प्रभार(भौतिकी): Difference between revisions

From Vigyanwiki
(text)
No edit summary
 
(7 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{Short description|Physics property associated with symmetries}}
{{Short description|Physics property associated with symmetries}}
{{About|सबसे सामान्य भौतिकी अर्थों में प्रभार|प्रभार जैसा कि विद्युत घटना से संबंधित है|विद्युत् प्रभार|प्रभार के अन्य उपयोग|आवेश (विसंदिग्धीकरण){{!}}आवेश}}
भौतिकी में, एक प्रभार कई अलग-अलग मात्राओं में से कोई भी होता है, जैसे [[विद्युत]] में [[बिजली का आवेश|बिजली का प्रभार]] या [[क्वांटम क्रोमोडायनामिक्स|परिमाण क्रोमोडायनामिक्स]] में [[रंग प्रभारी]] से कोई भी होता है। शुल्क एक [[समरूपता समूह]] के एक समूह के समय-अपरिवर्तनीय जनक समुच्चय के अनुरूप होते हैं, और विशेष रूप से जनित्र के लिए जो [[दिक्परिवर्तक]] (भौतिकी) [[हैमिल्टनियन (क्वांटम यांत्रिकी)|हैमिल्टनियन (परिमाण यांत्रिकी)]] होते हैं। प्रभारों को प्रायः 'Q' अक्षर से निरूपित किया जाता है, और इसलिए प्रभार का व्युत्क्रम विलुप्त हो जाने वाले दिक्परिवर्तक <math>[Q,H]=0</math> से मेल खाता है, जहां H हैमिल्टनियन है। इस प्रकार, प्रभार संरक्षित परिमाण संख्याओं से जुड़े होते हैं; ये जनित्र Q के आइगेनमान ​​​​q हैं।
 
{{Refimprove|date=October 2015}}
भौतिकी में, एक प्रभार कई अलग-अलग मात्राओं में से कोई भी होता है, जैसे [[विद्युत]] में [[बिजली का आवेश|बिजली का प्रभार]] या [[क्वांटम क्रोमोडायनामिक्स|परिमाण क्रोमोडायनामिक्स]] में [[रंग प्रभारी]] से कोई भी होता है। शुल्क एक [[समरूपता समूह]] के एक समूह के समय-अपरिवर्तनीय जनक समुच्चय के अनुरूप होते हैं, और विशेष रूप से जनित्र के लिए जो [[दिक्परिवर्तक]] (भौतिकी) [[हैमिल्टनियन (क्वांटम यांत्रिकी)|हैमिल्टनियन (परिमाण यांत्रिकी)]] होते हैं। प्रभारों को प्रायः 'Q' अक्षर से निरूपित किया जाता है, और इसलिए प्रभार का व्युत्क्रम विलुप्त हो जाने वाले दिक्परिवर्तक <math>[Q,H]=0</math> से मेल खाता है, जहां H हैमिल्टनियन है। इस प्रकार, प्रभार संरक्षित परिमाण संख्याओं से जुड़े होते हैं; ये जनित्र Q के आइगेनवैल्यू ​​​​q हैं।


== सार परिभाषा ==
== सार परिभाषा ==
Line 10: Line 7:
इस प्रकार, उदाहरण के लिए, विद्युत प्रभार विद्युत चुंबकत्व के [[U(1)]] समरूपता का जनक है। संरक्षित धारा विद्युत धारा है।
इस प्रकार, उदाहरण के लिए, विद्युत प्रभार विद्युत चुंबकत्व के [[U(1)]] समरूपता का जनक है। संरक्षित धारा विद्युत धारा है।


स्थानीय, गतिशील समरूपता की स्तिथि में, प्रत्येक प्रभार से जुड़ा एक [[गेज क्षेत्र]] है; परिमाणित होने पर, गेज क्षेत्र गेज बोसॉन बन जाता है। सिद्धांत के आरोप गेज क्षेत्र को विकीर्ण करते हैं। इस प्रकार, उदाहरण के लिए, विद्युत चुंबकत्व का गेज क्षेत्र [[विद्युत चुम्बकीय]] क्षेत्र है; और [[गेज बोसोन]] फोटॉन है।
स्थानीय, गतिशील समरूपता की स्तिथि में, प्रत्येक प्रभार से जुड़ा एक [[गेज क्षेत्र]] है; परिमाणित होने पर, गेज क्षेत्र गेज बोसॉन बन जाता है। सिद्धांत के अभिकथन गेज क्षेत्र को विकीर्ण करते हैं। इस प्रकार, उदाहरण के लिए, विद्युत चुंबकत्व का गेज क्षेत्र [[विद्युत चुम्बकीय]] क्षेत्र है; और [[गेज बोसोन]] फोटॉन है।


शब्द प्रभार प्रायः एक समरूपता के जनित्र और जनित्र के संरक्षित परिमाण संख्या (ईजेनवेल्यू) दोनों के लिए समानार्थक शब्द के रूप में प्रयोग किया जाता है। इस प्रकार, ऊपरी-धानी अक्षर ''Q'' को जनित्र को संदर्भित करते हैं, एक के पास हैमिल्टनियन (परिमाण यांत्रिकी) के साथ जनित्र दिक्परिवर्तक {{nowrap begin}}[क्यू, एच] = 0{{nowrap end}} है। क्रमविनिमेय संपत्ति का तात्पर्य है कि ईजेनवेल्यू ​​​​(निचली-धानी) q समय-अपरिवर्तनीय {{nowrap begin}}{{sfrac|''dq''|''dt''}} = 0{{nowrap end}} हैं
शब्द प्रभार प्रायः एक समरूपता के जनित्र और जनित्र के संरक्षित परिमाण संख्या (ईजेनवेल्यू) दोनों के लिए समानार्थक शब्द के रूप में प्रयोग किया जाता है। इस प्रकार, ऊपरी-धानी अक्षर ''Q'' जनित्र को संदर्भित करते हैं, एक के पास हैमिल्टनियन (परिमाण यांत्रिकी) के साथ जनित्र दिक्परिवर्तक {{nowrap begin}}[क्यू, एच] = 0{{nowrap end}} है। क्रमविनिमेय संपत्ति का तात्पर्य है कि ईजेनवेल्यू ​​​​(निचली-धानी) q समय-अपरिवर्तनीय {{nowrap begin}}{{sfrac|''dq''|''dt''}} = 0{{nowrap end}} हैं


इसलिए, उदाहरण के लिए, जब समरूपता समूह एक लाई समूह है, तो प्रभार संचालक लाई बीजगणित की जड़ प्रणाली की सरल जड़ों के अनुरूप होते हैं; प्रभार के परिमाणीकरण के लिए [[मूल प्रक्रिया]] लेखाविधि की [[असतत टोपोलॉजी|असतत सांस्थिति]] जड़ प्रणाली की सरल जड़ों के अनुरूप होते हैं। सरल जड़ों का उपयोग किया जाता है, क्योंकि अन्य सभी जड़ें इनके रैखिक संयोजनों के रूप में प्राप्त की जा सकती हैं। सामान्य जड़ों को प्रायः उठाने और कम करने वाले संचालक या सीढ़ी संचालक कहा जाता है।
इसलिए, उदाहरण के लिए, जब समरूपता समूह एक लाई समूह है, तो प्रभार संचालक लाई बीजगणित की जड़ प्रणाली की सरल वर्गमूल के अनुरूप होते हैं; प्रभार के परिमाणीकरण के लिए [[मूल प्रक्रिया]] लेखाविधि की [[असतत टोपोलॉजी|असतत सांस्थिति]] जड़ प्रणाली की सरल वर्गमूल के अनुरूप होते हैं। सरल वर्गमूल का उपयोग किया जाता है, क्योंकि अन्य सभी वर्गमूल इनके रैखिक संयोजनों के रूप में प्राप्त की जा सकती हैं। सामान्य वर्गमूल को प्रायः उठाने और कम करने वाले संचालक या निःश्रेणी संचालक कहा जाता है।


प्रभार परिमाण संख्या तब ले बीजगणित के दिए गए [[प्रतिनिधित्व सिद्धांत]] के उच्चतम-वजन वाले सांस्थिति के भार के अनुरूप होती है। इसलिए, उदाहरण के लिए, जब [[क्वांटम क्षेत्र सिद्धांत|परिमाण क्षेत्र सिद्धांत]] में एक कण एक समरूपता से संबंधित होता है, तो यह उस समरूपता के एक विशेष प्रतिनिधित्व के अनुसार रूपांतरित होता है; प्रभार परिमाण संख्या तो प्रतिनिधित्व का भार है।
प्रभार परिमाण संख्या तब ले बीजगणित के दिए गए [[प्रतिनिधित्व सिद्धांत]] के उच्चतम-भार वाले सांस्थिति के भार के अनुरूप होती है। इसलिए, उदाहरण के लिए, जब [[क्वांटम क्षेत्र सिद्धांत|परिमाण क्षेत्र सिद्धांत]] में एक कण एक समरूपता से संबंधित होता है, तो यह उस समरूपता के एक विशेष प्रतिनिधित्व के अनुसार रूपांतरित होता है; प्रभार परिमाण संख्या तो प्रतिनिधित्व का भार है।


== उदाहरण ==
== उदाहरण ==
Line 32: Line 29:


[[सुपरसिमेट्री|अतिसममिति]] में:
[[सुपरसिमेट्री|अतिसममिति]] में:
* [[अत्यधिक प्रभावकारी]] उस जनित्र को संदर्भित करता है जो अतिसममिति में फर्मिऑन को बोसोन में घुमाता है, और इसके विपरीत।
* [[अत्यधिक प्रभावकारी]] उस जनित्र को संदर्भित करता है जो अतिसममिति में फर्मिऑन को बोसोन में घुमाता है, और इसके विपरीत करता है।


[[अनुरूप क्षेत्र सिद्धांत]] में:
[[अनुरूप क्षेत्र सिद्धांत]] में:
Line 40: Line 37:


== [[चार्ज संयुग्मन|प्रभार संयुग्मन]] ==
== [[चार्ज संयुग्मन|प्रभार संयुग्मन]] ==
कण सिद्धांतों की औपचारिकता में, प्रभार जैसी परिमाण संख्या को कभी-कभी प्रभार संयुग्मन संचालक के माध्यम से उलटा किया जा सकता है जिसे सी कहा जाता है। प्रभार संयुग्मन का सीधा सा मतलब है कि एक दिया गया [[समरूप]]ता समूह दो असमान (लेकिन अभी भी आइसोमोर्फिक) [[समूह प्रतिनिधित्व]] में होता है। सामान्यतः ऐसा होता है कि दो प्रभार-संयुग्म निरूपण लाई समूह के जटिल संयुग्म सदिश स्थान मौलिक निरूपण हैं। उनका उत्पाद तब समूह के एक लाई समूह के सहायक प्रतिनिधित्व का निर्माण करता है।
कण सिद्धांतों की औपचारिकता में, प्रभार जैसी परिमाण संख्या को कभी-कभी प्रभार संयुग्मन संचालक के माध्यम से उलटा किया जा सकता है जिसे सी कहा जाता है। प्रभार संयुग्मन का सीधा सा मतलब है कि एक दिया गया [[समरूप]]ता समूह दो असमान (लेकिन अभी भी समरूपी) [[समूह प्रतिनिधित्व]] में होता है। सामान्यतः ऐसा होता है कि दो प्रभार-संयुग्म निरूपण लाई समूह के जटिल संयुग्म सदिश स्थान मौलिक निरूपण हैं। उनका उत्पाद तब समूह के एक लाई समूह के सहायक प्रतिनिधित्व का निर्माण करता है।


इस प्रकार, एक सामान्य उदाहरण यह है कि [[लोरेंत्ज़ समूह]] का प्रतिनिधित्व सिद्धांत SL(2,C) (स्पाइनर) के दो प्रभार-संयुग्मित [[मौलिक प्रतिनिधित्व]]ों का उत्पाद लोरेंत्ज़ समूह SO(3,1) के आसन्न प्रतिनिधि बनाता है; संक्षेप में, लिखते है कि
इस प्रकार, एक सामान्य उदाहरण यह है कि [[लोरेंत्ज़ समूह]] का प्रतिनिधित्व सिद्धांत SL(2,C) (स्पाइनर) के दो प्रभार-संयुग्मित [[मौलिक प्रतिनिधित्व]]ों का उत्पाद लोरेंत्ज़ समूह SO(3,1) के आसन्न प्रतिनिधि बनाता है; संक्षेप में, लिखते है कि
:<math>2\otimes\overline{2}=3\oplus 1.\ </math>
:<math>2\otimes\overline{2}=3\oplus 1.\ </math>
अर्थात्, दो (लोरेंत्ज़) स्पाइनरों का गुणनफल एक (लोरेंत्ज़) सदिश और एक (लोरेंत्ज़) अदिश है। ध्यान दें कि जटिल लाई बीजगणित sl(2,C) का [[कॉम्पैक्ट जगह|संक्षिप्त जगह]] वास्तविक रूप  su(2) है (वास्तव में, सभी ले बीजगणित का एक अद्वितीय संक्षिप्त [[वास्तविक रूप]] है)। समान अपघटन संक्षिप्त रूप के लिए भी है: SU(2) में दो स्पाइनरों का उत्पाद [[रोटेशन समूह|घूर्णन समूह]] [[O(3)]] और एक एकल में सदिश है। अपघटन क्लेब्स-गॉर्डन गुणांक द्वारा दिया गया है।
अर्थात्, दो (लोरेंत्ज़) स्पाइनरों का गुणनफल एक (लोरेंत्ज़) सदिश और एक (लोरेंत्ज़) अदिश है। ध्यान दें कि जटिल लाई बीजगणित sl(2,C) का [[कॉम्पैक्ट जगह|संक्षिप्त जगह]] वास्तविक रूप  su(2) है (वस्तुतः, सभी ले बीजगणित का एक अद्वितीय संक्षिप्त [[वास्तविक रूप]] है)। समान अपघटन संक्षिप्त रूप के लिए भी है: SU(2) में दो स्पाइनरों का उत्पाद [[रोटेशन समूह|घूर्णन समूह]] [[O(3)]] और एक एकल में सदिश है। अपघटन क्लेब्स-गॉर्डन गुणांक द्वारा दिया गया है।


इसी तरह की घटना संक्षिप्त ग्रुप Su(3) में होती है, जहां दो प्रभार-संयुग्मित होते हैं लेकिन असमान मौलिक प्रतिनिधित्व, करार दिया जाता है <math>3</math> और <math>\overline{3}</math>, संख्या 3 प्रतिनिधित्व के आयाम को दर्शाता है, और क्वार्क <math>3</math> के अंतर्गत रूपांतरित होने के साथ  और प्रतिक्वार्क <math>\overline{3}</math> के अंतर्गत रूपांतरित हो रहे हैं। दोनों का क्रोनकर उत्पाद देता है
इसी तरह की घटना संक्षिप्त ग्रुप Su(3) में होती है, जहां दो प्रभार-संयुग्मित होते हैं लेकिन असमान मौलिक प्रतिनिधित्व, करार दिया जाता है <math>3</math> और <math>\overline{3}</math>, संख्या 3 प्रतिनिधित्व के आयाम को दर्शाता है, और क्वार्क <math>3</math> के अंतर्गत रूपांतरित होने के साथ  और प्रतिक्वार्क <math>\overline{3}</math> के अंतर्गत रूपांतरित हो रहे हैं। दोनों का क्रोनकर उत्पाद देता है।


:<math>3\otimes\overline{3}=8\oplus 1.\ </math>
:<math>3\otimes\overline{3}=8\oplus 1.\ </math>
अर्थात्, एक आठ-आयामी प्रतिनिधित्व, आठ गुना मार्ग (भौतिकी) का अष्टक, और एक [[एकल अवस्था]]। अभ्यावेदन के ऐसे उत्पादों के अपघटन को इर्रिडिएबल अभ्यावेदन के प्रत्यक्ष योग में सामान्य रूप से लिखा जा सकता है
अर्थात्, एक आठ-आयामी प्रतिनिधित्व, आठ गुना मार्ग (भौतिकी) का अष्टक, और एक [[एकल अवस्था]]। अभ्यावेदन के ऐसे उत्पादों के अपघटन को इर्रिडिएबल अभ्यावेदन के प्रत्यक्ष योग में सामान्य रूप से लिखा जा सकता है।


:<math>\Lambda \otimes \Lambda' = \bigoplus_i \mathcal{L}_i \Lambda_i</math>
:<math>\Lambda \otimes \Lambda' = \bigoplus_i \mathcal{L}_i \Lambda_i</math>
Line 55: Line 52:


:<math>d_\Lambda \cdot d_{\Lambda'} = \sum_i \mathcal{L}_i d_{\Lambda_i}.</math>
:<math>d_\Lambda \cdot d_{\Lambda'} = \sum_i \mathcal{L}_i d_{\Lambda_i}.</math>
यहां, <math>d_\Lambda</math> प्रतिनिधित्व का आयाम <math>\Lambda</math> है, और पूर्णांक <math>\mathcal{L}</math> लिटिलवुड-रिचर्डसन गुणांक हैं। इस बार सामान्य लाई-बीजगणित सेटिंग में अभ्यावेदन का अपघटन फिर से क्लेब्स-गॉर्डन गुणांक द्वारा दिया जाता है।
यहां, <math>d_\Lambda</math> प्रतिनिधित्व का आयाम <math>\Lambda</math> है, और पूर्णांक <math>\mathcal{L}</math> लिटिलवुड-रिचर्डसन गुणांक हैं। इस बार सामान्य लाई-बीजगणित समायोजन में अभ्यावेदन का अपघटन फिर से क्लेब्स-गॉर्डन गुणांक द्वारा दिया जाता है।


== यह भी देखें ==
== यह भी देखें ==
Line 61: Line 58:




==इस पेज में लापता आंतरिक लिंक की सूची==


*समय अपरिवर्तनीय
 
*दिक्परिवर्तक (भौतिकी)
 
*एक समूह का उत्पादन सेट
 
*भौतिक विज्ञान
 
*सांख्यिक अंक
 
*विद्युत प्रवाह
 
*संरक्षित वर्तमान
 
*फोटोन
 
*क्रमचयी गुणधर्म
 
*लाई समूह
 
*सीढ़ी संचालक
 
*उच्चतम वजन मॉड्यूल
*डब्ल्यू और जेड बोसोन
*प्राथमिक कण
*pion
*वजन (प्रतिनिधित्व सिद्धांत)
*virasoro बीजगणित
*चुंबकीय प्रभार
*आकर्षण-शक्ति
*जटिल संयुग्म वेक्टर स्थान
*लोरेंत्ज़ समूह का प्रतिनिधित्व सिद्धांत
*एक लाई समूह का संलग्न प्रतिनिधित्व
*spinor
*आठ गुना रास्ता (भौतिकी)
==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
[[श्रेणी:विद्युत चुंबकत्व]]
[[श्रेणी: क्वांटम क्रोमोडायनामिक्स|श्रेणी: परिमाण क्रोमोडायनामिक्स]]
[[श्रेणी:भौतिक मात्रा]]


[[Category: Machine Translated Page]]
[[Category:Created On 27/12/2022]]
[[Category:Created On 27/12/2022]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 13:07, 8 November 2023

भौतिकी में, एक प्रभार कई अलग-अलग मात्राओं में से कोई भी होता है, जैसे विद्युत में बिजली का प्रभार या परिमाण क्रोमोडायनामिक्स में रंग प्रभारी से कोई भी होता है। शुल्क एक समरूपता समूह के एक समूह के समय-अपरिवर्तनीय जनक समुच्चय के अनुरूप होते हैं, और विशेष रूप से जनित्र के लिए जो दिक्परिवर्तक (भौतिकी) हैमिल्टनियन (परिमाण यांत्रिकी) होते हैं। प्रभारों को प्रायः 'Q' अक्षर से निरूपित किया जाता है, और इसलिए प्रभार का व्युत्क्रम विलुप्त हो जाने वाले दिक्परिवर्तक से मेल खाता है, जहां H हैमिल्टनियन है। इस प्रकार, प्रभार संरक्षित परिमाण संख्याओं से जुड़े होते हैं; ये जनित्र Q के आइगेनमान ​​​​q हैं।

सार परिभाषा

संक्षेप में, एक प्रभार अध्ययन के अंतर्गत भौतिक प्रणाली की निरंतर समरूपता का कोई जनित्र है। जब एक भौतिक प्रणाली में किसी प्रकार की समरूपता होती है, तो नोथेर के प्रमेय का तात्पर्य एक संरक्षित धारा के अस्तित्व से है। धारा में प्रवाहित होने वाली वस्तु प्रभार है, प्रभार लाई बीजगणित (स्थानीय) समरूपता समूह का जनक है। इस प्रभार को कभी-कभी नोथेर प्रभार भी कहा जाता है।

इस प्रकार, उदाहरण के लिए, विद्युत प्रभार विद्युत चुंबकत्व के U(1) समरूपता का जनक है। संरक्षित धारा विद्युत धारा है।

स्थानीय, गतिशील समरूपता की स्तिथि में, प्रत्येक प्रभार से जुड़ा एक गेज क्षेत्र है; परिमाणित होने पर, गेज क्षेत्र गेज बोसॉन बन जाता है। सिद्धांत के अभिकथन गेज क्षेत्र को विकीर्ण करते हैं। इस प्रकार, उदाहरण के लिए, विद्युत चुंबकत्व का गेज क्षेत्र विद्युत चुम्बकीय क्षेत्र है; और गेज बोसोन फोटॉन है।

शब्द प्रभार प्रायः एक समरूपता के जनित्र और जनित्र के संरक्षित परिमाण संख्या (ईजेनवेल्यू) दोनों के लिए समानार्थक शब्द के रूप में प्रयोग किया जाता है। इस प्रकार, ऊपरी-धानी अक्षर Q जनित्र को संदर्भित करते हैं, एक के पास हैमिल्टनियन (परिमाण यांत्रिकी) के साथ जनित्र दिक्परिवर्तक [क्यू, एच] = 0 है। क्रमविनिमेय संपत्ति का तात्पर्य है कि ईजेनवेल्यू ​​​​(निचली-धानी) q समय-अपरिवर्तनीय dq/dt = 0 हैं

इसलिए, उदाहरण के लिए, जब समरूपता समूह एक लाई समूह है, तो प्रभार संचालक लाई बीजगणित की जड़ प्रणाली की सरल वर्गमूल के अनुरूप होते हैं; प्रभार के परिमाणीकरण के लिए मूल प्रक्रिया लेखाविधि की असतत सांस्थिति जड़ प्रणाली की सरल वर्गमूल के अनुरूप होते हैं। सरल वर्गमूल का उपयोग किया जाता है, क्योंकि अन्य सभी वर्गमूल इनके रैखिक संयोजनों के रूप में प्राप्त की जा सकती हैं। सामान्य वर्गमूल को प्रायः उठाने और कम करने वाले संचालक या निःश्रेणी संचालक कहा जाता है।

प्रभार परिमाण संख्या तब ले बीजगणित के दिए गए प्रतिनिधित्व सिद्धांत के उच्चतम-भार वाले सांस्थिति के भार के अनुरूप होती है। इसलिए, उदाहरण के लिए, जब परिमाण क्षेत्र सिद्धांत में एक कण एक समरूपता से संबंधित होता है, तो यह उस समरूपता के एक विशेष प्रतिनिधित्व के अनुसार रूपांतरित होता है; प्रभार परिमाण संख्या तो प्रतिनिधित्व का भार है।

उदाहरण

कण भौतिकी के सिद्धांतों द्वारा विभिन्न प्रभार परिमाण अंक प्रस्तुत किए गए हैं। इनमें मानक प्रतिरूप के शुल्क सम्मिलित हैं:

  • क्वार्क का रंग प्रभार। रंग प्रभार परिमाण क्रोमोडायनामिक्स की SU(3) रंग समरूपता उत्पन्न करता है।
  • विद्युत् दुर्बल पारस्परिक प्रभाव की शक्तिहीन समभारिक प्रचक्रण परिमाण संख्या। यह विद्युत् दुर्बल SU(2) × U(1) समरूपता का SU(2) भाग उत्पन्न करता है। शक्तिहीन समभारिक प्रचक्रण एक स्थानीय समरूपता है, जिसका गेज बोसोन W और Z बोसोन हैं।
  • विद्युत चुम्बकीय पारस्परिक प्रभाव के लिए विद्युत प्रभार। गणित के ग्रंथों में, इसे कभी-कभी एक लाई बीजगणित भार (प्रतिनिधित्व सिद्धांत) का प्रभार कहा जाता है ।

अनुमानित समरूपता के आरोप:

  • शक्तिशाली समभारिक प्रचक्रण प्रभार। समरूपता समूह SU(2) गंध (कण भौतिकी) समरूपता है; गेज बोसोन पाइऑन हैं। पाइऑन प्रारंभिक कण नहीं हैं, और समरूपता केवल अनुमानित है। यह गंध समरूपता की एक विशेष स्तिथि है।
  • अन्य क्वार्क-गंध शुल्क, जैसे विचित्रता या आकर्षण (परिमाण संख्या)। इसके साथ
    u

    d
    समभारिक प्रचक्रण का ऊपर उल्लेख किया गया है, ये मौलिक कणों की वैश्विक SU(6) गंध समरूपता उत्पन्न करते हैं; यह समरूपता भारी क्वार्कों के द्रव्यमान द्वारा गेल-मान-ओकुबो द्रव्यमान सूत्र है। शुल्क में उच्च आवेश, एक्स-प्रभार और शक्तिहीन उच्च आवेश सम्मिलित हैं।

मानक प्रतिरूप के विस्तार के काल्पनिक शुल्क:

  • विद्युत चुंबकत्व के सिद्धांत में काल्पनिक चुंबकीय प्रभार एक अन्य प्रभार है। प्रयोगशाला प्रयोगों में प्रयोगात्मक रूप से चुंबकीय शुल्क नहीं देखा जाता है, लेकिन चुंबकीय मोनोपोल सहित सिद्धांतों के लिए उपस्थित होगा।

अतिसममिति में:

  • अत्यधिक प्रभावकारी उस जनित्र को संदर्भित करता है जो अतिसममिति में फर्मिऑन को बोसोन में घुमाता है, और इसके विपरीत करता है।

अनुरूप क्षेत्र सिद्धांत में:

  • विरासोरो बीजगणित का केंद्रीय प्रभार, जिसे कभी-कभी अनुरूप केंद्रीय प्रभार या अनुरूप विसंगति के रूप में संदर्भित किया जाता है। यहां, समूह सिद्धांत में केंद्र (समूह सिद्धांत) के अर्थ में 'केंद्रीय' शब्द का प्रयोग किया जाता है: यह एक संचालक है जो बीजगणित में अन्य सभी संचालकों के साथ संचार करता है। केंद्रीय प्रभार बीजगणित के केंद्रीय विस्तार (गणित) का आइगेनमान है; यहाँ, यह द्वि-आयामी अनुरूप क्षेत्र सिद्धांत का ऊर्जा-संवेग प्रदिश है।[1]

गुरुत्वाकर्षण में:

  • ऊर्जा-संवेग प्रदिश के आइगेनमान भौतिक द्रव्यमान के अनुरूप होते हैं।

प्रभार संयुग्मन

कण सिद्धांतों की औपचारिकता में, प्रभार जैसी परिमाण संख्या को कभी-कभी प्रभार संयुग्मन संचालक के माध्यम से उलटा किया जा सकता है जिसे सी कहा जाता है। प्रभार संयुग्मन का सीधा सा मतलब है कि एक दिया गया समरूपता समूह दो असमान (लेकिन अभी भी समरूपी) समूह प्रतिनिधित्व में होता है। सामान्यतः ऐसा होता है कि दो प्रभार-संयुग्म निरूपण लाई समूह के जटिल संयुग्म सदिश स्थान मौलिक निरूपण हैं। उनका उत्पाद तब समूह के एक लाई समूह के सहायक प्रतिनिधित्व का निर्माण करता है।

इस प्रकार, एक सामान्य उदाहरण यह है कि लोरेंत्ज़ समूह का प्रतिनिधित्व सिद्धांत SL(2,C) (स्पाइनर) के दो प्रभार-संयुग्मित मौलिक प्रतिनिधित्वों का उत्पाद लोरेंत्ज़ समूह SO(3,1) के आसन्न प्रतिनिधि बनाता है; संक्षेप में, लिखते है कि

अर्थात्, दो (लोरेंत्ज़) स्पाइनरों का गुणनफल एक (लोरेंत्ज़) सदिश और एक (लोरेंत्ज़) अदिश है। ध्यान दें कि जटिल लाई बीजगणित sl(2,C) का संक्षिप्त जगह वास्तविक रूप su(2) है (वस्तुतः, सभी ले बीजगणित का एक अद्वितीय संक्षिप्त वास्तविक रूप है)। समान अपघटन संक्षिप्त रूप के लिए भी है: SU(2) में दो स्पाइनरों का उत्पाद घूर्णन समूह O(3) और एक एकल में सदिश है। अपघटन क्लेब्स-गॉर्डन गुणांक द्वारा दिया गया है।

इसी तरह की घटना संक्षिप्त ग्रुप Su(3) में होती है, जहां दो प्रभार-संयुग्मित होते हैं लेकिन असमान मौलिक प्रतिनिधित्व, करार दिया जाता है और , संख्या 3 प्रतिनिधित्व के आयाम को दर्शाता है, और क्वार्क के अंतर्गत रूपांतरित होने के साथ और प्रतिक्वार्क के अंतर्गत रूपांतरित हो रहे हैं। दोनों का क्रोनकर उत्पाद देता है।

अर्थात्, एक आठ-आयामी प्रतिनिधित्व, आठ गुना मार्ग (भौतिकी) का अष्टक, और एक एकल अवस्था। अभ्यावेदन के ऐसे उत्पादों के अपघटन को इर्रिडिएबल अभ्यावेदन के प्रत्यक्ष योग में सामान्य रूप से लिखा जा सकता है।

अभ्यावेदन के लिए । अभ्यावेदन के आयाम आयाम योग नियम का पालन करते हैं:

यहां, प्रतिनिधित्व का आयाम है, और पूर्णांक लिटिलवुड-रिचर्डसन गुणांक हैं। इस बार सामान्य लाई-बीजगणित समायोजन में अभ्यावेदन का अपघटन फिर से क्लेब्स-गॉर्डन गुणांक द्वारा दिया जाता है।

यह भी देखें








संदर्भ

  1. Fuchs, Jurgen (1992), Affine Lie Algebras and Quantum Groups, Cambridge University Press, ISBN 0-521-48412-X