चुंबकीय द्विध्रुवीय: Difference between revisions
No edit summary |
No edit summary |
||
(11 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Magnetic analogue of the electric dipole}} | {{short description|Magnetic analogue of the electric dipole}} | ||
[[File:VFPt_dipoles_magnetic.svg|thumb|350px|प्राकृतिक चुंबकीय द्विध्रुव (ऊपरी बाएँ), [[चुंबकीय मोनोपोल|चुंबकीय एकल ध्रुव]] | [[File:VFPt_dipoles_magnetic.svg|thumb|350px|प्राकृतिक चुंबकीय द्विध्रुव (ऊपरी बाएँ), [[चुंबकीय मोनोपोल|चुंबकीय एकल ध्रुव]] (ऊपरी दाएँ), एक वृत्ताकार लूप (निचले बाएँ) में एक [[विद्युत प्रवाह]] या एक [[solenoid]] (निचले दाएं) के कारण [[चुंबकीय क्षेत्र]]। व्यवस्था असीम रूप से छोटी होने पर सभी समान फ़ील्ड प्रोफ़ाइल उत्पन्न करते हैं।<ref>{{cite book|author=I.S. Grant, W.R. Phillips|title=विद्युत चुंबकत्व|url=https://archive.org/details/electromagnetism0000gran|url-access=registration|edition=2nd|publisher=Manchester Physics, John Wiley & Sons|year=2008|isbn=978-0-471-92712-9}}</ref>]][[विद्युत]] चुंबकत्व में, चुंबकीय द्विध्रुवीय विद्युत प्रवाह के एक बंद लूप या ध्रुवों की एक जोड़ी की सीमा होती है क्योंकि चुंबकीय क्षण को स्थिर रखते हुए स्रोत का आकार शून्य हो जाता है। यह वैद्युत द्विध्रुव आघूर्ण का चुंबकीय अनुरूप है, परन्तु सादृश्य सही नहीं है। | ||
चुंबकीय | विशेष रूप से, एक वास्तविक चुंबकीय मोनोपोल, विद्युत आवेश का चुंबकीय एनालॉग, प्रकृति में कभी नहीं देखा गया है। यद्यपि,चुंबकीय मोनोपोल क्यूसिपार्टिकल्स को कुछ संघनित पदार्थ प्रणालियों के आकस्मिक गुणों के रूप में देखा गया है। इसके अतिरिक्त,साधारण चुंबकीय द्विध्रुव आघूर्ण मूल रूप से परिमाण कणों के चक्रण से जुड़ा है क्योंकि चुंबकीय मोनोपोल उपस्थित नहीं रहता हैं, किसी भी स्थिर चुंबकीय स्रोत से बड़ी दूरी पर चुंबकीय क्षेत्र उसी द्विध्रुवीय क्षण के साथ एक द्विध्रुवीय क्षेत्र जैसा दिखता है। जैसे क्वाड्रुपोल, उच्च-क्रम के स्रोतों के लिए कोई द्विध्रुव क्षण नहीं होता है, उनका क्षेत्र द्विध्रुव क्षेत्र के सापेक्ष में तेजी से दूरी के साथ शून्य की ओर घटता है | ||
== चुंबकीय द्विध्रुव आघूर्ण द्वारा उत्पन्न बाह्य चुंबकीय क्षेत्र == | == चुंबकीय द्विध्रुव आघूर्ण द्वारा उत्पन्न बाह्य चुंबकीय क्षेत्र == | ||
[[Image:VFPt dipole electric.svg|thumb|200px|upright|एक चुंबकीय पल के लिए एक इलेक्ट्रोस्टैटिक एनालॉग: दो विरोधी चार्ज एक सीमित दूरी से अलग हो जाते हैं। प्रत्येक तीर उस बिंदु पर फ़ील्ड वेक्टर की दिशा का प्रतिनिधित्व करता है।]] | [[Image:VFPt dipole electric.svg|thumb|200px|upright|एक चुंबकीय पल के लिए एक इलेक्ट्रोस्टैटिक एनालॉग: दो विरोधी चार्ज एक सीमित दूरी से अलग हो जाते हैं। प्रत्येक तीर उस बिंदु पर फ़ील्ड वेक्टर की दिशा का प्रतिनिधित्व करता है।]] | ||
[[Image:VFPt dipole magnetic3.svg|thumbnail|200px|right|विद्युत | [[Image:VFPt dipole magnetic3.svg|thumbnail|200px|right|विद्युत लूप का चुंबकीय क्षेत्र। वलय विद्युत लूप का प्रतिनिधित्व करता है, जो x पर पृष्ठ में जाता है और बिंदु पर बाहर आता है।]][[शास्त्रीय भौतिकी|पारम्परिक भौतिकी]] में, एक द्विध्रुव के चुंबकीय क्षेत्र की गणना एक विद्युत लूप या आवेशों के एक युग्म की सीमा के रूप में की जाती है क्योंकि चुंबकीय क्षण m स्थिर रखते हुए स्रोत एक बिंदु तक सिकुड़ जाती है। तथा विद्युत लूप के लिए, यह सीमा सदिश क्षमता से सबसे आसानी से प्राप्त होती है::<ref name=Chow146>{{harvnb|Chow|2006|pages=146–150}}</ref> | ||
: <math>{\mathbf{A}}({\mathbf{r}})=\frac{\mu_{0}}{4\pi r^{2}}\frac{{\mathbf{m}}\times{\mathbf{r}}}{r}=\frac{\mu_{0}}{4\pi}\frac{{\mathbf{m}}\times{\mathbf{r}}}{r^{3}},</math> | : <math>{\mathbf{A}}({\mathbf{r}})=\frac{\mu_{0}}{4\pi r^{2}}\frac{{\mathbf{m}}\times{\mathbf{r}}}{r}=\frac{\mu_{0}}{4\pi}\frac{{\mathbf{m}}\times{\mathbf{r}}}{r^{3}},</math> | ||
जहाँ μ<sub>0</sub> [[वैक्यूम पारगम्यता|निर्वात पारगम्यता]] स्थिर है और {{math|4''π r''<sup>2</sup>}} त्रिज्या के गोले की सतह है {{math|''r''}} | जहाँ μ<sub>0</sub> [[वैक्यूम पारगम्यता|निर्वात पारगम्यता]] स्थिर है और {{math|4''π r''<sup>2</sup>}} त्रिज्या के गोले की सतह है तब {{math|''r''}} चुंबकीय प्रवाह घनत्व बी-क्षेत्र की शक्ति है।<ref name=Chow146/> | ||
:<math>\mathbf{B}({\mathbf{r}})=\nabla\times{\mathbf{A}}=\frac{\mu_{0}}{4\pi}\left[\frac{3\mathbf{r}(\mathbf{m}\cdot\mathbf{r})}{r^{5}}-\frac{{\mathbf{m}}}{r^{3}}\right].</math> | :<math>\mathbf{B}({\mathbf{r}})=\nabla\times{\mathbf{A}}=\frac{\mu_{0}}{4\pi}\left[\frac{3\mathbf{r}(\mathbf{m}\cdot\mathbf{r})}{r^{5}}-\frac{{\mathbf{m}}}{r^{3}}\right].</math> | ||
Line 25: | Line 25: | ||
{{See also|चुंबकीय ध्रुव की परिभाषा}} | {{See also|चुंबकीय ध्रुव की परिभाषा}} | ||
एक द्विध्रुव विद्युत | एक द्विध्रुव विद्युत लूप और चुंबकीय ध्रुव के लिए दो प्रारूप, स्रोत से दूर चुंबकीय क्षेत्र के लिए समान पुर्वानुमान लगाते हैं। यद्यपि, स्रोत क्षेत्र के अंदर वे अलग-अलग पुर्वानुमान लगाते हैं। ध्रुवों के मध्य चुंबकीय क्षेत्र चुंबकीय क्षण के विपरीत दिशा में होता है जो ऋणात्मक आवेश से धनात्मक आवेश की ओर संकेत करता है, जबकि विद्युत लूप के अंदर यह उसी दिशा में होता है। स्पष्ट रूप से, इन क्षेत्रों की सीमाएँ भी भिन्न होते है क्योंकि स्रोत शून्य आकार में संकीर्ण हो जाते हैं। यह अंतर तभी आशय रखता है जब किसी चुंबकीय क्षेत्रो के अंदर की गणना करने के लिए द्विध्रुवीय सीमा का उपयोग किया जाता है। | ||
यदि एक विद्युत | यदि एक विद्युत लूप को छोटा करके एक चुंबकीय द्विध्रुव का निर्माण किया जाता है, लेकिन विद्युत और क्षेत्र के उत्पाद को स्थिर रखते हैं जिसका, सीमित क्षेत्र है | ||
:<math>\mathbf{B}(\mathbf{r})=\frac{\mu_0}{4\pi}\left[\frac{3\mathbf{\hat{r}}(\mathbf{\hat{r}}\cdot \mathbf{m})-\mathbf{m}}{|\mathbf{r}|^3} + \frac{8\pi}{3}\mathbf{m}\delta(\mathbf{r})\right],</math> | :<math>\mathbf{B}(\mathbf{r})=\frac{\mu_0}{4\pi}\left[\frac{3\mathbf{\hat{r}}(\mathbf{\hat{r}}\cdot \mathbf{m})-\mathbf{m}}{|\mathbf{r}|^3} + \frac{8\pi}{3}\mathbf{m}\delta(\mathbf{r})\right],</math> | ||
जहाँ {{math|''δ''('''r''')}} तीन आयामों में डायराक डेल्टा फलन है। जो पिछले अनुभाग में व्यंजकों के विपरीत, यह सीमा द्विध्रुव के आंतरिक क्षेत्र के लिए सही है। | जहाँ {{math|''δ''('''r''')}} तीन आयामों में डायराक डेल्टा फलन है। जो पिछले अनुभाग में व्यंजकों के विपरीत, यह सीमा द्विध्रुव के आंतरिक क्षेत्र के लिए सही है। | ||
यदि एक उत्तरी ध्रुव और एक दक्षिणी ध्रुव लेकर एक चुंबकीय द्विध्रुव का निर्माण किया जाता है, तो उन्हें एक साथ और निकट लाया | यदि एक उत्तरी ध्रुव और एक दक्षिणी ध्रुव को लेकर एक चुंबकीय द्विध्रुव का निर्माण किया जाता है, तो उन्हें एक साथ और निकट लाया जा सकता है, लेकिन चुंबकीय ध्रुव-आवेश और दूरी के उत्पाद को स्थिर रखते हुए, ये सीमांत | ||
:<math>\mathbf{H}(\mathbf{r}) =\frac{1}{4\pi}\left[\frac{3\mathbf{\hat{r}}(\mathbf{\hat{r}}\cdot \mathbf{m})-\mathbf{m}}{|\mathbf{r}|^3} - \frac{4\pi}{3}\mathbf{m}\delta(\mathbf{r})\right].</math> | :<math>\mathbf{H}(\mathbf{r}) =\frac{1}{4\pi}\left[\frac{3\mathbf{\hat{r}}(\mathbf{\hat{r}}\cdot \mathbf{m})-\mathbf{m}}{|\mathbf{r}|^3} - \frac{4\pi}{3}\mathbf{m}\delta(\mathbf{r})\right].</math> | ||
ये | जहाँ ये {{math|'''B''' {{=}} ''μ''<sub>0</sub>('''H''' + '''M''')}}, क्षेत्र इससे संबंधित हैं | ||
:<math>\mathbf{M}(\mathbf{r}) = \mathbf{m}\delta(\mathbf{r})</math> | :और <math>\mathbf{M}(\mathbf{r}) = \mathbf{m}\delta(\mathbf{r})</math> | ||
चुंबकीयकरण है। | चुंबकीयकरण है। | ||
Line 41: | Line 41: | ||
चुम्बकों के बीच बल तथा चुंबकीय द्विध्रुव}} | चुम्बकों के बीच बल तथा चुंबकीय द्विध्रुव}} | ||
सदिश r द्वारा अंतरिक्ष में अलग किए गए एक अन्य m2 पर एक द्विध्रुवीय क्षण m1 द्वारा लगाए गए बल F की गणना का उपयोग करके की जा सकती है:<ref>{{cite book|title=इलेक्ट्रोडायनामिक्स का परिचय|edition=3rd |author=D.J. Griffiths|publisher=Pearson Education|page=276|year=2007|isbn=978-81-7758-293-2}}</ref> | |||
:<math> \mathbf{F} = \nabla\left(\mathbf{m}_2\cdot\mathbf{B}_1\right), </math> | :<math> \mathbf{F} = \nabla\left(\mathbf{m}_2\cdot\mathbf{B}_1\right), </math> | ||
या<ref>{{harvnb|Furlani|2001|p=140}}</ref><ref>{{cite journal |year=1998 |title= दो चुंबकीय द्विध्रुवों के बीच बल के लिए एक विश्लेषणात्मक समाधान|author1=K.W. Yung |author2=P.B. Landecker |author3=D.D. Villani |url=http://downloads.hindawi.com/archive/1998/079537.pdf|access-date=November 24, 2012 }}</ref> | या<ref>{{harvnb|Furlani|2001|p=140}}</ref><ref>{{cite journal |year=1998 |title= दो चुंबकीय द्विध्रुवों के बीच बल के लिए एक विश्लेषणात्मक समाधान|author1=K.W. Yung |author2=P.B. Landecker |author3=D.D. Villani |url=http://downloads.hindawi.com/archive/1998/079537.pdf|access-date=November 24, 2012 }}</ref> | ||
Line 48: | Line 48: | ||
\mathbf{F}(\mathbf{r}, \mathbf{m}_1, \mathbf{m}_2) = \dfrac{3 \mu_0}{4 \pi r^5}\left[(\mathbf{m}_1\cdot\mathbf{r})\mathbf{m}_2 + (\mathbf{m}_2\cdot\mathbf{r})\mathbf{m}_1 + (\mathbf{m}_1\cdot\mathbf{m}_2)\mathbf{r} - \dfrac{5(\mathbf{m}_1\cdot\mathbf{r})(\mathbf{m}_2\cdot\mathbf{r})}{r^2}\mathbf{r}\right], | \mathbf{F}(\mathbf{r}, \mathbf{m}_1, \mathbf{m}_2) = \dfrac{3 \mu_0}{4 \pi r^5}\left[(\mathbf{m}_1\cdot\mathbf{r})\mathbf{m}_2 + (\mathbf{m}_2\cdot\mathbf{r})\mathbf{m}_1 + (\mathbf{m}_1\cdot\mathbf{m}_2)\mathbf{r} - \dfrac{5(\mathbf{m}_1\cdot\mathbf{r})(\mathbf{m}_2\cdot\mathbf{r})}{r^2}\mathbf{r}\right], | ||
</math> | </math> | ||
जहाँ r द्विध्रुवों के बीच की दूरी है। | जहाँ r द्विध्रुवों के बीच की दूरी है। | ||
m1 पर कार्य करने वाला बल विपरीत दिशा में है। तथा सूत्र से बल आघूर्ण प्राप्त किया जा सकता है | |||
: <math>\boldsymbol{\tau}=\mathbf{m}_2 \times \mathbf{B}_1.</math> | : <math>\boldsymbol{\tau}=\mathbf{m}_2 \times \mathbf{B}_1.</math> | ||
Line 58: | Line 57: | ||
{{See also|निकट और दूर का क्षेत्र}} | {{See also|निकट और दूर का क्षेत्र}} | ||
एक परिमित स्रोत द्वारा उत्पादित चुंबकीय स्केलर क्षमता ψ, लेकिन इसके बाहर, एक बहुध्रुव विस्तार द्वारा प्रदर्शित किया जा सकता है। विस्तार में प्रत्येक शब्द एक विशिष्ट क्षण और स्रोत से दूरी आर के साथ घटने की एक विशेषता दर के साथ जुड़ा हुआ है। एकध्रुवीय क्षणों में 1/r की कमी की दर होती है, द्विध्रुवीय क्षणों की 1/r2 दर होती है, चौगुनी क्षणों की 1/r3 दर होती है, और इसी तरह आदेश जितना ऊंचा होता है, क्षमता उतनी ही तेजी से गिरती है। चूंकि चुंबकीय स्रोतों में सबसे कम क्रम वाला शब्द द्विध्रुवीय शब्द है, यह बड़ी दूरी तक प्रभावी है। इसलिए, बड़ी दूरी पर कोई भी चुंबकीय स्रोत उसी चुंबकीय क्षण के द्विध्रुव की तरह दिखता है।। | |||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
Line 95: | Line 94: | ||
| doi = 10.1109/TMAG.2003.808597|bibcode = 2003ITM....39..961S }} | | doi = 10.1109/TMAG.2003.808597|bibcode = 2003ITM....39..961S }} | ||
{{Refend}} | {{Refend}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:CS1 errors]] | |||
[[Category:Created On 24/03/2023]] | [[Category:Created On 24/03/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Magnetostatics]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:चुंबकत्व]] | |||
[[Category:पदार्थ में विद्युत और चुंबकीय क्षेत्र]] |
Latest revision as of 11:48, 26 April 2023
विद्युत चुंबकत्व में, चुंबकीय द्विध्रुवीय विद्युत प्रवाह के एक बंद लूप या ध्रुवों की एक जोड़ी की सीमा होती है क्योंकि चुंबकीय क्षण को स्थिर रखते हुए स्रोत का आकार शून्य हो जाता है। यह वैद्युत द्विध्रुव आघूर्ण का चुंबकीय अनुरूप है, परन्तु सादृश्य सही नहीं है।
विशेष रूप से, एक वास्तविक चुंबकीय मोनोपोल, विद्युत आवेश का चुंबकीय एनालॉग, प्रकृति में कभी नहीं देखा गया है। यद्यपि,चुंबकीय मोनोपोल क्यूसिपार्टिकल्स को कुछ संघनित पदार्थ प्रणालियों के आकस्मिक गुणों के रूप में देखा गया है। इसके अतिरिक्त,साधारण चुंबकीय द्विध्रुव आघूर्ण मूल रूप से परिमाण कणों के चक्रण से जुड़ा है क्योंकि चुंबकीय मोनोपोल उपस्थित नहीं रहता हैं, किसी भी स्थिर चुंबकीय स्रोत से बड़ी दूरी पर चुंबकीय क्षेत्र उसी द्विध्रुवीय क्षण के साथ एक द्विध्रुवीय क्षेत्र जैसा दिखता है। जैसे क्वाड्रुपोल, उच्च-क्रम के स्रोतों के लिए कोई द्विध्रुव क्षण नहीं होता है, उनका क्षेत्र द्विध्रुव क्षेत्र के सापेक्ष में तेजी से दूरी के साथ शून्य की ओर घटता है
चुंबकीय द्विध्रुव आघूर्ण द्वारा उत्पन्न बाह्य चुंबकीय क्षेत्र
पारम्परिक भौतिकी में, एक द्विध्रुव के चुंबकीय क्षेत्र की गणना एक विद्युत लूप या आवेशों के एक युग्म की सीमा के रूप में की जाती है क्योंकि चुंबकीय क्षण m स्थिर रखते हुए स्रोत एक बिंदु तक सिकुड़ जाती है। तथा विद्युत लूप के लिए, यह सीमा सदिश क्षमता से सबसे आसानी से प्राप्त होती है::[2]
जहाँ μ0 निर्वात पारगम्यता स्थिर है और 4π r2 त्रिज्या के गोले की सतह है तब r चुंबकीय प्रवाह घनत्व बी-क्षेत्र की शक्ति है।[2]
वैकल्पिक रूप से पहले चुंबकीय ध्रुव सीमा से चुंबकीय अदिश क्षमता प्राप्त कर सकता हैं,
और इसलिए चुंबकीय क्षेत्र की शक्ति या एच-क्षेत्र की शक्ति है।
चुंबकीय क्षण की धुरी के बारे में घूर्णन के अंतर्गत चुंबकीय क्षेत्र की शक्ति सममित है। गोलाकार निर्देशांक में, , और चुंबकीय क्षण के साथ z- अक्ष के साथ अनुयोजित किया जाता है, तो क्षेत्र की शक्ति को और अधिक सरलता से व्यक्त किया जा सकता है
एक द्विध्रुव का आंतरिक चुंबकीय क्षेत्र
एक द्विध्रुव विद्युत लूप और चुंबकीय ध्रुव के लिए दो प्रारूप, स्रोत से दूर चुंबकीय क्षेत्र के लिए समान पुर्वानुमान लगाते हैं। यद्यपि, स्रोत क्षेत्र के अंदर वे अलग-अलग पुर्वानुमान लगाते हैं। ध्रुवों के मध्य चुंबकीय क्षेत्र चुंबकीय क्षण के विपरीत दिशा में होता है जो ऋणात्मक आवेश से धनात्मक आवेश की ओर संकेत करता है, जबकि विद्युत लूप के अंदर यह उसी दिशा में होता है। स्पष्ट रूप से, इन क्षेत्रों की सीमाएँ भी भिन्न होते है क्योंकि स्रोत शून्य आकार में संकीर्ण हो जाते हैं। यह अंतर तभी आशय रखता है जब किसी चुंबकीय क्षेत्रो के अंदर की गणना करने के लिए द्विध्रुवीय सीमा का उपयोग किया जाता है।
यदि एक विद्युत लूप को छोटा करके एक चुंबकीय द्विध्रुव का निर्माण किया जाता है, लेकिन विद्युत और क्षेत्र के उत्पाद को स्थिर रखते हैं जिसका, सीमित क्षेत्र है
जहाँ δ(r) तीन आयामों में डायराक डेल्टा फलन है। जो पिछले अनुभाग में व्यंजकों के विपरीत, यह सीमा द्विध्रुव के आंतरिक क्षेत्र के लिए सही है।
यदि एक उत्तरी ध्रुव और एक दक्षिणी ध्रुव को लेकर एक चुंबकीय द्विध्रुव का निर्माण किया जाता है, तो उन्हें एक साथ और निकट लाया जा सकता है, लेकिन चुंबकीय ध्रुव-आवेश और दूरी के उत्पाद को स्थिर रखते हुए, ये सीमांत
जहाँ ये B = μ0(H + M), क्षेत्र इससे संबंधित हैं
- और
चुंबकीयकरण है।
दो चुंबकीय द्विध्रुवों के मध्य बल
सदिश r द्वारा अंतरिक्ष में अलग किए गए एक अन्य m2 पर एक द्विध्रुवीय क्षण m1 द्वारा लगाए गए बल F की गणना का उपयोग करके की जा सकती है:[3]
जहाँ r द्विध्रुवों के बीच की दूरी है।
m1 पर कार्य करने वाला बल विपरीत दिशा में है। तथा सूत्र से बल आघूर्ण प्राप्त किया जा सकता है
परिमित स्रोतों से द्विध्रुवीय क्षेत्र
एक परिमित स्रोत द्वारा उत्पादित चुंबकीय स्केलर क्षमता ψ, लेकिन इसके बाहर, एक बहुध्रुव विस्तार द्वारा प्रदर्शित किया जा सकता है। विस्तार में प्रत्येक शब्द एक विशिष्ट क्षण और स्रोत से दूरी आर के साथ घटने की एक विशेषता दर के साथ जुड़ा हुआ है। एकध्रुवीय क्षणों में 1/r की कमी की दर होती है, द्विध्रुवीय क्षणों की 1/r2 दर होती है, चौगुनी क्षणों की 1/r3 दर होती है, और इसी तरह आदेश जितना ऊंचा होता है, क्षमता उतनी ही तेजी से गिरती है। चूंकि चुंबकीय स्रोतों में सबसे कम क्रम वाला शब्द द्विध्रुवीय शब्द है, यह बड़ी दूरी तक प्रभावी है। इसलिए, बड़ी दूरी पर कोई भी चुंबकीय स्रोत उसी चुंबकीय क्षण के द्विध्रुव की तरह दिखता है।।
टिप्पणियाँ
- ↑ I.S. Grant, W.R. Phillips (2008). विद्युत चुंबकत्व (2nd ed.). Manchester Physics, John Wiley & Sons. ISBN 978-0-471-92712-9.
- ↑ 2.0 2.1 Chow 2006, pp. 146–150
- ↑ D.J. Griffiths (2007). इलेक्ट्रोडायनामिक्स का परिचय (3rd ed.). Pearson Education. p. 276. ISBN 978-81-7758-293-2.
- ↑ Furlani 2001, p. 140
- ↑ K.W. Yung; P.B. Landecker; D.D. Villani (1998). "दो चुंबकीय द्विध्रुवों के बीच बल के लिए एक विश्लेषणात्मक समाधान" (PDF). Retrieved November 24, 2012.
{{cite journal}}
: Cite journal requires|journal=
(help)
संदर्भ
- Chow, Tai L. (2006). Introduction to electromagnetic theory: a modern perspective. Jones & Bartlett Learning. ISBN 978-0-7637-3827-3.
- Jackson, John D. (1975). Classical Electrodynamics (2nd ed.). Wiley. ISBN 0-471-43132-X.
- Furlani, Edward P. (2001). Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications. Academic Press. ISBN 0-12-269951-3.
- Schill, R. A. (2003). "General relation for the vector magnetic field of a circular current loop: A closer look". IEEE Transactions on Magnetics. 39 (2): 961–967. Bibcode:2003ITM....39..961S. doi:10.1109/TMAG.2003.808597.