नियंत्रण सिद्धांत में एच-अनंत विधियाँ: Difference between revisions

From Vigyanwiki
(Created page with "''एच''<sub>∞</sub>(यानी ''H''-infinity ) विधियों का उपयोग नियंत्रण सिद्धांत में गार...")
 
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
''एच''<sub>∞</sub>(यानी ''H''-infinity ) विधियों का उपयोग [[नियंत्रण सिद्धांत]] में गारंटीकृत प्रदर्शन के साथ स्थिरीकरण प्राप्त करने के लिए नियंत्रकों को संश्लेषित करने के लिए किया जाता है। ''एच'' का उपयोग करने के लिए<sub>∞</sub> विधियों, एक नियंत्रण डिजाइनर नियंत्रण समस्या को [[गणितीय अनुकूलन]] समस्या के रूप में व्यक्त करता है और फिर इस अनुकूलन को हल करने वाले नियंत्रक को ढूंढता है। एच<sub>∞</sub> तकनीकों का उस एच में शास्त्रीय नियंत्रण तकनीकों पर लाभ है<sub>∞</sub> चैनल के बीच क्रॉस-युग्मन के साथ बहुभिन्नरूपी प्रणालियों से जुड़ी समस्याओं के लिए तकनीकें आसानी से लागू होती हैं; एच. का नुकसान<sub>∞</sub> तकनीकों में उन्हें सफलतापूर्वक लागू करने के लिए आवश्यक गणितीय समझ का स्तर और नियंत्रित करने के लिए प्रणाली के यथोचित अच्छे मॉडल की आवश्यकता शामिल है। यह ध्यान रखना महत्वपूर्ण है कि परिणामी नियंत्रक निर्धारित लागत फ़ंक्शन के संबंध में केवल इष्टतम है और नियंत्रकों का मूल्यांकन करने के लिए उपयोग किए जाने वाले सामान्य प्रदर्शन उपायों के संदर्भ में आवश्यक रूप से सर्वोत्तम नियंत्रक का प्रतिनिधित्व नहीं करता है जैसे निपटान समय, ऊर्जा व्यय, आदि। इसके अलावा, संतृप्ति जैसे गैर-रैखिक बाधाओं को आम तौर पर अच्छी तरह से नियंत्रित नहीं किया जाता है। इन विधियों को 1970 के दशक के अंत में 1980 के दशक के प्रारंभ में नियंत्रण सिद्धांत में पेश किया गया था
गारंटीकृत निष्पादन के साथ स्थिरीकरण प्राप्त करने के लिए नियंत्रकों को संश्लेषित करने के लिए [[नियंत्रण सिद्धांत]] में '''''H''<sub>∞</sub>'''(अर्थात् ''H''-अनंत) विधियों का उपयोग किया जाता है। ''H<sub>∞</sub>'' विधियों का उपयोग करने के लिए, एक नियंत्रण अभिकल्पक नियंत्रण समस्या को [[गणितीय अनुकूलन]] समस्या के रूप में व्यक्त करते है और फिर इस अनुकूलन को हल करने वाले नियंत्रक को ढूंढते है। H∞ तकनीकों का शास्त्रीय नियंत्रण तकनीकों पर लाभ है कि  ''H''<sub>∞</sub> तकनीक चैनलों के मध्य क्रॉस-युग्मन के साथ बहुभिन्नरूपी प्रणालियों से जुड़ी समस्याओं पर आसानी से उपयुक्त होती हैं; ''H''<sub>∞</sub> तकनीको के हानि में उन्हें सफलतापूर्वक उपयुक्त करने के लिए आवश्यक गणितीय समझ का स्तर और नियंत्रित करने के लिए प्रणाली के यथोचित अच्छे प्रतिरूप की आवश्यकता सम्मिलित है। यह ध्यान रखना महत्वपूर्ण है कि परिणामी नियंत्रक निर्धारित लागत फलन के संबंध में केवल इष्टतम है और नियंत्रकों का मूल्यांकन करने के लिए उपयोग किए जाने वाले सामान्य निष्पादन उपायों के संदर्भ में आवश्यक रूप से सर्वोत्तम नियंत्रक का प्रतिनिधित्व नहीं करता है जैसे निःसादन समय, ऊर्जा व्यय, आदि। इसके अलावा, संतृप्ति जैसे गैर-रैखिक बाधाओं को सामान्यतः अच्छी तरह से नियंत्रित नहीं किया जाता है। इन विधियों को 1970 के दशक के अंत में 1980 के दशक के प्रारंभ में [[जॉर्ज जेम्स]] द्वारा (संवेदनशीलता न्यूनीकरण),<ref name="Zames" /> जे. विलियम हेल्टन (ब्रॉडबैंड सुमेलन),<ref name="Helton"/>और [[एलन टैननबौम]] (अतिरिक्त अनुकूलन लाभ) द्वारा नियंत्रण सिद्धांत में प्रस्तावित किया गया था।<ref name="Tannenbaum"/>
[[जॉर्ज जेम्स]] द्वारा (संवेदनशीलता न्यूनीकरण),<ref name="Zames" />जे. विलियम हेल्टन (ब्रॉडबैंड मैचिंग),<ref name="Helton"/>और [[एलन टैननबौम]] (गेन मार्जिन ऑप्टिमाइजेशन)<ref name="Tannenbaum"/>


वाक्यांश एच<sub>∞</sub> नियंत्रण उस गणितीय स्थान के नाम से आता है जिस पर अनुकूलन होता है: एच<sub>∞</sub> [[मैट्रिक्स (गणित)]]-मूल्यवान कार्यों का [[हार्डी स्पेस]] है जो [[विश्लेषणात्मक कार्य]] हैं और रे (एस) > 0 द्वारा परिभाषित [[जटिल विमान]] के खुले दाएं-आधे हिस्से में बंधे हैं; एच<sub>∞</sub> मानदंड उस स्थान पर फ़ंक्शन का अधिकतम एकवचन मान है। (इसे किसी भी दिशा में और किसी भी आवृत्ति पर अधिकतम लाभ के रूप में व्याख्या किया जा सकता है; [[सिंगल-इनपुट और सिंगल-आउटपुट]] सिस्टम के लिए, यह प्रभावी रूप से आवृत्ति प्रतिक्रिया का अधिकतम परिमाण है।) एच<sub>∞</sub> गड़बड़ी के बंद लूप प्रभाव को कम करने के लिए तकनीकों का उपयोग किया जा सकता है: समस्या निर्माण के आधार पर, प्रभाव को या तो स्थिरीकरण या प्रदर्शन के संदर्भ में मापा जाएगा।
वाक्यांश H∞ नियंत्रण गणितीय समष्टि के नाम से आता है जिस पर अनुकूलन होता है: H∞ [[मैट्रिक्स (गणित)|आव्यूह (गणित)]]-मूल्यवान फलन का [[हार्डी स्पेस|हार्डी समष्टि]] है जो [[विश्लेषणात्मक कार्य|विश्लेषणात्मक]] हैं और Re(''s'') > 0 द्वारा परिभाषित [[जटिल विमान|जटिल]] [[हार्डी स्पेस|समष्टि]] के खुले दाहिने आधे भाग में घिरा हुआ है; H∞ मानदंड उस समष्टि पर फलन का अधिकतम एकवचन मान है। (इसे किसी भी दिशा में और किसी भी आवृत्ति पर अधिकतम लाभ के रूप में व्याख्या किया जा सकता है; [[सिंगल-इनपुट और सिंगल-आउटपुट|SISO]] प्रणाली के लिए, यह प्रभावी रूप से आवृत्ति प्रतिक्रिया का अधिकतम परिमाण है।) H∞ तकनीकों का उपयोग क्षोभ के बंद लूप प्रभाव को कम करने के लिए किया जा सकता है: समस्या निर्माण के आधार पर, प्रभाव को या तो स्थिरीकरण या निष्पादन के संदर्भ में मापा जाएगा।


इसके साथ ही मजबूत प्रदर्शन और मजबूत स्थिरीकरण का अनुकूलन करना मुश्किल है। एक तरीका जो इसे प्राप्त करने के करीब आता है वह है एच-इन्फिनिटी लूप-शेपिंग | एच<sub>∞</sub> लूप-शेपिंग, जो कंट्रोल डिज़ाइनर को क्लासिकल लूप-शेपिंग कॉन्सेप्ट्स को मल्टीवीरिएबल फ्रीक्वेंसी रिस्पांस पर लागू करने की अनुमति देता है ताकि अच्छा मजबूत प्रदर्शन प्राप्त किया जा सके और फिर अच्छे मजबूत स्थिरीकरण को प्राप्त करने के लिए सिस्टम बैंडविड्थ के पास प्रतिक्रिया का अनुकूलन किया जा सके।
इसके साथ ही मजबूत निष्पादन और मजबूत स्थिरीकरण का अनुकूलन करना कठिन है। इसे प्राप्त करने के पास आने वाली एक विधि H∞ लूप-शेपिंग (पाश-आकार), जो नियंत्रण अभिकल्पक को अच्छा मजबूत प्रदर्शन प्राप्त करने के लिए शास्त्रीय लूप-शेपिंग अवधारणाओं को उपयुक्त करने की अनुमति देता और फिर अच्छे मजबूत स्थिरीकरण को प्राप्त करने के लिए प्रणाली बैंड विस्तार के पास प्रतिक्रिया को अनुकूलित करता है।


एच. का समर्थन करने के लिए व्यावसायिक सॉफ्टवेयर उपलब्ध है<sub>∞</sub> नियंत्रक संश्लेषण।
''H''<sub>∞</sub> नियंत्रक संश्लेषण का समर्थन करने के लिए वाणिज्यिक सॉफ्टवेयर उपलब्ध है।


== समस्या निर्माण ==
== समस्या सूत्रीकरण ==


सबसे पहले, प्रक्रिया को निम्नलिखित मानक विन्यास के अनुसार दर्शाया जाना चाहिए:
सबसे पहले, प्रक्रिया को निम्नलिखित मानक विन्यास के अनुसार दर्शाया जाना चाहिए:


[[Image:H-infty plant representation.png]]प्लांट P में दो इनपुट हैं, एक्सोजेनस इनपुट w, जिसमें रेफरेंस सिग्नल और डिस्टर्बेंस शामिल हैं, और मैनिपुलेट वेरिएबल्स u। दो आउटपुट हैं, त्रुटि संकेत z जिसे हम न्यूनतम करना चाहते हैं, और मापा चर v, जिसका उपयोग हम सिस्टम को नियंत्रित करने के लिए करते हैं। v का उपयोग K में हेरफेर किए गए चर u की गणना करने के लिए किया जाता है। ध्यान दें कि ये सभी आम तौर पर [[वेक्टर (ज्यामिति)]] हैं, जबकि 'पी' और 'के' मैट्रिक्स (गणित) हैं।
[[Image:H-infty plant representation.png]]
 
प्लांट (सयंत्र) P में दो निवेश हैं, बहिर्जात निवेश w, जिसमें निर्देश संकेत और विक्षोभ सम्मिलित हैं, और प्रकलित चर u हैं। दो निर्गम हैं, त्रुटि संकेत z जिसे हम न्यूनतम करना चाहते हैं, और मापित चर v, जिसका उपयोग हम प्रणाली को नियंत्रित करने के लिए करते हैं। v का उपयोग K में प्रकलित किए गए चर u की गणना करने के लिए किया जाता है। ध्यान दें कि ये सभी सामान्यतया [[सदिश]] हैं, जबकि '<nowiki/>'''P'''<nowiki/>' और ''''K'''<nowiki/>' आव्यूह हैं।


सूत्र में, प्रणाली है:
सूत्र में, प्रणाली है:
Line 21: Line 22:


:<math>z=F_\ell(\mathbf{P},\mathbf{K})\,w</math>
:<math>z=F_\ell(\mathbf{P},\mathbf{K})\,w</math>
निम्न रेखीय भिन्नात्मक परिवर्तन कहा जाता है, <math>F_\ell</math> परिभाषित किया गया है (सबस्क्रिप्ट निम्न से आता है):
निम्न रेखीय भिन्नात्मक परिवर्तन कहा जाता है, <math>F_\ell</math> परिभाषित किया गया है (पादांकित निम्न से आता है):


:<math>F_\ell(\mathbf{P},\mathbf{K}) = P_{11} + P_{12}\,\mathbf{K}\,(I-P_{22}\,\mathbf{K})^{-1}\,P_{21}</math>
:<math>F_\ell(\mathbf{P},\mathbf{K}) = P_{11} + P_{12}\,\mathbf{K}\,(I-P_{22}\,\mathbf{K})^{-1}\,P_{21}</math>
इसलिए, का उद्देश्य <math>\mathcal{H}_\infty</math> नियंत्रण डिजाइन एक नियंत्रक खोजने के लिए है <math>\mathbf{K}</math> ऐसा है कि <math>F_\ell(\mathbf{P},\mathbf{K})</math> के अनुसार कम किया जाता है <math>\mathcal{H}_\infty</math> मानदंड। पर भी यही परिभाषा लागू होती है <math>\mathcal{H}_2</math> नियंत्रण डिजाइन। [[ट्रांसफर फ़ंक्शन मैट्रिक्स]] का अनंत मानदंड <math>F_\ell(\mathbf{P},\mathbf{K})</math> परिभाषित किया जाता है:
इसलिए, <math>\mathcal{H}_\infty</math>नियंत्रण प्रारुप का उद्देश्य नियंत्रक <math>\mathbf{K}</math> को प्राप्त करना है जैसे कि <math>F_\ell(\mathbf{P},\mathbf{K})</math> को <math>\mathcal{H}_\infty</math> मानक के अनुसार न्यूनतम किया जाता है। यही परिभाषा <math>\mathcal{H}_2</math> नियंत्रण प्रारुप पर उपयुक्त होती है। [[ट्रांसफर फ़ंक्शन मैट्रिक्स|अंतरण फलन आव्यूह]] <math>F_\ell(\mathbf{P},\mathbf{K})</math> के अनंत मानदंड को इस प्रकार परिभाषित किया गया है:


:<math>||F_\ell(\mathbf{P},\mathbf{K})||_\infty = \sup_\omega \bar{\sigma}(F_\ell(\mathbf{P},\mathbf{K})(j\omega))</math>
:<math>||F_\ell(\mathbf{P},\mathbf{K})||_\infty = \sup_\omega \bar{\sigma}(F_\ell(\mathbf{P},\mathbf{K})(j\omega))</math>
कहाँ <math>\bar{\sigma}</math> मैट्रिक्स का अधिकतम एकवचन मान है <math>F_\ell(\mathbf{P},\mathbf{K})(j\omega)</math>.
जहां <math>\bar{\sigma}</math> आव्यूह <math>F_\ell(\mathbf{P},\mathbf{K})(j\omega)</math> का अधिकतम एकवचन मान है।


प्राप्य एच<sub>∞</sub> बंद लूप सिस्टम का मानदंड मुख्य रूप से मैट्रिक्स डी के माध्यम से दिया जाता है<sub>11</sub> (जब सिस्टम पी फॉर्म में दिया जाता है (, बी<sub>1</sub>, बी<sub>2</sub>, सी<sub>1</sub>, सी<sub>2</sub>, डी<sub>11</sub>, डी<sub>12</sub>, डी<sub>22</sub>, डी<sub>21</sub>)). एच पर आने के कई तरीके हैं<sub>∞</sub> नियंत्रक:
बंद लूप प्रणाली का प्राप्त करने योग्य H∞ मानदंड मुख्य रूप से आव्यूह ''D''<sub>11</sub> के माध्यम से दिया जाता है (जब प्रणाली ''P'' को (''A'', ''B''<sub>1</sub>, ''B''<sub>2</sub>, ''C''<sub>1</sub>, ''C''<sub>2</sub>, ''D''<sub>11</sub>, ''D''<sub>12</sub>, ''D''<sub>22</sub>, ''D''<sub>21</sub>) के रूप में दिया जाता है)। ''H''<sub>∞</sub> नियंत्रक में आने के कई प्रकार हैं:
* बंद लूप का [[Youla-Kucera parametrization]] अक्सर बहुत उच्च-क्रम नियंत्रक की ओर जाता है।
* बंद लूप का [[Youla-Kucera parametrization|यूला-कुचेरा प्राचलीकरण]] प्रायः बहुत उच्च-क्रम नियंत्रक की ओर जाता है।
* [[रिकाटी समीकरण]]-आधारित दृष्टिकोण नियंत्रक को खोजने के लिए दो रिकाटी समीकरणों को हल करते हैं, लेकिन कई सरल धारणाओं की आवश्यकता होती है।
* [[रिकाटी समीकरण|रिकाटी]]-आधारित दृष्टिकोण नियंत्रक को प्राप्त करने के लिए दो रिकाटी समीकरणों को हल करते हैं, लेकिन कई सरल धारणाओं की आवश्यकता होती है।
* रिकाटी समीकरण का एक अनुकूलन-आधारित सुधार रेखीय मैट्रिक्स असमानता का उपयोग करता है और इसके लिए कम मान्यताओं की आवश्यकता होती है।
* रिकाटी समीकरण का एक अनुकूलन-आधारित सुधार रेखीय आव्यूह असमानता का उपयोग करता है और इसके लिए कम मान्यताओं की आवश्यकता होती है।


== यह भी देखें ==
== यह भी देखें ==
* हार्डी स्पेस
* [[हार्डी समष्टि]]
* [[एच चौक]]
* [[एच चौक|H वर्ग]]
* [[एच-इनफिनिटी लूप-शेपिंग]]
* [[एच-इनफिनिटी लूप-शेपिंग|H]][[एच-इनफिनिटी लूप-शेपिंग|-अनंत लूप-शेपिंग]]
*[[रैखिक-द्विघात-गाऊसी नियंत्रण]] (LQG)
*[[रैखिक-द्विघात-गाऊसी नियंत्रण]] (एलक्यूजी)
* [[रोसेनब्रॉक सिस्टम मैट्रिक्स]]
* [[रोसेनब्रॉक सिस्टम मैट्रिक्स|रोसेनब्रॉक प्रणाली आव्यूह]]


== संदर्भ ==
== संदर्भ ==
Line 162: Line 163:


{{refend}}
{{refend}}
[[Category: नियंत्रण सिद्धांत]] [[Category: हार्डी रिक्त स्थान]]


[[Category: Machine Translated Page]]
[[Category:Created On 29/03/2023]]
[[Category:Created On 29/03/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:नियंत्रण सिद्धांत]]
[[Category:हार्डी रिक्त स्थान]]

Latest revision as of 15:39, 17 October 2023

गारंटीकृत निष्पादन के साथ स्थिरीकरण प्राप्त करने के लिए नियंत्रकों को संश्लेषित करने के लिए नियंत्रण सिद्धांत में H(अर्थात् H-अनंत) विधियों का उपयोग किया जाता है। H विधियों का उपयोग करने के लिए, एक नियंत्रण अभिकल्पक नियंत्रण समस्या को गणितीय अनुकूलन समस्या के रूप में व्यक्त करते है और फिर इस अनुकूलन को हल करने वाले नियंत्रक को ढूंढते है। H∞ तकनीकों का शास्त्रीय नियंत्रण तकनीकों पर लाभ है कि H तकनीक चैनलों के मध्य क्रॉस-युग्मन के साथ बहुभिन्नरूपी प्रणालियों से जुड़ी समस्याओं पर आसानी से उपयुक्त होती हैं; H तकनीको के हानि में उन्हें सफलतापूर्वक उपयुक्त करने के लिए आवश्यक गणितीय समझ का स्तर और नियंत्रित करने के लिए प्रणाली के यथोचित अच्छे प्रतिरूप की आवश्यकता सम्मिलित है। यह ध्यान रखना महत्वपूर्ण है कि परिणामी नियंत्रक निर्धारित लागत फलन के संबंध में केवल इष्टतम है और नियंत्रकों का मूल्यांकन करने के लिए उपयोग किए जाने वाले सामान्य निष्पादन उपायों के संदर्भ में आवश्यक रूप से सर्वोत्तम नियंत्रक का प्रतिनिधित्व नहीं करता है जैसे निःसादन समय, ऊर्जा व्यय, आदि। इसके अलावा, संतृप्ति जैसे गैर-रैखिक बाधाओं को सामान्यतः अच्छी तरह से नियंत्रित नहीं किया जाता है। इन विधियों को 1970 के दशक के अंत में 1980 के दशक के प्रारंभ में जॉर्ज जेम्स द्वारा (संवेदनशीलता न्यूनीकरण),[1] जे. विलियम हेल्टन (ब्रॉडबैंड सुमेलन),[2]और एलन टैननबौम (अतिरिक्त अनुकूलन लाभ) द्वारा नियंत्रण सिद्धांत में प्रस्तावित किया गया था।[3]

वाक्यांश H∞ नियंत्रण गणितीय समष्टि के नाम से आता है जिस पर अनुकूलन होता है: H∞ आव्यूह (गणित)-मूल्यवान फलन का हार्डी समष्टि है जो विश्लेषणात्मक हैं और Re(s) > 0 द्वारा परिभाषित जटिल समष्टि के खुले दाहिने आधे भाग में घिरा हुआ है; H∞ मानदंड उस समष्टि पर फलन का अधिकतम एकवचन मान है। (इसे किसी भी दिशा में और किसी भी आवृत्ति पर अधिकतम लाभ के रूप में व्याख्या किया जा सकता है; SISO प्रणाली के लिए, यह प्रभावी रूप से आवृत्ति प्रतिक्रिया का अधिकतम परिमाण है।) H∞ तकनीकों का उपयोग क्षोभ के बंद लूप प्रभाव को कम करने के लिए किया जा सकता है: समस्या निर्माण के आधार पर, प्रभाव को या तो स्थिरीकरण या निष्पादन के संदर्भ में मापा जाएगा।

इसके साथ ही मजबूत निष्पादन और मजबूत स्थिरीकरण का अनुकूलन करना कठिन है। इसे प्राप्त करने के पास आने वाली एक विधि H∞ लूप-शेपिंग (पाश-आकार), जो नियंत्रण अभिकल्पक को अच्छा मजबूत प्रदर्शन प्राप्त करने के लिए शास्त्रीय लूप-शेपिंग अवधारणाओं को उपयुक्त करने की अनुमति देता और फिर अच्छे मजबूत स्थिरीकरण को प्राप्त करने के लिए प्रणाली बैंड विस्तार के पास प्रतिक्रिया को अनुकूलित करता है।

H नियंत्रक संश्लेषण का समर्थन करने के लिए वाणिज्यिक सॉफ्टवेयर उपलब्ध है।

समस्या सूत्रीकरण

सबसे पहले, प्रक्रिया को निम्नलिखित मानक विन्यास के अनुसार दर्शाया जाना चाहिए:

H-infty plant representation.png

प्लांट (सयंत्र) P में दो निवेश हैं, बहिर्जात निवेश w, जिसमें निर्देश संकेत और विक्षोभ सम्मिलित हैं, और प्रकलित चर u हैं। दो निर्गम हैं, त्रुटि संकेत z जिसे हम न्यूनतम करना चाहते हैं, और मापित चर v, जिसका उपयोग हम प्रणाली को नियंत्रित करने के लिए करते हैं। v का उपयोग K में प्रकलित किए गए चर u की गणना करने के लिए किया जाता है। ध्यान दें कि ये सभी सामान्यतया सदिश हैं, जबकि 'P' और 'K' आव्यूह हैं।

सूत्र में, प्रणाली है:

इसलिए w पर z की निर्भरता को व्यक्त करना संभव है:

निम्न रेखीय भिन्नात्मक परिवर्तन कहा जाता है, परिभाषित किया गया है (पादांकित निम्न से आता है):

इसलिए, नियंत्रण प्रारुप का उद्देश्य नियंत्रक को प्राप्त करना है जैसे कि को मानक के अनुसार न्यूनतम किया जाता है। यही परिभाषा नियंत्रण प्रारुप पर उपयुक्त होती है। अंतरण फलन आव्यूह के अनंत मानदंड को इस प्रकार परिभाषित किया गया है:

जहां आव्यूह का अधिकतम एकवचन मान है।

बंद लूप प्रणाली का प्राप्त करने योग्य H∞ मानदंड मुख्य रूप से आव्यूह D11 के माध्यम से दिया जाता है (जब प्रणाली P को (A, B1, B2, C1, C2, D11, D12, D22, D21) के रूप में दिया जाता है)। H नियंत्रक में आने के कई प्रकार हैं:

  • बंद लूप का यूला-कुचेरा प्राचलीकरण प्रायः बहुत उच्च-क्रम नियंत्रक की ओर जाता है।
  • रिकाटी-आधारित दृष्टिकोण नियंत्रक को प्राप्त करने के लिए दो रिकाटी समीकरणों को हल करते हैं, लेकिन कई सरल धारणाओं की आवश्यकता होती है।
  • रिकाटी समीकरण का एक अनुकूलन-आधारित सुधार रेखीय आव्यूह असमानता का उपयोग करता है और इसके लिए कम मान्यताओं की आवश्यकता होती है।

यह भी देखें

संदर्भ

  1. Zames, George (1981). "Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses". IEEE Transactions on Automatic Control. 26 (2): 301–320. doi:10.1109/tac.1981.1102603.
  2. Helton, J. William (1978). "Orbit structure of the Mobius transformation semigroup action on H-infinity (broadband matching)". Adv. Math. Suppl. Stud. 3: 129–197.
  3. Tannenbaum, Allen (1980). "Feedback stabilization of linear dynamical plants with uncertainty in the gain factor". International Journal of Control. 32 (1): 1–16. doi:10.1080/00207178008922838.


ग्रन्थसूची

  • Doyle, John; Francis, Bruce; Tannenbaum, Allen (1992), Feedback Control Theory, MacMillan.
  • Green, M.; Limebeer, D. (1995), Linear Robust Control, Prentice Hall.
  • Skogestad, Sigurd; Postlethwaite, Ian (1996), Multivariable Feedback Control: Analysis and Design, Wiley, ISBN 978-0-471-94277-1.