(One intermediate revision by one other user not shown)
Line 224:
Line 224:
*[[गुरुत्वाकर्षण क्षेत्र में आवेश का विरोधाभास]]
*[[गुरुत्वाकर्षण क्षेत्र में आवेश का विरोधाभास]]
* [[व्हाइटहेड का गुरुत्वाकर्षण का सिद्धांत]]
* [[व्हाइटहेड का गुरुत्वाकर्षण का सिद्धांत]]
==संदर्भ==
<references />
==बाहरी संबंध==
*[https://feynmanlectures.caltech.edu/II_21.html The Feynman Lectures on Physics Vol. II Ch. 21: Solutions of Maxwell’s Equations with Currents and Charges]
{{DEFAULTSORT:Lienard-Wiechert potential}}
[[Category:Articles with hatnote templates targeting a nonexistent page|Lienard-Wiechert potential]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Lienard-Wiechert potential]]
*[https://feynmanlectures.caltech.edu/II_21.html The Feynman Lectures on Physics Vol. II Ch. 21: Solutions of Maxwell’s Equations with Currents and Charges]
{{DEFAULTSORT:Lienard-Wiechert potential}}[[Category: विद्युत चुम्बकीय विकिरण]] [[Category: क्षमता]]
लीनार्ड-विएचर्ट विभव, सदिश विभव और लॉरेंज गेज में एक अदिश विभव के संदर्भ में एक गतिमान विद्युत आवेश के चिरसम्मत विद्युत चुंबकत्व प्रभाव का वर्णन करती है। मैक्सवेल के समीकरणों से सीधे उत्पन्न, ये पूर्ण विशेष सापेक्षता, मानवीय गति में एक बिंदु आवेश के लिए समय-भिन्न विद्युत चुम्बकीय क्षेत्र का वर्णन करते हैं, लेकिन क्वांटम यांत्रिकी प्रभावों के लिए सही नहीं हैं। इन विभवों से तरंग (भौतिकी) के रूप में विद्युत चुम्बकीय विकिरण प्राप्त किया जा सकता है। इन अभिव्यक्तियों को 1898 में अल्फ्रेड-मैरी लियनार्ड द्वारा आंशिक रूप से विकसित किया गया था[1] और स्वतंत्र रूप से 1900 में एमिल वीचर्ट द्वारा वर्णन करते हैं।[2][3]
ध्यान दें कि पहले पद का भाग आवेश की तात्क्षणिक स्थिति की ओर क्षेत्र की दिशा को अद्यतन करता है, यदि यह स्थिर वेग से गति करना जारी रखता है तो यह शब्द आवेश के विद्युत चुम्बकीय क्षेत्र के स्थिर भाग से जुड़ा है।
दूसरा शब्द, जो गतिमान आवेश द्वारा विद्युत चुम्बकीय विकिरण से जुड़ा होता है, उसे आवेश त्वरण की आवश्यकता होती है और यदि यह शून्य है, तो इस शब्द का मान शून्य है, और आवेश विकीर्ण नहीं करता (विद्युत चुम्बकीय विकिरण उत्सर्जित करता है)। इस शब्द के लिए अतिरिक्त रूप से आवश्यक है कि आवेश त्वरण का एक घटक आवेश को जोड़ने वाली रेखा के अनुप्रस्थ दिशा में हो और क्षेत्र के पर्यवेक्षक . इस विकिरण शब्द से जुड़े क्षेत्र की दिशा आवेश की पूरी तरह से समय-विलंबता की स्थिति की ओर है (अर्थात जहां आवेश तब था जब इसे त्वरित किया गया था)।
व्युत्पत्ति
अदिश और सदिश विभव गैर-समरूप विद्युत चुम्बकीय तरंग समीकरण को संतुष्ट करते हैं जहां स्रोतों को आवेश और धारा घनत्व और के साथ व्यक्त किया जाता है।
और एम्पीयर-मैक्सवेल नियम है:
चूंकि संभावनाएं अद्वितीय नहीं हैं, लेकिन गेज सिद्धांत चिरसम्मत गेज सिद्धांत स्वतंत्र है, गेज स्थिरीकरण द्वारा इन समीकरणों को सरल बनाया जा सकता है। लोरेन्ज़ गेज स्थिति एक साधारण विकल्प है:
तब गैर-समरूप तरंग समीकरण अयुग्मित हो जाते हैं और विभव में सममित हो जाते हैं:
साधारण तौर पर, अदिश और सदिश विभव (एसआई इकाइयों) के लिए विलम्ब समाधान होते हैं
और
जहाँ विलम्ब समय है और और बिना किसी स्रोत और सीमा शर्तों के सजातीय तरंग समीकरण को संतुष्ट करते हैं। इस प्रकरण में कि स्रोतों के आस-पास कोई सीमा नहीं है,
और .
एक चल आवेशित बिंदु आवेश के लिए जिसका प्रक्षेपवक्र समय के कार्य के रूप में दिया गया है, आवेश और वर्तमान घनत्व इस प्रकार हैं:
संभावित मानों के लिए भावों में प्रतिस्थापित कर देता है
इन अभिन्न मानों का उनके वर्तमान रूप में मूल्यांकन करना कठिन है, इसलिए हम उन्हें बदलकर फिर से के साथ लिखेंगे और डेल्टा वितरण पर एकीकरण दर्शाने के लिए:
इस प्रकार हम एकीकरण के क्रम का आदान-प्रदान करते हैं:
डेल्टा फलन चुनता है जो हमें आंतरिक एकीकरण को आसानी से एकीकृत करने की अनुमति देता है। ध्यान दें कि का एक कार्य है, तो यह एकीकरण भी सार्थक रूप में निर्गत करता है .
पिछड़ा हुआ समय क्षेत्र बिंदु का एक कार्य है और स्रोत प्रक्षेपवक्र , इसलिए निर्भर करता है, इस अभिन्न मान का मूल्यांकन करने के लिए, हमें एक फलन के साथ डायराक डेल्टा फलन संरचना की आवश्यकता है
जहां प्रत्येक का शून्य है, क्योंकि एक ही विलम्ब काल है, किसी दिए गए स्पेस-टाइम निर्देशांक के लिए और स्रोत प्रक्षेपवक्र हैं जो कि कम हो जाता है:
जहाँ और विलंबित समय पर मूल्यांकन किया जाता है, और पहचान का उपयोग किया है साथ . ध्यान दें कि विलम्ब समय समीकरण का हल है, अंत में, डेल्टा फलन चुनता है, और
जो लियनार्ड-विएचर्ट क्षमताएं हैं।
लॉरेंज गेज, विद्युत और चुंबकीय क्षेत्र
और के डेरिवेटिव की गणना करने के लिए पहले विलम्ब समय के डेरिवेटिव की गणना करना सुविधाजनक है। इसके परिभाषित समीकरण के दोनों पक्षों के डेरिवेटिव लेना अनिवार्य है (यह याद रखना ):
t के संबंध में अंतर,
इसी तरह, के संबंध में ग्रेडिएंट लेना और बहुभिन्नरूपी श्रृंखला नियम का उपयोग सार्थक रूप में निर्गत करता है,
यह इस प्रकार है कि
इनका उपयोग सदिश विभव के डेरिवेटिव की गणना में किया जा सकता है और परिणामी भाव इस प्रकार है कि
ये निर्गत करता है लॉरेंज गेज संतुष्ट है, अर्थात् वह .
इसी प्रकार एक गणना करता है:
यह ध्यान में रखते हुए कि किसी भी सदिश के लिए , , :
ऊपर वर्णित विद्युत क्षेत्र के लिए व्यंजक बन जाता है
जो आसानी से बराबर देखा जा सकता है
उसी प्रकार ऊपर वर्णित चुंबकीय क्षेत्र की अभिव्यक्ति देता है:
स्रोत की शर्तें , , और विलंबित समय पर मूल्यांकन किया जाना है।
निहितार्थ
अल्बर्ट आइंस्टीन के सापेक्षता के सिद्धांत के विकास में चिरसम्मत ऊष्मागतिकी का अध्ययन सहायक था। विद्युत चुम्बकीय तरंगों की गति और प्रसार के विश्लेषण ने समतल और समय के विशेष सापेक्षता विवरण का नेतृत्व किया। लीनार्ड-विएचर्ट निरूपण सापेक्षतावादी गतिमान कणों के गहन विश्लेषण में एक महत्वपूर्ण लॉन्चपैड है।
लीनार्ड-विचर्ट विवरण एक बड़े, स्वतंत्र रूप से गतिमान कण के लिए सटीक है (अर्थात उपचार चिरसम्मत है और आवेश का त्वरण विद्युत चुम्बकीय क्षेत्र से स्वतंत्र बल के कारण होता है)। लियनार्ड-विएचर्ट निरूपण सदैव समाधान के दो सेट प्रदान करता है: उन्नत क्षेत्र आवेशों द्वारा अवशोषित होते हैं और विलम्ब क्षेत्र उत्सर्जित होते हैं। श्वार्ज़चाइल्ड और फोकर ने गतिमान आवेशों की एक प्रणाली के उन्नत क्षेत्र और समान ज्यामिति और विपरीत आवेशों वाले आवेशों की प्रणाली के विलम्ब क्षेत्र पर विचार किया। वैक्यूम में मैक्सवेल के समीकरणों की रैखिकता दोनों प्रणालियों को जोड़ने की अनुमति देती है, ताकि प्रेक्षण अदृश्य हो जाएं: यह क्रियाविधि मैक्सवेल के समीकरणों को प्रकरण में रैखिक बनने की अनुमति देती है।
स्वतन्त्र रूप से वास्तविक स्थिरांक द्वारा दोनों समस्याओं के विद्युत मापदंडों को गुणा करने से पदार्थ के साथ प्रकाश की एक सुसंगत अंतःक्रिया उत्पन्न होती है जो आइंस्टीन के सिद्धांत को सामान्य बनाती है[5] जिसे अब लेज़रों का संस्थापक सिद्धांत माना जाता है: उन्नत और विलम्ब क्षेत्रों के स्वतन्त्र रूप से गुणन द्वारा प्राप्त मोड में सुसंगत प्रवर्धन प्राप्त करने के लिए समान अणुओं के एक बड़े समूह का अध्ययन करना आवश्यक नहीं है।
ऊर्जा की गणना करने के लिए, निरपेक्ष क्षेत्रों का उपयोग करना आवश्यक है जिसमें शून्य बिंदु क्षेत्र सम्मिलित है; अन्यथा, एक त्रुटि दिखाई देती है, उदाहरण के लिए फोटॉन की गिनती में इस तरह की समस्या का समन्वय होता है।
प्लैंक द्वारा खोजे गए शून्य बिंदु क्षेत्र को ध्यान में रखना महत्वपूर्ण है।[6] यह आइंस्टीन के A गुणांक की जगह लेता है और बताता है कि चिरसम्मत इलेक्ट्रॉन रिडबर्ग की चिरसम्मत कक्षाओं पर स्थिर है। इसके अलावा, शून्य बिंदु क्षेत्र के उतार-चढ़ाव को प्रारम्भ करने से विलिस ई लैम्ब का H परमाणु के स्तरों में सुधार होता है।
क्वांटम ऊष्मागतिकी ने क्वांटम बाधाओं के साथ विकिरण संबंधी व्यवहार को एक साथ लाने में मदद की। यह ग्रहण किए गए पूर्ण प्रकाशिकी अनुनादकों में विद्युत चुम्बकीय क्षेत्र के सामान्य मोड के परिमाणीकरण का परिचय देता है।
सार्वभौमिक गति सीमा
किसी दिए गए स्थान पर कण पर संरक्षित बल r और समय t पहले के समय में स्रोत कणों की स्थिति पर एक जटिल तरीके से tr निर्भर करता है, प्रकाश की गति के कारण परिमित गति, c, जिस पर विद्युत चुम्बकीय सूचना संरक्षित करती है। पृथ्वी पर एक कण एक आवेशित कण को चंद्रमा पर त्वरण निरीक्षित करता है क्योंकि यह त्वरण 1.5 सेकंड पहले हुआ था, और एक आवेशित कण का सूर्य पर त्वरण 500 सेकंड पहले हुआ था। यह पहले का समय है जिसमें कोई घटना ऐसी घटती है कि कोई कण स्थान r पर आ जाता है, इस घटना को बाद में निरीक्षित करता है, tविलम्ब समय कहा जाता है, tr. विलम्ब समय स्थिति के साथ बदलता रहता है; उदाहरण के लिए चंद्रमा पर विलम्ब समय वर्तमान समय से 1.5 सेकंड पहले है और सूर्य पर विलम्ब समय पृथ्वी पर वर्तमान समय से 500 सेकंड पहले है। विलम्ब समय tr= tr('R', t) परोक्ष रूप से परिभाषित किया गया है
जहाँ विलम्ब समय पर स्रोत से कण की दूरी है। केवल विद्युत चुम्बकीय तरंग प्रभाव पूरी तरह से विलम्ब समय पर निर्भर करते हैं।
लिएनार्ड-विचर्ट विभव में एक आदर्श विशेषता इसकी शर्तों के दो प्रकार के क्षेत्र शर्तों (नीचे देखें) में टूटने में देखी जाती है, जिनमें से केवल एक विलम्ब समय पर पूरी तरह से निर्भर करता है। इनमें से पहला स्थिर विद्युत (या चुंबकीय) क्षेत्र शब्द है जो केवल गतिमान आवेश की दूरी पर निर्भर करता है, और विलंबित समय पर बिल्कुल भी निर्भर नहीं करता है, यदि स्रोत का वेग स्थिर है। दूसरा शब्द गतिशील है, इसमें यह आवश्यक है कि गतिमान आवेश, आवेश और प्रेक्षक को जोड़ने वाली रेखा के लंबवत घटक के साथ त्वरित हो और तब तक प्रकट न हो जब तक स्रोत वेग में परिवर्तन न करे। यह दूसरा शब्द विद्युत चुम्बकीय विकिरण से जुड़ा है।
पहला शब्द आवेश से निकट और दूर के क्षेत्र के प्रभावों का वर्णन करता है, और समतल में इसकी दिशा को एक ऐसे शब्द के साथ अद्यतन किया जाता है जो आवेश के किसी भी स्थिर-वेग गति के लिए उसके दूर के स्थैतिक क्षेत्र पर सुधार करता है, ताकि दूर का स्थिर क्षेत्र दूरी पर दिखाई दे आवेश, प्रकाश या प्रकाश-समय सुधार के विपथन के साथ यह शब्द, जो स्थिर क्षेत्र की दिशा में समय-विलंबता देरी के लिए सुधार करता है, लोरेंत्ज़ इनवेरिएंस द्वारा आवश्यक है। एक निरंतर वेग के साथ चलते हुए एक आवेश को एक दूर के पर्यवेक्षक को ठीक उसी तरह दिखाई देना चाहिए जैसे एक गतिशील पर्यवेक्षक को स्थिर आवेश दिखाई देता है, और बाद के प्रकरण में, स्थैतिक क्षेत्र की दिशा बिना किसी समय-देरी के तत्काल बदलनी चाहिए, इस प्रकार स्थैतिक क्षेत्र (पहला पद) आवेशित वस्तु की सही तात्कालिक (गैर-विलम्ब) स्थिति पर इंगित करता है यदि इसका वेग विलम्ब समय विलंब पर नहीं बदला है। यह किसी भी दूरी को अलग करने वाली वस्तुओं पर लागू होता है।
हालाँकि, दूसरा शब्द, जिसमें आवेश के त्वरण और अन्य अद्भुत व्यवहार के बारे में जानकारी सम्मिलित है, जिसे लोरेंत्ज़ फ्रेम (पर्यवेक्षक का जड़त्वीय संदर्भ फ्रेम) को बदलकर हटाया नहीं जा सकता है, समय-विलम्ब स्थिति पर दिशा के लिए पूरी तरह से निर्भर है। स्रोत इस प्रकार, विद्युत चुम्बकीय विकिरण (दूसरे पद द्वारा वर्णित) सदैव 'विलम्ब समय पर' उत्सर्जक आवेश की स्थिति की दिशा से आता हुआ प्रतीत होता है। केवल यह दूसरा शब्द आवेश के व्यवहार के बारे में सूचना के हस्तांतरण का वर्णन करता है, जो प्रकाश की गति से होता है (आवेश से विकीर्ण होता है)। दूर की दूरी पर (विकिरण की कई तरंग दैर्ध्य से अधिक), इस शब्द की 1/R निर्भरता विद्युत चुम्बकीय क्षेत्र प्रभाव (इस क्षेत्र शब्द का मान) को स्थिर क्षेत्र प्रभावों से अधिक शक्तिशाली बनाती है, जिसे 1/R2 द्वारा वर्णित किया गया है। पहले (स्थैतिक) पद का क्षेत्र और इस प्रकार आवेश से दूरी के साथ अधिक तेजी से क्षय होता है।
विलम्ब काल का अस्तित्व और विलक्षणता
अस्तित्व
विलम्ब समय सामान्य रूप से उपलब्ध रहने की निश्चितता नहीं है। उदाहरण के लिए, यदि दिए गए संदर्भ के फ्रेम में, एक इलेक्ट्रॉन अभी निर्मित किया गया है, तो इस क्षण में एक अन्य इलेक्ट्रॉन अभी भी अपने विद्युत चुम्बकीय बल को महसूस नहीं करता है। हालाँकि, कुछ शर्तों के तहत, सदैव एक विलम्ब समय उपलब्ध होता है। उदाहरण के लिए, यदि स्रोत प्रेक्षण असीमित समय के लिए अस्तित्व में है, जिसके दौरान यह सदैव गति से अधिक नहीं होता है, तो एक वैध विलम्ब समय उपलब्ध है, इसे फलन पर विचार करके देखा जा सकता है . वर्तमान समय में ; . व्युत्पन्न द्वारा दिया गया है
औसत मूल्य प्रमेय द्वारा, निर्मित करने के द्वारा पर्याप्त रूप से बड़ा, यह नकारात्मक हो सकता है, अर्थात, अतीत में किसी बिंदु पर, . मध्यवर्ती मूल्य प्रमेय द्वारा, एक मध्यवर्ती उपलब्ध है, , विलम्ब समय का परिभाषित समीकरण सहज रूप से, जैसा कि स्रोत आवेश समय में वापस चला जाता है, वर्तमान समय में इसके प्रकाश शंकु का अनुप्रस्थ काट पीछे हटने की तुलना में तेजी से फैलता है, इसलिए अंततः इसे उस बिंदु तक पहुंचना चाहिए, यह जरूरी नहीं है कि स्रोत आवेश की गति को स्वतन्त्र रूप से ढंग से बंद करने की अनुमति दी जाए , अर्थात, अगर किसी दिए गए गति के लिए अतीत में कुछ समय था जब आवेश इस गति से चल रहा था। इस प्रकरण में प्रकाश शंकु का अनुप्रस्थ काट वर्तमान समय में बिंदु तक पहुंचता है जैसा कि पर्यवेक्षक समय में वापस संचरण करता है लेकिन जरूरी नहीं कि वह कभी भी उस तक पहुंचे।
अद्वितीयता
किसी दिए गए बिंदु के लिए और बिंदु स्रोत का प्रक्षेपवक्र , विलंबित समय का अधिकतम एक मूल्य है , अर्थात एक मान ऐसा है कि . इसे दो विलम्ब काल मानकर समझा जा सकता है और , साथ . तब, और . व्युत्क्रम मान निर्गत करता है
त्रिभुज असमानता नियम द्वारा , इसका तात्पर्य है कि बीच के आवेश का औसत वेग और है , जो असंभव है। सहज व्याख्या यह है कि कोई भी बिंदु स्रोत को केवल एक स्थान/समय पर एक बार में देख सकता है जब तक कि वह कम से कम प्रकाश की गति से दूसरे स्थान पर संचरण न करे। जैसे-जैसे यह स्रोत समय के साथ आगे बढ़ता है, वर्तमान समय में इसके प्रकाश शंकु का अनुप्रस्थ काट स्रोत की तुलना में तेजी से संकुचित होता है, इसलिए यह बिंदु को कभी भी पुनः भेद नहीं सकता।
निष्कर्ष यह है कि कुछ शर्तों के तहत, विलम्ब समय उपलब्ध है और अद्वितीय है।