अतिपरवलयकार विकास: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Growth function exhibiting a singularity at a finite time}} | {{Short description|Growth function exhibiting a singularity at a finite time}} | ||
[[Image:Rectangular hyperbola.svg|thumb| | [[Image:Rectangular hyperbola.svg|thumb|अतिपरवलयकार विकास को प्रदर्शित करने वाला [[पारस्परिक कार्य]]।]]जब मात्रा [[गणितीय विलक्षणता]] की ओर एक परिमित भिन्नता (एक परिमित-समय विलक्षणता) के तहत बढ़ती है। तो इसे '''अतिपरवलयकार विकास''' से निकलना कहा जाता है।<ref>See, e.g., Korotayev A., Malkov A., Khaltourina D. [https://www.academia.edu/32757085/Introduction_to_Social_Macrodynamics._Models_of_the_World_System_Development._Moscow_KomKniga_URSS_2006 ''Introduction to Social Macrodynamics: Compact Macromodels of the World System Growth'']. Moscow: URSS Publishers, 2006. P. 19-20.</ref> अधिक स्पष्ट पारस्परिक कार्य <math>1/x</math> एक ग्राफ के रूप में अतिपरवलय है और 0 पर विलक्षणता है। जिसका अर्थ है कि किसी फलन की सीमा के रूप में <math>x \to 0</math> अनंत है। किसी भी समान ग्राफ को '''अतिपरवलयकार विकास''' प्रदर्शित करने के लिए कहा जाता है। | ||
== विवरण == | == विवरण == | ||
यदि किसी | यदि किसी फलन का आउटपुट इसके इनपुट के व्युत्क्रमानुपाती होता है या किसी दिए गए मान <math>x_0</math> से अंतर के व्युत्क्रमानुपाती होता है। , फलन अतिपरवलयकार विकास प्रदर्शित करेगा। जिसमें एक विलक्षणता <math>x_0</math> होगी। | ||
वास्तविक | वास्तविक विश्व में अतिपरवलयकार विकास कुछ गैर-रैखिक [[सकारात्मक प्रतिक्रिया|धनात्मक प्रतिक्रिया]] तंत्रों द्वारा बनाया गया है।<ref>See, e.g., [[Alexander V. Markov]], and [[Andrey Korotayev|Andrey V. Korotayev]] (2007). [https://www.academia.edu/24472865/Phanerozoic_marine_biodiversity_follows_a_hyperbolic_trend "Phanerozoic marine biodiversity follows a hyperbolic trend". Palaeoworld. Volume 16. Issue 4. Pages 311-318].</ref> | ||
=== अन्य विकास के साथ तुलना === | === अन्य विकास के साथ तुलना === | ||
[[घातीय वृद्धि]] और | [[घातीय वृद्धि]] और तार्किक विकास के समान अतिपरवलयकार विकास अत्यधिक अरैखिक प्रणाली है। किन्तु महत्वपूर्ण स्थितियों में भिन्न है। | ||
इन कार्यों को भ्रमित किया जा सकता | इन कार्यों को भ्रमित किया जा सकता है क्योंकि घातीय वृद्धि अतिपरवलयकार विकास और तार्किक विकास की पहली छमाही उत्तल कार्य हैं। चूंकि उनका [[स्पर्शोन्मुख व्यवहार]] (इनपुट के रूप में व्यवहार बड़ा हो जाता है)। नाटकीय रूप से भिन्न होता है। | ||
* | * तार्किक विकास सीमित है। ( सीमित सीमा है। भले ही समय अनंत हो जाता है)। | ||
* घातीय वृद्धि अनंत तक बढ़ती है क्योंकि समय अनंत तक जाता है। ( | * घातीय वृद्धि अनंत तक बढ़ती है क्योंकि समय अनंत तक जाता है। (किन्तु परिमित समय के लिए सदैव परिमित होता है)। | ||
* | * अतिपरवलयकार विकास में परिमित समय में विलक्षणता होती है। (सीमित समय में अनंत तक बढ़ती है)। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
=== जनसंख्या === | === जनसंख्या === | ||
कुछ गणितीय मॉडल सुझाव देते | कुछ गणितीय मॉडल सुझाव देते हैं कि 1970 के दशक के प्रारम्भ तक [[दुनिया की आबादी|विश्व की जनसंख्या]] अतिपरवलयकार विकास से निकलती है। (उदाहरण के लिए [https://www.academia.edu/35443515/Introduction_to_Social_Macrodynamics_Compact_Macromodels_of_the_World_System_Growth._Moscow_KomKniga_2006 इंट्रोडक्शन टू सोशल मैक्रोडायनामिक्स] एंड्री कोरोटेयेव एट अल द्वारा)। यह भी दिखाया गया था कि 1970 के दशक तक विश्व जनसंख्या की अतिपरवलयकार वृद्धि विश्व [[सकल घरेलू उत्पाद]] की द्विघात-अतिपरवलयकार वृद्धि के साथ थी और इस घटना और [[विश्व-प्रणाली सिद्धांत]] दोनों का वर्णन करने वाले कई गणितीय मॉडल विकसित किए थे। 1970 के दशक तक देखी गई विश्व जनसंख्या की अतिपरवलयकार वृद्धि और विश्व सकल घरेलू उत्पाद की द्विघात-अतिपरवलयकार वृद्धि को [[एंड्री कोरोटेव]] और उनके सहयोगियों द्वारा जनसांख्यिकीय विकास और प्रणाली विकास के बीच एक गैर-रैखिक दूसरे क्रम की धनात्मक प्रतिक्रिया के लिए सहसंबद्ध किया गया है। जिसे एक श्रृंखला द्वारा वर्णित किया गया है। कार्य-कारण का कारण प्रणाली विकास लोगों के लिए भूमि की अधिक [[वहन क्षमता]] की ओर जाता है। जो अधिक लोगों की ओर जाता है। जिससे अधिक आविष्कारक होते हैं। जो बदले में और अधिक प्रणाली विकास की ओर जाता है<ref>See, e.g., Korotayev A., Malkov A., Khaltourina D. [https://www.academia.edu/32757085/Introduction_to_Social_Macrodynamics._Models_of_the_World_System_Development._Moscow_KomKniga_URSS_2006 ''Introduction to Social Macrodynamics: Compact Macromodels of the World System Growth'']. Moscow: URSS Publishers, 2006; Korotayev A. V. [http://jwsr.ucr.edu/archive/vol11/number1/pdf/jwsr-v11n1-korotayev.pdf A Compact Macromodel of World System Evolution // Journal of World-Systems Research 11/1 (2005): 79–93.] {{Webarchive|url=https://web.archive.org/web/20090925060905/http://jwsr.ucr.edu/archive/vol11/number1/pdf/jwsr-v11n1-korotayev.pdf |date=September 25, 2009 }}; for a detailed mathematical analysis of this issue see [https://www.academia.edu/25994385/A_compact_mathematical_model_of_the_World_System_economic_and_demographic_growth_1_CE_1973_CE A Compact Mathematical Model of the World System Economic and Demographic Growth, 1 CE - 1973 CE. "International Journal of Mathematical Models and Methods in Applied Sciences". 2016. Vol. 10, pp. 200-209 ].</ref> और आगे यह भी प्रदर्शित किया गया है कि इस प्रकार के अतिपरवलयकार मॉडल का उपयोग 4 बिलियन ईसा पूर्व से वर्तमान तक पृथ्वी की ग्रहों की जटिलता के समग्र विकास के स्पष्ट प्रकार से वर्णन करने के लिए किया जा सकता है।<ref>[https://www.academia.edu/36810724/The_21st_Century_Singularity_and_its_Big_History_Implications_A_re-analysis The 21st Century Singularity and its Big History Implications: A re-analysis]. ''Journal of Big History'' 2/3 (2018): 71 - 118; see also [https://link.springer.com/book/10.1007/978-3-030-33730-8 ''The 21st Century Singularity and Global Futures. A Big History Perspective''] (Springer, 2020).</ref> अन्य मॉडल घातीय वृद्धि तार्किक वृद्धि या अन्य कार्यों का सुझाव देते हैं। | ||
=== क्यूइंग थ्योरी === | === क्यूइंग थ्योरी === | ||
अतिपरवलयकार विकास के अन्य उदाहरण [[कतार सिद्धांत|लाइन सिद्धांत]] में पाया जा सकता है। यादृच्छिक रूप से आने वाले ग्राहकों का औसत प्रतीक्षा समय सर्वर के औसत लोड अनुपात के कार्य के रूप में अतिपरवलयकार रूप से बढ़ता है। इस स्थिति में विलक्षणता तब होती है। जब सर्वर पर पहुंचने वाले कार्य की औसत मात्रा सर्वर की प्रसंस्करण क्षमता के बराबर होती है। यदि प्रसंस्करण की आवश्यक सर्वर की क्षमता से अधिक है। तो कोई अच्छी प्रकार से परिभाषित औसत प्रतीक्षा समय नहीं है क्योंकि लाइन बिना किसी सीमा के बढ़ सकती है। इस विशेष उदाहरण का एक व्यावहारिक अर्थ यह है कि अत्यधिक भरी हुई लाइन प्रणाली के लिए औसत प्रतीक्षा समय प्रसंस्करण क्षमता के प्रति अत्यंत संवेदनशील हो सकता है। | |||
=== | === [[एंजाइम]] कैनेटीक्स === | ||
अतिपरवलयकार विकास और व्यावहारिक उदाहरण एंजाइम कैनेटीक्स में पाया जा सकता है। जब एक एंजाइम और [[सब्सट्रेट (जैव रसायन)]] के बीच प्रतिक्रिया की दर (जिसे वेग कहा जाता है) को सब्सट्रेट की विभिन्न सांद्रता के विरुद्ध प्लॉट किया जाता है। तो कई सरल प्रणालियों के लिए एक हाइपरबोलिक प्लॉट प्राप्त होता है। जब ऐसा होता है। तो एंजाइम को एंजाइम कैनेटीक्स माइकलिस मेंटेन कैनेटीक्स का पालन करने के लिए कहा जाता है। | |||
== गणितीय उदाहरण == | == गणितीय उदाहरण == | ||
फलन | |||
:<math>x(t)=\frac{1}{t_c-t}</math> | :<math>x(t)=\frac{1}{t_c-t}</math> | ||
{{nowrap|<math>t_c</math>:}} समय पर एक विलक्षणता के साथ अतिपरवलयकार विकास प्रदर्शित करता है। फलन की सीमा के रूप में {{nowrap|<math>t \to t_c</math>,}} फलन अनंत तक जाता है। | |||
अधिक | अधिक सामान्य फलन- | ||
:<math>x(t)=\frac{K}{t_c-t}</math> | :<math>x(t)=\frac{K}{t_c-t}</math> | ||
अतिपरवलयकार विकास प्रदर्शित करता है। जहाँ <math>K</math> मापदंड कारक है। | |||
ध्यान दें कि इस बीजगणितीय | ध्यान दें कि इस बीजगणितीय फलन को फलन के अंतर के लिए विश्लेषणात्मक समाधान माना जा सकता है।<ref>See, e.g., Korotayev A., Malkov A., Khaltourina D. [https://www.academia.edu/32757085/Introduction_to_Social_Macrodynamics._Models_of_the_World_System_Development._Moscow_KomKniga_URSS_2006 ''Introduction to Social Macrodynamics: Compact Macromodels of the World System Growth'']. Moscow: URSS Publishers, 2006. P. 118-123.</ref> | ||
:<math> \frac{dx}{dt} = \frac{K}{(t_c-t)^2} = \frac{x^2}{K}</math> | :<math> \frac{dx}{dt} = \frac{K}{(t_c-t)^2} = \frac{x^2}{K}</math> | ||
इसका | इसका अर्थ यह है कि अतिपरवलयकार विकास के साथ क्षण t में चर x की पूर्ण वृद्धि दर क्षण t में x के मान के वर्ग के समानुपाती होती है। | ||
क्रमशः | क्रमशः द्विघात-अतिपरवलयिक फलन इस प्रकार दिखता है। | ||
:<math>x(t)=\frac{K}{(t_c-t)^2}.</math> | :<math>x(t)=\frac{K}{(t_c-t)^2}.</math> | ||
Line 59: | Line 59: | ||
* [[Rein Taagepera]] (1979) People, skills, and resources: An interaction model for world population growth. ''Technological Forecasting and Social Change'' 13, 13-30. | * [[Rein Taagepera]] (1979) People, skills, and resources: An interaction model for world population growth. ''Technological Forecasting and Social Change'' 13, 13-30. | ||
{{DEFAULTSORT:Hyperbolic Growth}} | {{DEFAULTSORT:Hyperbolic Growth}} | ||
[[Category:Created On 20/03/2023|Hyperbolic Growth]] | |||
[[Category:Lua-based templates|Hyperbolic Growth]] | |||
[[Category: Machine Translated Page]] | [[Category:Machine Translated Page|Hyperbolic Growth]] | ||
[[Category: | [[Category:Pages with script errors|Hyperbolic Growth]] | ||
[[Category:Templates Vigyan Ready|Hyperbolic Growth]] | |||
[[Category:Templates that add a tracking category|Hyperbolic Growth]] | |||
[[Category:Templates that generate short descriptions|Hyperbolic Growth]] | |||
[[Category:Templates using TemplateData|Hyperbolic Growth]] | |||
[[Category:Webarchive template wayback links]] | |||
[[Category:गणितीय विश्लेषण|Hyperbolic Growth]] | |||
[[Category:घटता|Hyperbolic Growth]] | |||
[[Category:जनसंख्या|Hyperbolic Growth]] | |||
[[Category:जनसंख्या पारिस्थितिकी|Hyperbolic Growth]] | |||
[[Category:विभेदक समीकरण|Hyperbolic Growth]] | |||
[[Category:विशेष कार्य|Hyperbolic Growth]] |
Latest revision as of 19:57, 17 April 2023
जब मात्रा गणितीय विलक्षणता की ओर एक परिमित भिन्नता (एक परिमित-समय विलक्षणता) के तहत बढ़ती है। तो इसे अतिपरवलयकार विकास से निकलना कहा जाता है।[1] अधिक स्पष्ट पारस्परिक कार्य एक ग्राफ के रूप में अतिपरवलय है और 0 पर विलक्षणता है। जिसका अर्थ है कि किसी फलन की सीमा के रूप में अनंत है। किसी भी समान ग्राफ को अतिपरवलयकार विकास प्रदर्शित करने के लिए कहा जाता है।
विवरण
यदि किसी फलन का आउटपुट इसके इनपुट के व्युत्क्रमानुपाती होता है या किसी दिए गए मान से अंतर के व्युत्क्रमानुपाती होता है। , फलन अतिपरवलयकार विकास प्रदर्शित करेगा। जिसमें एक विलक्षणता होगी।
वास्तविक विश्व में अतिपरवलयकार विकास कुछ गैर-रैखिक धनात्मक प्रतिक्रिया तंत्रों द्वारा बनाया गया है।[2]
अन्य विकास के साथ तुलना
घातीय वृद्धि और तार्किक विकास के समान अतिपरवलयकार विकास अत्यधिक अरैखिक प्रणाली है। किन्तु महत्वपूर्ण स्थितियों में भिन्न है।
इन कार्यों को भ्रमित किया जा सकता है क्योंकि घातीय वृद्धि अतिपरवलयकार विकास और तार्किक विकास की पहली छमाही उत्तल कार्य हैं। चूंकि उनका स्पर्शोन्मुख व्यवहार (इनपुट के रूप में व्यवहार बड़ा हो जाता है)। नाटकीय रूप से भिन्न होता है।
- तार्किक विकास सीमित है। ( सीमित सीमा है। भले ही समय अनंत हो जाता है)।
- घातीय वृद्धि अनंत तक बढ़ती है क्योंकि समय अनंत तक जाता है। (किन्तु परिमित समय के लिए सदैव परिमित होता है)।
- अतिपरवलयकार विकास में परिमित समय में विलक्षणता होती है। (सीमित समय में अनंत तक बढ़ती है)।
अनुप्रयोग
जनसंख्या
कुछ गणितीय मॉडल सुझाव देते हैं कि 1970 के दशक के प्रारम्भ तक विश्व की जनसंख्या अतिपरवलयकार विकास से निकलती है। (उदाहरण के लिए इंट्रोडक्शन टू सोशल मैक्रोडायनामिक्स एंड्री कोरोटेयेव एट अल द्वारा)। यह भी दिखाया गया था कि 1970 के दशक तक विश्व जनसंख्या की अतिपरवलयकार वृद्धि विश्व सकल घरेलू उत्पाद की द्विघात-अतिपरवलयकार वृद्धि के साथ थी और इस घटना और विश्व-प्रणाली सिद्धांत दोनों का वर्णन करने वाले कई गणितीय मॉडल विकसित किए थे। 1970 के दशक तक देखी गई विश्व जनसंख्या की अतिपरवलयकार वृद्धि और विश्व सकल घरेलू उत्पाद की द्विघात-अतिपरवलयकार वृद्धि को एंड्री कोरोटेव और उनके सहयोगियों द्वारा जनसांख्यिकीय विकास और प्रणाली विकास के बीच एक गैर-रैखिक दूसरे क्रम की धनात्मक प्रतिक्रिया के लिए सहसंबद्ध किया गया है। जिसे एक श्रृंखला द्वारा वर्णित किया गया है। कार्य-कारण का कारण प्रणाली विकास लोगों के लिए भूमि की अधिक वहन क्षमता की ओर जाता है। जो अधिक लोगों की ओर जाता है। जिससे अधिक आविष्कारक होते हैं। जो बदले में और अधिक प्रणाली विकास की ओर जाता है[3] और आगे यह भी प्रदर्शित किया गया है कि इस प्रकार के अतिपरवलयकार मॉडल का उपयोग 4 बिलियन ईसा पूर्व से वर्तमान तक पृथ्वी की ग्रहों की जटिलता के समग्र विकास के स्पष्ट प्रकार से वर्णन करने के लिए किया जा सकता है।[4] अन्य मॉडल घातीय वृद्धि तार्किक वृद्धि या अन्य कार्यों का सुझाव देते हैं।
क्यूइंग थ्योरी
अतिपरवलयकार विकास के अन्य उदाहरण लाइन सिद्धांत में पाया जा सकता है। यादृच्छिक रूप से आने वाले ग्राहकों का औसत प्रतीक्षा समय सर्वर के औसत लोड अनुपात के कार्य के रूप में अतिपरवलयकार रूप से बढ़ता है। इस स्थिति में विलक्षणता तब होती है। जब सर्वर पर पहुंचने वाले कार्य की औसत मात्रा सर्वर की प्रसंस्करण क्षमता के बराबर होती है। यदि प्रसंस्करण की आवश्यक सर्वर की क्षमता से अधिक है। तो कोई अच्छी प्रकार से परिभाषित औसत प्रतीक्षा समय नहीं है क्योंकि लाइन बिना किसी सीमा के बढ़ सकती है। इस विशेष उदाहरण का एक व्यावहारिक अर्थ यह है कि अत्यधिक भरी हुई लाइन प्रणाली के लिए औसत प्रतीक्षा समय प्रसंस्करण क्षमता के प्रति अत्यंत संवेदनशील हो सकता है।
एंजाइम कैनेटीक्स
अतिपरवलयकार विकास और व्यावहारिक उदाहरण एंजाइम कैनेटीक्स में पाया जा सकता है। जब एक एंजाइम और सब्सट्रेट (जैव रसायन) के बीच प्रतिक्रिया की दर (जिसे वेग कहा जाता है) को सब्सट्रेट की विभिन्न सांद्रता के विरुद्ध प्लॉट किया जाता है। तो कई सरल प्रणालियों के लिए एक हाइपरबोलिक प्लॉट प्राप्त होता है। जब ऐसा होता है। तो एंजाइम को एंजाइम कैनेटीक्स माइकलिस मेंटेन कैनेटीक्स का पालन करने के लिए कहा जाता है।
गणितीय उदाहरण
फलन
: समय पर एक विलक्षणता के साथ अतिपरवलयकार विकास प्रदर्शित करता है। फलन की सीमा के रूप में , फलन अनंत तक जाता है।
अधिक सामान्य फलन-
अतिपरवलयकार विकास प्रदर्शित करता है। जहाँ मापदंड कारक है।
ध्यान दें कि इस बीजगणितीय फलन को फलन के अंतर के लिए विश्लेषणात्मक समाधान माना जा सकता है।[5]
इसका अर्थ यह है कि अतिपरवलयकार विकास के साथ क्षण t में चर x की पूर्ण वृद्धि दर क्षण t में x के मान के वर्ग के समानुपाती होती है।
क्रमशः द्विघात-अतिपरवलयिक फलन इस प्रकार दिखता है।
यह भी देखें
- घातीय वृद्धि
- लॉजिस्टिक ग्रोथ
- गणितीय विलक्षणता
टिप्पणियाँ
- ↑ See, e.g., Korotayev A., Malkov A., Khaltourina D. Introduction to Social Macrodynamics: Compact Macromodels of the World System Growth. Moscow: URSS Publishers, 2006. P. 19-20.
- ↑ See, e.g., Alexander V. Markov, and Andrey V. Korotayev (2007). "Phanerozoic marine biodiversity follows a hyperbolic trend". Palaeoworld. Volume 16. Issue 4. Pages 311-318.
- ↑ See, e.g., Korotayev A., Malkov A., Khaltourina D. Introduction to Social Macrodynamics: Compact Macromodels of the World System Growth. Moscow: URSS Publishers, 2006; Korotayev A. V. A Compact Macromodel of World System Evolution // Journal of World-Systems Research 11/1 (2005): 79–93. Archived September 25, 2009, at the Wayback Machine; for a detailed mathematical analysis of this issue see A Compact Mathematical Model of the World System Economic and Demographic Growth, 1 CE - 1973 CE. "International Journal of Mathematical Models and Methods in Applied Sciences". 2016. Vol. 10, pp. 200-209 .
- ↑ The 21st Century Singularity and its Big History Implications: A re-analysis. Journal of Big History 2/3 (2018): 71 - 118; see also The 21st Century Singularity and Global Futures. A Big History Perspective (Springer, 2020).
- ↑ See, e.g., Korotayev A., Malkov A., Khaltourina D. Introduction to Social Macrodynamics: Compact Macromodels of the World System Growth. Moscow: URSS Publishers, 2006. P. 118-123.
संदर्भ
- Alexander V. Markov, and Andrey V. Korotayev (2007). "Phanerozoic marine biodiversity follows a hyperbolic trend". Palaeoworld. Volume 16. Issue 4. Pages 311-318].
- Kremer, Michael. 1993. "Population Growth and Technological Change: One Million B.C. to 1990," The Quarterly Journal of Economics 108(3): 681-716.
- Korotayev A., Malkov A., Khaltourina D. 2006. Introduction to Social Macrodynamics: Compact Macromodels of the World System Growth. Moscow: URSS. ISBN 5-484-00414-4 .
- Rein Taagepera (1979) People, skills, and resources: An interaction model for world population growth. Technological Forecasting and Social Change 13, 13-30.