लियनार्ड-वीचर्ट क्षमता: Difference between revisions

From Vigyanwiki
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 224: Line 224:
*[[गुरुत्वाकर्षण क्षेत्र में आवेश का विरोधाभास]]
*[[गुरुत्वाकर्षण क्षेत्र में आवेश का विरोधाभास]]
* [[व्हाइटहेड का गुरुत्वाकर्षण का सिद्धांत]]
* [[व्हाइटहेड का गुरुत्वाकर्षण का सिद्धांत]]
==संदर्भ==
<references />
==बाहरी संबंध==
*[https://feynmanlectures.caltech.edu/II_21.html The Feynman Lectures on Physics Vol. II Ch. 21: Solutions of Maxwell’s Equations with Currents and Charges]
{{DEFAULTSORT:Lienard-Wiechert potential}}


[[Category:Articles with hatnote templates targeting a nonexistent page|Lienard-Wiechert potential]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Lienard-Wiechert potential]]
[[Category:CS1 Deutsch-language sources (de)]]
[[Category:CS1 Deutsch-language sources (de)|Lienard-Wiechert potential]]
[[Category:Created On 24/03/2023|Lienard-Wiechert potential]]
[[Category:Created On 24/03/2023|Lienard-Wiechert potential]]
[[Category:Lua-based templates|Lienard-Wiechert potential]]
[[Category:Machine Translated Page|Lienard-Wiechert potential]]
[[Category:Machine Translated Page|Lienard-Wiechert potential]]
[[Category:Pages with script errors|Short description/doc]]
[[Category:Pages with script errors|Short description/doc]]
Line 235: Line 256:
[[Category:Templates Vigyan Ready|Lienard-Wiechert potential]]
[[Category:Templates Vigyan Ready|Lienard-Wiechert potential]]
[[Category:Templates that add a tracking category|Lienard-Wiechert potential]]
[[Category:Templates that add a tracking category|Lienard-Wiechert potential]]
 
[[Category:Templates that generate short descriptions|Lienard-Wiechert potential]]
==संदर्भ==
[[Category:Templates using TemplateData|Lienard-Wiechert potential]]
<references />
[[Category:क्षमता|Lienard-Wiechert potential]]
 
[[Category:विद्युत चुम्बकीय विकिरण|Lienard-Wiechert potential]]
 
==बाहरी संबंध==
*[https://feynmanlectures.caltech.edu/II_21.html The Feynman Lectures on Physics Vol. II Ch. 21: Solutions of Maxwell’s Equations with Currents and Charges]
 
{{DEFAULTSORT:Lienard-Wiechert potential}}[[Category: विद्युत चुम्बकीय विकिरण]] [[Category: क्षमता]]  
 
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 24/03/2023]]

Latest revision as of 10:54, 17 April 2023

लीनार्ड-विएचर्ट विभव, सदिश विभव और लॉरेंज गेज में एक अदिश विभव के संदर्भ में एक गतिमान विद्युत आवेश के चिरसम्मत विद्युत चुंबकत्व प्रभाव का वर्णन करती है। मैक्सवेल के समीकरणों से सीधे उत्पन्न, ये पूर्ण विशेष सापेक्षता, मानवीय गति में एक बिंदु आवेश के लिए समय-भिन्न विद्युत चुम्बकीय क्षेत्र का वर्णन करते हैं, लेकिन क्वांटम यांत्रिकी प्रभावों के लिए सही नहीं हैं। इन विभवों से तरंग (भौतिकी) के रूप में विद्युत चुम्बकीय विकिरण प्राप्त किया जा सकता है। इन अभिव्यक्तियों को 1898 में अल्फ्रेड-मैरी लियनार्ड द्वारा आंशिक रूप से विकसित किया गया था[1] और स्वतंत्र रूप से 1900 में एमिल वीचर्ट द्वारा वर्णन करते हैं।[2][3]


समीकरण

लियोनार्ड-विचर्ट विभव की परिभाषा

आवेशों और धाराओं के वितरण के संदर्भ में विलंबित समय को परिभाषित किया गया है

जहाँ अवलोकन बिंदु है, और स्रोत आवेशों और धाराओं की विविधताओं के अधीन प्रेक्षित बिंदु है।

चल आवेशित बिंदु आवेश के लिए, जिसका दिया प्रक्षेपवक्र है,

अब निश्चित नहीं है, बल्कि विलम्ब समय का एक कार्य बन जाता है। दूसरे शब्दों में, प्रक्षेपवक्र का अनुसरण करना का निहित समीकरण देता है

जो विलम्ब समय प्रदान करता है, वर्तमान समय (और दिए गए प्रक्षेपवक्र) के कार्य के रूप में:

.

द लियनार्ड-विचर्ट क्षमताएं (अदिश संभावित क्षेत्र) और (सदिश संभावित क्षेत्र) एक स्रोत बिंदु आवेश के लिए हैं स्थिति पर वेग से संचरण करना :

और

जहाँ:

  • प्रकाश की गति के एक अंश के रूप में व्यक्त स्रोत का वेग है;
  • स्रोत से दूरी है;
  • स्रोत से दिशा में इंगित इकाई सदिश है और,
  • प्रतीक इसका मतलब है कि कोष्ठक के अंदर की मात्राओं का मूल्यांकन विलम्ब समय पर किया जाना चाहिए .

यह एक लोरेंत्ज़ सहप्रसरण में भी लिखा जा सकता है, जहाँ विद्युत चुम्बकीय चार-विभव पर है:[4] : जहाँ और स्रोत की स्थिति है और इसके चार वेग हैं।

वैद्युत क्षेत्र गणना

हम परिभाषाओं का उपयोग करके सीधे विद्युत और चुंबकीय क्षेत्र की विभव की गणना कर सकते हैं:

और
गणना गैर-सूक्ष्म है और इसके लिए कई चरणों की आवश्यकता होती है। विद्युत और चुंबकीय क्षेत्र हैं (गैर सहसंयोजक रूप में):
और
जहाँ , और (लोरेंत्ज़ कारक)।

ध्यान दें कि पहले पद का भाग आवेश की तात्क्षणिक स्थिति की ओर क्षेत्र की दिशा को अद्यतन करता है, यदि यह स्थिर वेग से गति करना जारी रखता है तो यह शब्द आवेश के विद्युत चुम्बकीय क्षेत्र के स्थिर भाग से जुड़ा है।

दूसरा शब्द, जो गतिमान आवेश द्वारा विद्युत चुम्बकीय विकिरण से जुड़ा होता है, उसे आवेश त्वरण की आवश्यकता होती है और यदि यह शून्य है, तो इस शब्द का मान शून्य है, और आवेश विकीर्ण नहीं करता (विद्युत चुम्बकीय विकिरण उत्सर्जित करता है)। इस शब्द के लिए अतिरिक्त रूप से आवश्यक है कि आवेश त्वरण का एक घटक आवेश को जोड़ने वाली रेखा के अनुप्रस्थ दिशा में हो और क्षेत्र के पर्यवेक्षक . इस विकिरण शब्द से जुड़े क्षेत्र की दिशा आवेश की पूरी तरह से समय-विलंबता की स्थिति की ओर है (अर्थात जहां आवेश तब था जब इसे त्वरित किया गया था)।

व्युत्पत्ति

अदिश और सदिश विभव गैर-समरूप विद्युत चुम्बकीय तरंग समीकरण को संतुष्ट करते हैं जहां स्रोतों को आवेश और धारा घनत्व और के साथ व्यक्त किया जाता है।

और एम्पीयर-मैक्सवेल नियम है:
चूंकि संभावनाएं अद्वितीय नहीं हैं, लेकिन गेज सिद्धांत चिरसम्मत गेज सिद्धांत स्वतंत्र है, गेज स्थिरीकरण द्वारा इन समीकरणों को सरल बनाया जा सकता है। लोरेन्ज़ गेज स्थिति एक साधारण विकल्प है:
तब गैर-समरूप तरंग समीकरण अयुग्मित हो जाते हैं और विभव में सममित हो जाते हैं:
साधारण तौर पर, अदिश और सदिश विभव (एसआई इकाइयों) के लिए विलम्ब समाधान होते हैं
और
जहाँ विलम्ब समय है और और बिना किसी स्रोत और सीमा शर्तों के सजातीय तरंग समीकरण को संतुष्ट करते हैं। इस प्रकरण में कि स्रोतों के आस-पास कोई सीमा नहीं है,

और .

एक चल आवेशित बिंदु आवेश के लिए जिसका प्रक्षेपवक्र समय के कार्य के रूप में दिया गया है, आवेश और वर्तमान घनत्व इस प्रकार हैं:

जहाँ त्रि-आयामी डिराक डेल्टा फलन है और बिंदु आवेश का वेग है।

संभावित मानों के लिए भावों में प्रतिस्थापित कर देता है

इन अभिन्न मानों का उनके वर्तमान रूप में मूल्यांकन करना कठिन है, इसलिए हम उन्हें बदलकर फिर से के साथ लिखेंगे और डेल्टा वितरण पर एकीकरण दर्शाने के लिए:
इस प्रकार हम एकीकरण के क्रम का आदान-प्रदान करते हैं:
डेल्टा फलन चुनता है जो हमें आंतरिक एकीकरण को आसानी से एकीकृत करने की अनुमति देता है। ध्यान दें कि का एक कार्य है, तो यह एकीकरण भी सार्थक रूप में निर्गत करता है .
पिछड़ा हुआ समय क्षेत्र बिंदु का एक कार्य है और स्रोत प्रक्षेपवक्र , इसलिए निर्भर करता है, इस अभिन्न मान का मूल्यांकन करने के लिए, हमें एक फलन के साथ डायराक डेल्टा फलन संरचना की आवश्यकता है
जहां प्रत्येक का शून्य है, क्योंकि एक ही विलम्ब काल है, किसी दिए गए स्पेस-टाइम निर्देशांक के लिए और स्रोत प्रक्षेपवक्र हैं जो कि कम हो जाता है:
जहाँ और विलंबित समय पर मूल्यांकन किया जाता है, और पहचान का उपयोग किया है साथ . ध्यान दें कि विलम्ब समय समीकरण का हल है, अंत में, डेल्टा फलन चुनता है, और
जो लियनार्ड-विएचर्ट क्षमताएं हैं।

लॉरेंज गेज, विद्युत और चुंबकीय क्षेत्र

और के डेरिवेटिव की गणना करने के लिए पहले विलम्ब समय के डेरिवेटिव की गणना करना सुविधाजनक है। इसके परिभाषित समीकरण के दोनों पक्षों के डेरिवेटिव लेना अनिवार्य है (यह याद रखना ):

t के संबंध में अंतर,
इसी तरह, के संबंध में ग्रेडिएंट लेना और बहुभिन्नरूपी श्रृंखला नियम का उपयोग सार्थक रूप में निर्गत करता है,

यह इस प्रकार है कि

इनका उपयोग सदिश विभव के डेरिवेटिव की गणना में किया जा सकता है और परिणामी भाव इस प्रकार है कि

ये निर्गत करता है लॉरेंज गेज संतुष्ट है, अर्थात् वह .

इसी प्रकार एक गणना करता है:

यह ध्यान में रखते हुए कि किसी भी सदिश के लिए , , :
ऊपर वर्णित विद्युत क्षेत्र के लिए व्यंजक बन जाता है
जो आसानी से बराबर देखा जा सकता है

उसी प्रकार ऊपर वर्णित चुंबकीय क्षेत्र की अभिव्यक्ति देता है: