reflist}}
 
* J. Larmor, "On a dynamical theory of the electric and luminiferous medium", ''Philosophical Transactions of the Royal Society'' '''190''', (1897) pp.&nbsp;205–300 ''(Third and last in a series of papers with the same name).''
*{{cite book |author=Jackson, John D.|title=Classical Electrodynamics (3rd ed.)|publisher=Wiley|year=1998|isbn=0-471-30932-X}} (Section 14.2ff)
* {{cite book |author1=Misner, Charles |author2=Thorne, Kip S. |author3=Wheeler, John Archibald | title=Gravitation | location=San Francisco | publisher=W. H. Freeman | year=1973 | isbn=0-7167-0344-0}}
* {{cite book |author1=R. P. Feynman |author2=F. B. Moringo |author3=W. G. Wagner | title=Feynman Lectures on Gravitation |url=https://archive.org/details/feynmanlectureso0000feyn_g4q1 |url-access=registration | publisher=Addison-Wesley | year=1995 | isbn=0-201-62734-5}}
 
{{DEFAULTSORT:Larmor Formula}}[[Category: एंटेना (रेडियो)]] [[Category: परमाणु भौतिकी]] [[Category: बिजली का गतिविज्ञान]] [[Category: विद्युत चुम्बकीय विकिरण]] [[Category: विद्युत चुंबकत्व]] [[Category: भौतिकी के समीकरण]]  
 
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 24/03/2023]]

Latest revision as of 15:41, 19 April 2023

एक यागी-उदय एंटीना। एंटीना में इलेक्ट्रॉनों को गति देकर रेडियो तरंगों को एंटीना से विकीर्ण किया जा सकता है। यह एक जुटना (भौतिकी) प्रक्रिया है, इसलिए विकीर्ण की गई कुल ऊर्जा त्वरण करने वाले इलेक्ट्रॉनों की संख्या के वर्ग के समानुपाती होती है।

वैद्युतगतिकी में, लार्मर सूत्र का उपयोग एक गैर-सापेक्ष बिंदु आवेश द्वारा विकीर्ण की गई कुल ऊर्जा (भौतिकी) की गणना करने के लिए किया जाता है क्योंकि यह त्वरित होता है। यह पहली बार 1897 में जे. जे. लार्मर द्वारा प्राप्त किया गया था,[1] प्रकाश के तरंग सिद्धांत के संदर्भ में प्रस्तुत किया गया है।

जब कोई आवेशित कण (जैसे इलेक्ट्रॉन, प्रोटॉन, या आयन) त्वरित होता है, तो ऊर्जा विद्युत चुम्बकीय तरंगों के रूप में विकीर्ण होती है। कण के लिए जिसका वेग प्रकाश की गति के सापेक्ष से छोटा होता है (अर्थात, गैर-सापेक्षवादी), कुल ऊर्जा जो कण को विकीर्ण करती है (जब एक बिंदु आवेश के रूप में माना जाता है) की गणना लार्मर सूत्र द्वारा की जा सकती है:

जहाँ या — उचित त्वरण होते है, - द्वारा आवेशित करना होता है, और - प्रकाश की गति होती है। सापेक्षवादी सिद्धांत सामान्यीकरण लियानार्ड-विएचर्ट क्षमता द्वारा दिया गया है।

किसी भी इकाई प्रणाली में, एकल इलेक्ट्रॉन द्वारा विकीर्ण की गई ऊर्जा को मौलिक इलेक्ट्रॉन त्रिज्या और इलेक्ट्रॉन द्रव्यमान के रूप में व्यक्त किया जा सकता है:

एक निहितार्थ यह है कि बोह्र मॉडल के रूप में एक नाभिक के चारों ओर परिक्रमा करने वाले एक इलेक्ट्रॉन को ऊर्जा खो देनी चाहिए, नाभिक में गिर कर और परमाणु को संचय हो जाना चाहिए। यह पहेली तब तक हल नहीं हुई थी जब तक क्वांटम यांत्रिकी प्रस्तुत नहीं की गई है।

व्युत्पत्ति

व्युत्पत्ति 1: गणितीय दृष्टिकोण (सीजीएस इकाइयों का उपयोग करके)

हमें पहले विद्युत और चुंबकीय क्षेत्र के रूप को खोजने की जरूरत है। क्षेत्रों को लिखा जा सकता है (पूर्ण व्युत्पत्ति के लिए लियनार्ड-विचर्ट क्षमता देखें)

और
जहाँ आवेशित वेग से विभाजित होता है , आवेश का त्वरण जिसे c से विभाजित किया जाता है, में एक इकाई सदिश होती है दिशा, का परिमाण है , आवेशित स्थान होता है, और दाईं ओर की शर्तों का मूल्यांकन कम समय पर किया जाता है

दाहिनी ओर आवेशित कण के वेग और त्वरण में समाहित विद्युत क्षेत्रों का योग है। केवल वेग क्षेत्र पर निर्भर करता है, जबकि त्वरण क्षेत्र दोनों पर निर्भर करता है और और दोनों के बीच कोणीय संबंध होता है। चूंकि वेग क्षेत्र आनुपातिक होता है , और यह दूरी के साथ बहुत जल्दी गिर जाता है। दूसरी ओर, त्वरण क्षेत्र आनुपातिक होता है , जिसका अर्थ है कि यह दूरी के साथ और धीरे-धीरे गिरता है। इस वजह से, त्वरण क्षेत्र विकिरण क्षेत्र का प्रतिनिधितत्व करता है और अधिकांश ऊर्जा को आवेशित से दूर ले जाने के लिए जिम्मेदार होता है।

हम इसके पॉयंटिंग संवाहक की गणना करके विकिरण क्षेत्र की ऊर्जा प्रवाह घनत्व को पा सकते हैं:

जहां 'ए' अवनिर्देश इस बात महत्व देते हैं कि केवल त्वरण क्षेत्र प्राप्ति कर रहे हैं। यह मानते हुए कि गति पर कण स्थिर होते है, चुंबकीय और विद्युत क्षेत्रों के बीच संबंध में प्रतिस्थापन और सरलीकरण बना देता है[2]
यदि त्वरण और अवलोकन संवाहक के बीच के कोण को बराबर होने दें , और त्वरण का प्रस्तुत करते हैं , तो प्रति इकाई ठोस कोण से निकलने वाली ऊर्जा होती है
इस मात्रा को सभी ठोस कोणों (अर्थात, ऊपर) पर एकीकृत करके विकीर्ण की गई कुल ऊर्जा पाई जाती है और ). यह देता है
जो गैर-सापेक्ष त्वरित आवेशित के लिए लार्मर परिणाम होते है। यह कण द्वारा विकरित ऊर्जा को उसके त्वरण से संबंधित होता है। यह स्पष्ट रूप से दर्शाता है कि आवेशित जितनी तेजी से बढ़ता है, विकिरण उतना ही अधिक होगा। हम इसकी अपेक्षा करेंगे क्योंकि विकिरण क्षेत्र त्वरण पर निर्भर करता है।

सापेक्षवादी सामान्यीकरण

सहपरिवर्ती रूप

संवेग के संदर्भ में लिखा गया है, p, असापेक्षतावादी लार्मर सूत्र है (CGS इकाइयों में)[3]

ऊर्जा P को लोरेंत्ज़ अपरिवर्तनीय दिखाया जा सकता है।[3] लार्मर सूत्र के किसी भी सापेक्षवादी सामान्यीकरण P को कुछ मात्रा में लोरेंत्ज़ अपरिवर्तनीय मात्रा से संबंधित होना चाहिए । गैर-सापेक्षवादी सूत्र में प्रकट होने से पता चलता है कि सापेक्षतावादी रूप से सही सूत्र में चार-त्वरण aμ = dpμ/dτ के आंतरिक गुणनफल को लेकर पाया गया लोरेंत्ज़ अदिश सम्मलित होना चाहिए स्वयं [यहाँ pμ = (γmc, γmv) चार-संवेग होते है]। लार्मर सूत्र का सही आपेक्षिक सामान्यीकरण होता है (CGS इकाइयों में)[3]

यह दिखाया जा सकता है कि यह आंतरिक गुणन किसके द्वारा दिया गया है[3]

और इसलिए β ≪ 1,की सीमा में, यह कम हो जाता है, इस प्रकार गैर-सापेक्षवादी स्थिति को पुन: उत्पन्न करता है। लोरेंत्ज़ अपरिवर्तनीय उचित त्वरण के संदर्भ में व्यक्त किया गया है, सापेक्षतावादी लार्मर ऊर्जा होती है (सीजीएस में अभी भी)

गैर-सहसंयोजक रूप

उपरोक्त आंतरिक गुणनफल β और इसका समय व्युत्पन्न को इसके संदर्भ में भी लिखा जा सकता है। फिर लार्मर सूत्र का सापेक्षिक सामान्यीकरण है (CGS इकाइयों में)[3]

यह लियोनार्ड परिणाम है, जो पहली बार 1898 में प्राप्त हुआ था। h> का अर्थ है कि जब लोरेंत्ज़ कारक शून्य के बहुत समीप है (अर्थात ) कण द्वारा उत्सर्जित विकिरण नगण्य होने की संभावना होती है। चूँकि, जैसा विकिरण की तरह बढ़ता है चूंकि कण ईएम तरंगों के रूप में अपनी ऊर्जा खोने की कोशिश करता है। इसके अतिरिक्त, जब त्वरण और वेग ओर्थोगोनल होते हैं तो ऊर्जा एक कारक से कम हो जाती है , अर्थात् कारक हो जाता है . गति जितनी तेज होती है, यह कमी उतनी ही अधिक होती जाती है।

विभिन्न प्रकार की गति में किस प्रकार के विकिरण नुकसान की उम्मीद की जा सकती है, इसका अनुमान लगाने के लिए हम लियोनार्ड के परिणाम का उपयोग कर सकते हैं।

कोणीय वितरण

विकिरणित ऊर्जा का कोणीय वितरण एक सामान्य सूत्र द्वारा दिया जाता है, चाहे कण सापेक्षवादी हो या नहीं। सीजीएस इकाइयों में, यह सूत्र है[4]

जहाँ कण से पर्यवेक्षक की ओर इंगित करते हुए एक इकाई वेक्टर होता है। रैखिक गति (त्वरण के समानांतर वेग) के स्थितियों में, यह सरल हो जाता है[5]
जहाँ प्रेक्षक और कण की गति के बीच का कोण होता है।

  1. Larmor J (1897). "LXIII.On the theory of the magnetic influence on spectra; and on the radiation from moving ions". Philosophical Magazine. 5. 44 (271): 503–512. doi:10.1080/14786449708621095. Formula is mentioned in the text on the last page.
  2. The case where is more complicated and is treated, for example, in Griffiths's Introduction to Electrodynamics.
  3. 3.0 3.1 3.2 3.3 3.4 Jackson, J.D., Classical Electrodynamics (3rd ed.), pp. 665–8
  4. Jackson eq (14.38)
  5. Jackson eq (14.39)