लारमोर फॉर्मूला: Difference between revisions
No edit summary |
|||
(8 intermediate revisions by 4 users not shown) | |||
Line 9: | Line 9: | ||
किसी भी इकाई प्रणाली में, एकल इलेक्ट्रॉन द्वारा विकीर्ण की गई ऊर्जा को मौलिक [[शास्त्रीय इलेक्ट्रॉन त्रिज्या|इलेक्ट्रॉन त्रिज्या]] और [[इलेक्ट्रॉन द्रव्यमान]] के रूप में व्यक्त किया जा सकता है: | किसी भी इकाई प्रणाली में, एकल इलेक्ट्रॉन द्वारा विकीर्ण की गई ऊर्जा को मौलिक [[शास्त्रीय इलेक्ट्रॉन त्रिज्या|इलेक्ट्रॉन त्रिज्या]] और [[इलेक्ट्रॉन द्रव्यमान]] के रूप में व्यक्त किया जा सकता है: | ||
<math display="block"> P = \frac{2}{3} \frac{m_e r_e a^2}{c} </math> | <math display="block"> P = \frac{2}{3} \frac{m_e r_e a^2}{c} </math> | ||
एक निहितार्थ यह है कि [[बोहर मॉडल|बोह्र मॉडल]] के रूप में एक नाभिक के चारों ओर परिक्रमा करने वाले एक इलेक्ट्रॉन को ऊर्जा खो देनी चाहिए, नाभिक में गिर कर और परमाणु को संचय हो जाना चाहिए। यह पहेली तब तक हल नहीं हुई थी जब तक [[क्वांटम यांत्रिकी]] प्रस्तुत नहीं की गई | एक निहितार्थ यह है कि [[बोहर मॉडल|बोह्र मॉडल]] के रूप में एक नाभिक के चारों ओर परिक्रमा करने वाले एक इलेक्ट्रॉन को ऊर्जा खो देनी चाहिए, नाभिक में गिर कर और परमाणु को संचय हो जाना चाहिए। यह पहेली तब तक हल नहीं हुई थी जब तक [[क्वांटम यांत्रिकी]] प्रस्तुत नहीं की गई है। | ||
== व्युत्पत्ति == | == व्युत्पत्ति == | ||
Line 18: | Line 18: | ||
<math display="block">\mathbf{E}(\mathbf{r},t) = q\left(\frac{\mathbf{n}-\boldsymbol{\beta}}{\gamma^2(1-\boldsymbol{\beta}\cdot\mathbf{n})^3 R^2}\right)_{\rm{ret}} + \frac{q}{c}\left(\frac{\mathbf{n}\times[(\mathbf{n}-\boldsymbol{\beta})\times\dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta}\cdot\mathbf{n})^3R}\right)_{\rm{ret}}</math> | <math display="block">\mathbf{E}(\mathbf{r},t) = q\left(\frac{\mathbf{n}-\boldsymbol{\beta}}{\gamma^2(1-\boldsymbol{\beta}\cdot\mathbf{n})^3 R^2}\right)_{\rm{ret}} + \frac{q}{c}\left(\frac{\mathbf{n}\times[(\mathbf{n}-\boldsymbol{\beta})\times\dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta}\cdot\mathbf{n})^3R}\right)_{\rm{ret}}</math> | ||
और <math display="block"> \mathbf{B} = \mathbf{n}\times\mathbf{E}, </math> जहाँ <math>\boldsymbol{\beta}</math> आवेशित वेग से विभाजित होता है <math>c</math>, <math>\dot{\boldsymbol{\beta}}</math> आवेश का त्वरण जिसे c से विभाजित किया जाता है, <math>\mathbf{n}</math> में एक इकाई सदिश होती है <math> \mathbf{r} - \mathbf{r}_0 </math> दिशा, <math>R</math> का परिमाण है <math>\mathbf{r} - \mathbf{r}_0</math>, <math>\mathbf{r}_0</math> आवेशित स्थान होता है, और <math> \gamma = (1 - \beta^2 )^{-1/2} </math> दाईं ओर की शर्तों का मूल्यांकन [[मंद समय]] पर किया जाता है <math>t_\text{r} = t - R/c</math> | और <math display="block"> \mathbf{B} = \mathbf{n}\times\mathbf{E}, </math> जहाँ <math>\boldsymbol{\beta}</math> आवेशित वेग से विभाजित होता है <math>c</math>, <math>\dot{\boldsymbol{\beta}}</math> आवेश का त्वरण जिसे c से विभाजित किया जाता है, <math>\mathbf{n}</math> में एक इकाई सदिश होती है <math> \mathbf{r} - \mathbf{r}_0 </math> दिशा, <math>R</math> का परिमाण है <math>\mathbf{r} - \mathbf{r}_0</math>, <math>\mathbf{r}_0</math> आवेशित स्थान होता है, और <math> \gamma = (1 - \beta^2 )^{-1/2} </math> दाईं ओर की शर्तों का मूल्यांकन [[मंद समय|कम समय]] पर किया जाता है <math>t_\text{r} = t - R/c</math> | ||
दाहिनी ओर आवेशित कण के वेग और त्वरण में समाहित विद्युत क्षेत्रों का योग है। केवल वेग क्षेत्र पर निर्भर करता है, <math>\boldsymbol{\beta}</math> जबकि त्वरण क्षेत्र दोनों पर निर्भर करता है <math>\boldsymbol{\beta}</math> और <math>\dot{\boldsymbol{\beta}}</math> और दोनों के बीच कोणीय संबंध होता है। चूंकि वेग क्षेत्र आनुपातिक होता है <math>1/R^2</math>, और यह दूरी के साथ बहुत जल्दी गिर जाता है। दूसरी ओर, त्वरण क्षेत्र आनुपातिक होता है <math>1/R</math>, जिसका अर्थ है कि यह दूरी के साथ और धीरे-धीरे गिरता है। इस वजह से, त्वरण क्षेत्र विकिरण क्षेत्र का प्रतिनिधितत्व करता है और अधिकांश [[ऊर्जा]] को आवेशित से दूर ले जाने के लिए जिम्मेदार होता है। | दाहिनी ओर आवेशित कण के वेग और त्वरण में समाहित विद्युत क्षेत्रों का योग है। केवल वेग क्षेत्र पर निर्भर करता है, <math>\boldsymbol{\beta}</math> जबकि त्वरण क्षेत्र दोनों पर निर्भर करता है <math>\boldsymbol{\beta}</math> और <math>\dot{\boldsymbol{\beta}}</math> और दोनों के बीच कोणीय संबंध होता है। चूंकि वेग क्षेत्र आनुपातिक होता है <math>1/R^2</math>, और यह दूरी के साथ बहुत जल्दी गिर जाता है। दूसरी ओर, त्वरण क्षेत्र आनुपातिक होता है <math>1/R</math>, जिसका अर्थ है कि यह दूरी के साथ और धीरे-धीरे गिरता है। इस वजह से, त्वरण क्षेत्र विकिरण क्षेत्र का प्रतिनिधितत्व करता है और अधिकांश [[ऊर्जा]] को आवेशित से दूर ले जाने के लिए जिम्मेदार होता है। | ||
Line 24: | Line 24: | ||
हम इसके [[पॉयंटिंग वेक्टर|पॉयंटिंग संवाहक]] की गणना करके विकिरण क्षेत्र की ऊर्जा प्रवाह घनत्व को पा सकते हैं: | हम इसके [[पॉयंटिंग वेक्टर|पॉयंटिंग संवाहक]] की गणना करके विकिरण क्षेत्र की ऊर्जा प्रवाह घनत्व को पा सकते हैं: | ||
<math display="block">\mathbf{S} = \frac{c}{4\pi}\mathbf{E}_\text{a}\times\mathbf{B}_\text{a},</math> | <math display="block">\mathbf{S} = \frac{c}{4\pi}\mathbf{E}_\text{a}\times\mathbf{B}_\text{a},</math> | ||
जहां 'ए' अवनिर्देश इस बात महत्व देते हैं कि केवल त्वरण क्षेत्र प्राप्ति कर रहे हैं। यह मानते हुए कि गति पर कण स्थिर होते है, चुंबकीय और विद्युत क्षेत्रों के बीच संबंध में प्रतिस्थापन <math>t_\text{r}</math> और सरलीकरण बना देता है<ref | जहां 'ए' अवनिर्देश इस बात महत्व देते हैं कि केवल त्वरण क्षेत्र प्राप्ति कर रहे हैं। यह मानते हुए कि गति पर कण स्थिर होते है, चुंबकीय और विद्युत क्षेत्रों के बीच संबंध में प्रतिस्थापन <math>t_\text{r}</math> और सरलीकरण बना देता है<ref name="note">The case where <math>\beta\left(t_\text{r}\right) \neq 0 </math> is more complicated and is treated, for example, in Griffiths's ''Introduction to Electrodynamics''.</ref> | ||
<math display="block">\mathbf{S} = \frac{q^2}{4\pi c}\left|\frac{\mathbf{n}\times(\mathbf{n}\times\dot{\boldsymbol{\beta}})}{R}\right|^2 \mathbf{n} .</math> | <math display="block">\mathbf{S} = \frac{q^2}{4\pi c}\left|\frac{\mathbf{n}\times(\mathbf{n}\times\dot{\boldsymbol{\beta}})}{R}\right|^2 \mathbf{n} .</math> | ||
यदि त्वरण और अवलोकन संवाहक के बीच के कोण को बराबर होने दें <math>\theta</math>, और त्वरण का प्रस्तुत करते हैं <math>\mathbf{a} = \dot{\boldsymbol{\beta}} c</math>, तो प्रति इकाई [[ठोस कोण]] से निकलने वाली ऊर्जा होती है | यदि त्वरण और अवलोकन संवाहक के बीच के कोण को बराबर होने दें <math>\theta</math>, और त्वरण का प्रस्तुत करते हैं <math>\mathbf{a} = \dot{\boldsymbol{\beta}} c</math>, तो प्रति इकाई [[ठोस कोण]] से निकलने वाली ऊर्जा होती है | ||
Line 45: | Line 45: | ||
<math display="block">\frac{dp_{\mu}}{d\tau}\frac{dp^{\mu}}{d\tau} = \beta^2\left(\frac{dp}{d\tau}\right)^2 - \left(\frac{d{\mathbf p}}{d\tau}\right)^2,</math> | <math display="block">\frac{dp_{\mu}}{d\tau}\frac{dp^{\mu}}{d\tau} = \beta^2\left(\frac{dp}{d\tau}\right)^2 - \left(\frac{d{\mathbf p}}{d\tau}\right)^2,</math> | ||
और इसलिए {{math|''β'' ≪ 1}},की सीमा में, यह कम हो जाता है<math>-|\dot{\mathbf p}|^2</math>, इस प्रकार गैर-सापेक्षवादी स्थिति को पुन: उत्पन्न करता है। लोरेंत्ज़ अपरिवर्तनीय उचित त्वरण के संदर्भ में व्यक्त, सापेक्षतावादी लार्मर ऊर्जा है (सीजीएस में अभी भी) | और इसलिए {{math|''β'' ≪ 1}},की सीमा में, यह कम हो जाता है<math>-|\dot{\mathbf p}|^2</math>, इस प्रकार गैर-सापेक्षवादी स्थिति को पुन: उत्पन्न करता है। लोरेंत्ज़ अपरिवर्तनीय उचित त्वरण के संदर्भ में व्यक्त किया गया है, सापेक्षतावादी लार्मर ऊर्जा होती है (सीजीएस में अभी भी) | ||
=== गैर-सहसंयोजक रूप === | === गैर-सहसंयोजक रूप === | ||
Line 61: | Line 61: | ||
विकिरणित ऊर्जा का कोणीय वितरण एक सामान्य सूत्र द्वारा दिया जाता है, चाहे कण सापेक्षवादी हो या नहीं। सीजीएस इकाइयों में, यह सूत्र है<ref>Jackson eq (14.38)</ref> | विकिरणित ऊर्जा का कोणीय वितरण एक सामान्य सूत्र द्वारा दिया जाता है, चाहे कण सापेक्षवादी हो या नहीं। सीजीएस इकाइयों में, यह सूत्र है<ref>Jackson eq (14.38)</ref> | ||
<math display="block">\frac{d P}{d\Omega} = \frac{q^2}{4\pi c} \frac{|\mathbf{\hat{n}} \times [(\mathbf{\hat{n}} - \boldsymbol{\beta})\times \dot{\boldsymbol{\beta}}]|^2}{(1-\mathbf{\hat{n}}\cdot\boldsymbol{\beta})^5},</math> | <math display="block">\frac{d P}{d\Omega} = \frac{q^2}{4\pi c} \frac{|\mathbf{\hat{n}} \times [(\mathbf{\hat{n}} - \boldsymbol{\beta})\times \dot{\boldsymbol{\beta}}]|^2}{(1-\mathbf{\hat{n}}\cdot\boldsymbol{\beta})^5},</math> | ||
जहाँ <math>\mathbf{\hat{n}}</math> | जहाँ <math>\mathbf{\hat{n}}</math> कण से पर्यवेक्षक की ओर इंगित करते हुए एक इकाई वेक्टर होता है। रैखिक गति (त्वरण के समानांतर वेग) के स्थितियों में, यह सरल हो जाता है<ref>Jackson eq (14.39)</ref> | ||
<math display="block">\frac{d P}{d\Omega} = \frac{q^2a^2}{4\pi c^3}\frac{\sin^2 \theta}{(1-\beta \cos\theta)^5},</math> | <math display="block">\frac{d P}{d\Omega} = \frac{q^2a^2}{4\pi c^3}\frac{\sin^2 \theta}{(1-\beta \cos\theta)^5},</math> | ||
जहाँ <math>\theta</math> | जहाँ <math>\theta</math> प्रेक्षक और कण की गति के बीच का कोण होता है। | ||
<references /> | <references /> | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with reference errors]] | |||
[[Category:Pages with script errors|Short description/doc]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Template documentation pages|Short description/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] |
Latest revision as of 15:41, 19 April 2023
वैद्युतगतिकी में, लार्मर सूत्र का उपयोग एक गैर-सापेक्ष बिंदु आवेश द्वारा विकीर्ण की गई कुल ऊर्जा (भौतिकी) की गणना करने के लिए किया जाता है क्योंकि यह त्वरित होता है। यह पहली बार 1897 में जे. जे. लार्मर द्वारा प्राप्त किया गया था,[1] प्रकाश के तरंग सिद्धांत के संदर्भ में प्रस्तुत किया गया है।
जब कोई आवेशित कण (जैसे इलेक्ट्रॉन, प्रोटॉन, या आयन) त्वरित होता है, तो ऊर्जा विद्युत चुम्बकीय तरंगों के रूप में विकीर्ण होती है। कण के लिए जिसका वेग प्रकाश की गति के सापेक्ष से छोटा होता है (अर्थात, गैर-सापेक्षवादी), कुल ऊर्जा जो कण को विकीर्ण करती है (जब एक बिंदु आवेश के रूप में माना जाता है) की गणना लार्मर सूत्र द्वारा की जा सकती है:
किसी भी इकाई प्रणाली में, एकल इलेक्ट्रॉन द्वारा विकीर्ण की गई ऊर्जा को मौलिक इलेक्ट्रॉन त्रिज्या और इलेक्ट्रॉन द्रव्यमान के रूप में व्यक्त किया जा सकता है:
व्युत्पत्ति
व्युत्पत्ति 1: गणितीय दृष्टिकोण (सीजीएस इकाइयों का उपयोग करके)
हमें पहले विद्युत और चुंबकीय क्षेत्र के रूप को खोजने की जरूरत है। क्षेत्रों को लिखा जा सकता है (पूर्ण व्युत्पत्ति के लिए लियनार्ड-विचर्ट क्षमता देखें)
दाहिनी ओर आवेशित कण के वेग और त्वरण में समाहित विद्युत क्षेत्रों का योग है। केवल वेग क्षेत्र पर निर्भर करता है, जबकि त्वरण क्षेत्र दोनों पर निर्भर करता है और और दोनों के बीच कोणीय संबंध होता है। चूंकि वेग क्षेत्र आनुपातिक होता है , और यह दूरी के साथ बहुत जल्दी गिर जाता है। दूसरी ओर, त्वरण क्षेत्र आनुपातिक होता है , जिसका अर्थ है कि यह दूरी के साथ और धीरे-धीरे गिरता है। इस वजह से, त्वरण क्षेत्र विकिरण क्षेत्र का प्रतिनिधितत्व करता है और अधिकांश ऊर्जा को आवेशित से दूर ले जाने के लिए जिम्मेदार होता है।
हम इसके पॉयंटिंग संवाहक की गणना करके विकिरण क्षेत्र की ऊर्जा प्रवाह घनत्व को पा सकते हैं:
सापेक्षवादी सामान्यीकरण
सहपरिवर्ती रूप
संवेग के संदर्भ में लिखा गया है, p, असापेक्षतावादी लार्मर सूत्र है (CGS इकाइयों में)[3]
यह दिखाया जा सकता है कि यह आंतरिक गुणन किसके द्वारा दिया गया है[3]
गैर-सहसंयोजक रूप
उपरोक्त आंतरिक गुणनफल β और इसका समय व्युत्पन्न को इसके संदर्भ में भी लिखा जा सकता है। फिर लार्मर सूत्र का सापेक्षिक सामान्यीकरण है (CGS इकाइयों में)[3]
यह लियोनार्ड परिणाम है, जो पहली बार 1898 में प्राप्त हुआ था। h> का अर्थ है कि जब लोरेंत्ज़ कारक शून्य के बहुत समीप है (अर्थात ) कण द्वारा उत्सर्जित विकिरण नगण्य होने की संभावना होती है। चूँकि, जैसा विकिरण की तरह बढ़ता है चूंकि कण ईएम तरंगों के रूप में अपनी ऊर्जा खोने की कोशिश करता है। इसके अतिरिक्त, जब त्वरण और वेग ओर्थोगोनल होते हैं तो ऊर्जा एक कारक से कम हो जाती है , अर्थात् कारक हो जाता है . गति जितनी तेज होती है, यह कमी उतनी ही अधिक होती जाती है।
विभिन्न प्रकार की गति में किस प्रकार के विकिरण नुकसान की उम्मीद की जा सकती है, इसका अनुमान लगाने के लिए हम लियोनार्ड के परिणाम का उपयोग कर सकते हैं।
कोणीय वितरण
विकिरणित ऊर्जा का कोणीय वितरण एक सामान्य सूत्र द्वारा दिया जाता है, चाहे कण सापेक्षवादी हो या नहीं। सीजीएस इकाइयों में, यह सूत्र है[4]
- ↑ Larmor J (1897). "LXIII.On the theory of the magnetic influence on spectra; and on the radiation from moving ions". Philosophical Magazine. 5. 44 (271): 503–512. doi:10.1080/14786449708621095. Formula is mentioned in the text on the last page.
- ↑ The case where is more complicated and is treated, for example, in Griffiths's Introduction to Electrodynamics.
- ↑ 3.0 3.1 3.2 3.3 3.4 Jackson, J.D., Classical Electrodynamics (3rd ed.), pp. 665–8
- ↑ Jackson eq (14.38)
- ↑ Jackson eq (14.39)