आयतनमितीय ताप क्षमता: Difference between revisions
No edit summary |
m (Sugatha moved page वॉल्यूमेट्रिक ताप क्षमता to आयतनमितीय ताप क्षमता) |
||
(4 intermediate revisions by 4 users not shown) | |||
Line 2: | Line 2: | ||
{{for|विशेष पदार्थों का ताप|विशिष्ट ताप क्षमता की तालिका}} | {{for|विशेष पदार्थों का ताप|विशिष्ट ताप क्षमता की तालिका}} | ||
किसी पदार्थ की '''आयतनमितीय ताप क्षमता''' [[आयतन]] से विभाजित पदार्थ की तापीय क्षमता है यह [[ऊर्जा]] की वह मात्रा है जिसे ताप के रूप में पदार्थ के आयतन की एक इकाई में सम्बद्ध किया जाता है ताकि उसके [[तापमान]] में एक इकाई की वृद्धि हो | किसी पदार्थ की '''आयतनमितीय ताप क्षमता''' [[आयतन]] से विभाजित पदार्थ की तापीय क्षमता है यह [[ऊर्जा]] की वह मात्रा है जिसे ताप के रूप में पदार्थ के आयतन की एक इकाई में सम्बद्ध किया जाता है ताकि उसके [[तापमान]] में एक इकाई की वृद्धि हो सके। जिसमे आयतनमितीय ताप क्षमता इकाइयों की अंतर्राष्ट्रीय प्रणाली (एसआई) इकाई जूल प्रतिकेल्विन प्रतिघन मीटर (J⋅K<sup>−1</sup>⋅m<sup>−3</sup>) है। | ||
आयतनमितीय ताप क्षमता को विशिष्ट ताप क्षमता (द्रव्यमान की प्रति इकाई ताप क्षमता, J⋅K<sup>−1</sup>⋅kg<sup>−1</sup> में) पदार्थ के घनत्व (kg/L, या g/mL में) के गुणा के रूप में व्यक्त किया जा सकता है।<ref>[https://www.wbdg.org/ccb/ARMYCOE/COETM/ARCHIVES/tm_5_852_6.pdf ''U.S. Army Corps of Engineers Technical Manual: Arctic and Subarctic Construction: Calculation Methods for Determination of Depths of Freeze and Thaw in Soils'', TM 5-852-6/AFR 88-19, Volume 6, 1988, Equation 2-1]</ref> यह मात्रा उन पदार्थों के लिए सुविधाजनक हो सकती है जिन्हें सामान्यतः द्रव्यमान के अतिरिक्त आयतन द्वारा मापा जाता है जैसा कि प्रायः अभियान्त्रिकी और अन्य तकनीकी विषयों में होता है आयतनमितीय ताप क्षमता प्रायः तापमान के साथ परिवर्तित होती रहती है और पदार्थ की प्रत्येक अवस्था के लिए भिन्न होती है जबकि पदार्थ एक प्रावस्था संक्रमण से गुजरता है जैसे कि पिघलना या उबलना | आयतनमितीय ताप क्षमता को विशिष्ट ताप क्षमता (द्रव्यमान की प्रति इकाई ताप क्षमता, J⋅K<sup>−1</sup>⋅kg<sup>−1</sup> में) पदार्थ के घनत्व (kg/L, या g/mL में) के गुणा के रूप में व्यक्त किया जा सकता है।<ref>[https://www.wbdg.org/ccb/ARMYCOE/COETM/ARCHIVES/tm_5_852_6.pdf ''U.S. Army Corps of Engineers Technical Manual: Arctic and Subarctic Construction: Calculation Methods for Determination of Depths of Freeze and Thaw in Soils'', TM 5-852-6/AFR 88-19, Volume 6, 1988, Equation 2-1]</ref> यह मात्रा उन पदार्थों के लिए सुविधाजनक हो सकती है जिन्हें सामान्यतः द्रव्यमान के अतिरिक्त आयतन द्वारा मापा जाता है जैसा कि प्रायः अभियान्त्रिकी और अन्य तकनीकी विषयों में होता है आयतनमितीय ताप क्षमता प्रायः तापमान के साथ परिवर्तित होती रहती है और पदार्थ की प्रत्येक अवस्था के लिए भिन्न होती है जबकि पदार्थ एक प्रावस्था संक्रमण से गुजरता है जैसे कि पिघलना या उबलना इसकी आयतनमितीय ताप क्षमता तकनीकी रूप से अनंत है क्योंकि ताप अपना तापमान बढ़ाने के अतिरिक्त अपनी स्थिति को परिवर्तित करता है। | ||
किसी पदार्थ की आयतनमितीय ताप क्षमता विशेष रूप से गैस जब इसे विस्तृत करने की स्वीकृति दी जाती है तो यह लगभग अधिक हो सकती है स्थिर दाब पर आयतनमितीय ताप क्षमता को जब एक बंद बर्तन में गर्म किया जाता है जो स्थिर आयतन पर आयतनमितीय ताप क्षमता के विस्तार को कम करता है। | किसी पदार्थ की आयतनमितीय ताप क्षमता विशेष रूप से गैस जब इसे विस्तृत करने की स्वीकृति दी जाती है तो यह लगभग अधिक हो सकती है स्थिर दाब पर आयतनमितीय ताप क्षमता को जब एक बंद बर्तन में गर्म किया जाता है जो स्थिर आयतन पर आयतनमितीय ताप क्षमता के विस्तार को कम करता है। | ||
Line 79: | Line 79: | ||
{{Reflist}} | {{Reflist}} | ||
{{DEFAULTSORT:Volumetric Heat Capacity}} | {{DEFAULTSORT:Volumetric Heat Capacity}} | ||
[[Category:All articles with unsourced statements|Volumetric Heat Capacity]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page|Volumetric Heat Capacity]] | |||
[[Category: | [[Category:Articles with unsourced statements from February 2010|Volumetric Heat Capacity]] | ||
[[Category:Created On 10/04/2023]] | [[Category:Created On 10/04/2023|Volumetric Heat Capacity]] | ||
[[Category:Lua-based templates|Volumetric Heat Capacity]] | |||
[[Category:Machine Translated Page|Volumetric Heat Capacity]] | |||
[[Category:Pages with script errors|Volumetric Heat Capacity]] | |||
[[Category:Templates Vigyan Ready|Volumetric Heat Capacity]] | |||
[[Category:Templates that add a tracking category|Volumetric Heat Capacity]] | |||
[[Category:Templates that generate short descriptions|Volumetric Heat Capacity]] | |||
[[Category:Templates using TemplateData|Volumetric Heat Capacity]] | |||
[[Category:आयतन|Volumetric Heat Capacity]] | |||
[[Category:गर्मी का हस्तांतरण|Volumetric Heat Capacity]] | |||
[[Category:थर्मोडायनामिक गुण|Volumetric Heat Capacity]] | |||
[[Category:भौतिक मात्रा|Volumetric Heat Capacity]] |
Latest revision as of 15:28, 29 August 2023
किसी पदार्थ की आयतनमितीय ताप क्षमता आयतन से विभाजित पदार्थ की तापीय क्षमता है यह ऊर्जा की वह मात्रा है जिसे ताप के रूप में पदार्थ के आयतन की एक इकाई में सम्बद्ध किया जाता है ताकि उसके तापमान में एक इकाई की वृद्धि हो सके। जिसमे आयतनमितीय ताप क्षमता इकाइयों की अंतर्राष्ट्रीय प्रणाली (एसआई) इकाई जूल प्रतिकेल्विन प्रतिघन मीटर (J⋅K−1⋅m−3) है।
आयतनमितीय ताप क्षमता को विशिष्ट ताप क्षमता (द्रव्यमान की प्रति इकाई ताप क्षमता, J⋅K−1⋅kg−1 में) पदार्थ के घनत्व (kg/L, या g/mL में) के गुणा के रूप में व्यक्त किया जा सकता है।[1] यह मात्रा उन पदार्थों के लिए सुविधाजनक हो सकती है जिन्हें सामान्यतः द्रव्यमान के अतिरिक्त आयतन द्वारा मापा जाता है जैसा कि प्रायः अभियान्त्रिकी और अन्य तकनीकी विषयों में होता है आयतनमितीय ताप क्षमता प्रायः तापमान के साथ परिवर्तित होती रहती है और पदार्थ की प्रत्येक अवस्था के लिए भिन्न होती है जबकि पदार्थ एक प्रावस्था संक्रमण से गुजरता है जैसे कि पिघलना या उबलना इसकी आयतनमितीय ताप क्षमता तकनीकी रूप से अनंत है क्योंकि ताप अपना तापमान बढ़ाने के अतिरिक्त अपनी स्थिति को परिवर्तित करता है।
किसी पदार्थ की आयतनमितीय ताप क्षमता विशेष रूप से गैस जब इसे विस्तृत करने की स्वीकृति दी जाती है तो यह लगभग अधिक हो सकती है स्थिर दाब पर आयतनमितीय ताप क्षमता को जब एक बंद बर्तन में गर्म किया जाता है जो स्थिर आयतन पर आयतनमितीय ताप क्षमता के विस्तार को कम करता है।
यदि पदार्थ का आयतन प्रतिरूप में मोल की संख्या के रूप में लिया जाता है जैसे कि कभी-कभी रसायन विज्ञान में किया जाता है तो मोलर ताप क्षमता प्राप्त होती है जिसकी एसआई इकाई जूल प्रति केल्विन प्रति मोल (J⋅K−1⋅mol−1) है।
परिभाषा
आयतनमितीय ताप क्षमता के रूप में परिभाषित किया गया है:
जहाँ तापमान पर प्रतिरूप का आयतन है और प्रतिरूप के तापमान को बढ़ाने के लिए आवश्यक ताप ऊर्जा के आयतन को मे परिवर्तित कर दिया गया है जो पैरामीटर पदार्थ की विशिष्ट विशेषता है।
चूँकि किसी वस्तु की ताप क्षमता उसके आयतन तापमान के साथ भिन्न हो सकती हैं असंबंधित तरीकों से आयतन ताप क्षमता सामान्यतः तापमान का एक कार्य है यह विशिष्ट ताप के बराबर होता है पदार्थ के घनत्व का गुणा द्रव्यमान प्रति आयतन दोनों को तापमान पर मापा जाता है इसकी एसआई इकाई जूल प्रति केल्विन प्रति घनमीटर (J⋅K-1⋅m-3) है।
यह आयतन लगभग विशेष रूप से तरल और ठोस पदार्थों के लिए उपयोग होता है क्योंकि गैसों के लिए इसे "स्थिर आयतन में विशिष्ट ताप क्षमता" के साथ भ्रमित किया जा सकता है जो सामान्यतः बहुत भिन्न मान होते हैं अंतर्राष्ट्रीय मानक जब संस्तुति करते हैं कि "विशिष्ट ताप क्षमता" सदैव द्रव्यमान की प्रति इकाई क्षमता को संदर्भित करती है[2] इसलिए इस आयतन के लिए "आयतनमितीय" शब्द का सदैव उपयोग किया जाता है।
इतिहास
पियरे लुइस डुलोंग और एलेक्सिस थेरेस पेटिट ने 1818 में पूर्वानुमान किया था[citation needed] कि ठोस पदार्थ घनत्व और विशिष्ट ताप क्षमता (ρcp) का उत्पाद सभी ठोस पदार्थों के लिए स्थिर होता है यह एक पूर्वानुमान के बराबर है कि ठोस पदार्थों में आयतनमितीय ताप क्षमता स्थिर होता है 1819 में उन्होंने पाया कि आयतनमितीय ताप क्षमता लगभग स्थिर नहीं थी लेकिन सबसे स्थिर आयतनमितीय पदार्थ के परमाणुओं के अनुमानित भार द्वारा समायोजित ठोस पदार्थों की ताप क्षमता थी जैसा कि डाल्टन (डुलोंग-पेटिट नियम) द्वारा परिभाषित किया गया था यह आयतन प्रति परमाणु भार या प्रति मोलर द्रव्यमान की ताप क्षमता के समानुपाती थी जिसने सुझाव दिया कि यह प्रति परमाणु (प्रति इकाई आयतन नहीं) की ताप क्षमता है जो ठोस पदार्थों में स्थिर होने के सबसे निकट है।
"अंततः यह स्पष्ट हो गया कि सभी अवस्थाओ में सभी पदार्थों के लिए प्रति कण ताप क्षमता समान होती है और दो पदार्थों के भीतर जब तक कि तापमान निम्नतापीय स्थिति में न हो।"
विशिष्ट मान
कमरे का तापमान और उससे अधिक ठोस पदार्थ की आयतनमितीय ताप क्षमता व्यापक रूप से भिन्न होती है जो लगभग 1.2 MJ⋅K−1⋅m−3 उदाहरण के लिए बिस्मथ [3] से 3.4 MJ⋅K−1⋅m−3 होती है[4] यह अधिकांश परमाणुओं के भौतिक आकार में अंतर के कारण होता है ये सामान्यतः परमाणु घनत्व में बहुत भिन्न होते हैं और प्रायः सबसे भारी या अधिक सघन होते हैं और इस प्रकार उनके द्रव्यमान की तुलना में ठोस पदार्थों में समान औसत आयतन निकट होते हैं यदि सभी परमाणु एक ही आकार के होते हैं तो मोलर और आयतनमितीय ताप क्षमता आनुपातिक होते है और पदार्थ के परमाणु मोलर आयतन (उनके परमाणु घनत्व) के केवल एक ही निरंतर प्रतिबिंबित अनुपात से भिन्न होता है सभी प्रकार की विशिष्ट तापीय क्षमताओं (मोलर विशिष्ट ताप सहित) के लिए एक अतिरिक्त पदार्थ फिर विभिन्न तापमानों पर पदार्थ की रचना करने वाले परमाणुओं के लिए उपलब्ध स्वतंत्र कोटि को दर्शाता है।
अधिकांश तरल पदार्थों के लिए आयतनमितीय ताप क्षमता संकुचित होती है उदाहरण के लिए 1.64 MJ⋅K−1⋅m−3 पर ओकटाइन या 1.9 पर इथेनॉल यह ठोस पदार्थों की तुलना में तरल पदार्थों में कणों के लिए स्वतंत्र कोटि की स्थिति मे हानि को दर्शाता है।
हालांकि पानी में 4.18 MJ⋅K−1⋅m−3 पर बहुत अधिक आयतन में ताप क्षमता होती है और अमोनिया भी अपेक्षाकृत अधिक 3.3 MJ⋅K−1⋅m−3 होती है।
कमरे के तापमान पर गैसों के लिए प्रति परमाणु (प्रति अणु नहीं) आयतनमितीय ताप क्षमता की सीमा केवल दो से अपेक्षाकृत कम छोटे पदार्थ द्वारा अलग-अलग गैसों के बीच भिन्न होती है, क्योंकि प्रत्येक आदर्श गैस में एक ही मोलर आयतन होता है इस प्रकार गैस की विभिन्न प्रकार अवस्था पर विचार किए बिना प्रत्येक गैस अणु सभी आदर्श गैसों में समान औसत मात्रा में रहते है जिसके लिए गतिज सिद्धांत देखें। यह तथ्य प्रत्येक गैस अणु को सभी आदर्श गैसों में समान प्रभावी "आयतन" देते है हालाँकि गैसों में यह आयतन/अणु ठोस या तरल पदार्थों में औसतन अणुओं की तुलना में कहीं अधिक विस्तृत होता है इस प्रकार आदर्श गैस समीकरण की सीमा में जो कम तापमान या दाब के चरम को छोड़कर कई गैसों का अनुमान है यह गुण व्यक्तिगत अणुओं की ताप क्षमता में साधारण अंतर के लिए गैस आयतनमितीय ताप क्षमता में अंतर को कम करता है जैसा कि उल्लेख किया गया है ये अणुओं के भीतर कणों के लिए उपलब्ध स्वतंत्र कोटि के आधार पर एक पदार्थ से भिन्न होते हैं।
गैसों की आयतन ताप क्षमता
विस्तृत जटिल गैस अणुओं में प्रति मोल अणुओं की उच्च तापीय क्षमता हो सकती है लेकिन परमाणुओं मे प्रति मोल उनकी ताप क्षमता तरल और ठोस पदार्थों के समान होती है फिर से परमाणुओं के प्रति दो मोल के पदार्थ से कम भिन्न होती है दो परमाणुओं की यह तापीय क्षमता विभिन्न जटिलताओं के ठोस पदार्थों के गैस अणुओं में उपलब्ध स्वतंत्रता की कंपन कोटि का प्रतिनिधित्व करता है।
कमरे के तापमान और स्थिर आयतन पर एकपरमाण्विक गैसों (जैसे आर्गन) में आयतनमितीय ताप क्षमता सभी 0.5 kJ⋅K−1⋅m−3 के बहुत निकट होती है जो कि 3/2 RT प्रति केल्विन प्रति मोल के सैद्धांतिक मान के समान है जहाँ गैस के अणुओं की संख्या R गैस स्थिरांक है और T तापमान है जैसा कि उल्लेख किया गया है कि ठोस पदार्थों की तुलना आयतन के संदर्भ में गैस ताप क्षमता के बहुत कम मान (हालांकि प्रति मोल अधिक तुलनीय, नीचे देखें) के लिए अधिकांश इस तथ्य से परिणामित होते हैं कि मानक परिस्थितियों में गैसों में अधिकांश लगभग 99.9% रिक्त आयतन होता है जो गैस में परमाणुओं के परमाणु आयतन से नहीं भरा जाता है चूंकि गैसों का मोलर आयतन ठोस और तरल पदार्थों की तुलना में लगभग 1000 गुना अधिक है इसके परिणामस्वरूप तरल और ठोस पदार्थों की तुलना में गैसों के लिए आयतनमितीय ताप क्षमता में लगभग 1000 की कमी होती है एकपरमाण्विक गैस में ऊर्जा के भंडारण के लिए प्रति परमाणु स्वतंत्रता की संभावित कोटि के आधे की कमी के कारण ठोस पदार्थों के संबंध में एकपरमाण्विक गैस ताप क्षमता प्रति परमाणु (प्रति अणु नहीं) 2 के पदार्थ आदर्श ठोस से कम हो जाती है एकपरमाणुक व बहुपरमाणुक गैसों की ताप क्षमता में कुछ अंतर होता है और गैस ताप क्षमता भी बहुपरमाणुक गैसों के लिए कई श्रेणियों में तापमान पर निर्भर होती है एकपरमाण्विक गैसों की तुलना में ये पदार्थ सामान्य रूप से (2 के चर्चित पदार्थ तक) कार्य करते हैं जो बहुपरमाणुक गैसों में प्रति परमाणु ताप क्षमता बढ़ाते हैं जो बहुपरमाण्विक गैसों में आयतनमितीय ताप क्षमता व्यापक रूप से भिन्न होते है चूंकि वे गैस में प्रति अणु परमाणुओं की संख्या पर अपेक्षाकृत रूप तक निर्भर होते हैं जो गैस में प्रति आयतन परमाणुओं की कुल संख्या निर्धारित करते है।
आयतनमितीय ताप क्षमता को J/(m3⋅K) की एसआई इकाइयों के रूप में परिभाषित किया गया है इसे BTU/(ft3⋅°F) की इकाइयों में भी वर्णित किया जा सकता है।
ठोस पदार्थों की आयतन ताप क्षमता
ठोस रासायनिक तत्व का घनत्व उसके मोलर द्रव्यमान से दृढ़ता से संबंधित होता है सामान्यतः लगभग 3R प्रति मोल जैसा कि ऊपर उल्लेख किया गया है एक ठोस का घनत्व और प्रति-द्रव्यमान के आधार पर इसकी विशिष्ट ताप क्षमता के बीच ध्यान देने योग्य व्युत्क्रम संबंध सम्मिलित है यह घनत्व और परमाणु भार में अत्यधिक व्यापक विविधताओं के अतिरिक्त अधिकांश तत्वों के परमाणुओं के लगभग समान आकार की प्रवृत्ति के कारण है इन दो पदार्थों (परमाणु आयतन की स्थिरता और विशिष्ट ताप क्षमता की स्थिरता) के परिणामस्वरूप किसी भी ठोस रासायनिक तत्व का आयतन और इसकी कुल ताप क्षमता के बीच अच्छा संबंध होता है इसे प्रदर्शित करने का एक और तरीका यह है कि ठोस तत्वों की आयतन-विशिष्ट तापीय क्षमता आयतन ताप क्षमता मे सामान्यतः स्थिर होती है ठोस तत्वों का मोलर आयतन भी सामान्यतः स्थिर होता है इसी प्रकार अधिकांश ठोस पदार्थों के लिए मोलर ताप क्षमता भी होती है ये दो पदार्थ आयतनमितीय ताप क्षमता निर्धारित करते हैं जो समष्टि गुणधर्म के रूप में स्थिरता में अत्यधिक आकर्षक हो सकती है उदाहरण के लिए, तत्व यूरेनियम एक धातु है जिसका घनत्व धातु लिथियम से लगभग 36 गुना होता है लेकिन यूरेनियम की आयतन क्षमता लिथियम की तुलना में केवल लगभग 20% अधिक होती है।
चूंकि डुलोंग-पेटिट विशिष्ट ताप क्षमता संबंध विशिष्ट आयतन परिणाम के लिए आवश्यक है क्योकि सभी तत्वों के परमाणु ठोस पदार्थों में समान आयतन (औसतन) प्राप्त करते हैं इससे कई पदार्थ विचलित होते हैं जिनमें से अधिकांश परमाणु आकार में भिन्नता के कारण होते हैं उदाहरण के लिए आर्सेनिक जो सुरमा की तुलना में केवल 14.5% कम घना होता है जिसमे द्रव्यमान के आधार पर लगभग 59% अधिक विशिष्ट ताप क्षमता है दूसरे शब्दों में यद्यपि आर्सेनिक का एक पिंड समान द्रव्यमान के सुरमा से केवल लगभग 17% बड़ा होता है तो यह किसी दिए गए तापमान वृद्धि के लिए लगभग 59% अधिक ताप को अवशोषित करता है दो पदार्थों की ताप क्षमता अनुपात उनके मोलर आयतन के अनुपात (प्रत्येक पदार्थ के समान आयतन में परमाणुओं की संख्या का अनुपात) के अनुपात का निकटता से अनुसरण करता है इस स्थिति में सह-संबंध से साधारण आयतन की ओर विचलित आर्सेनिक परमाणुओं के समान आकार के अतिरिक्त एंटीमनी परमाणुओं की तुलना में अपेक्षाकृत अधिक निकटता से स्थिर होने के कारण होता है दूसरे शब्दों में, समान आकार के परमाणुओं के कारण आर्सेनिक का एक मोल एंटीमनी के एक मोल से 63% बड़ा होता है जिसके अनुरूप कम घनत्व होता है जिससे इसका आयतन इसकी ताप क्षमता को अधिक निकटता से प्रतिबिंबित कर सकता है।
तापीय जड़त्व
तापीय जड़त्व सामान्यतः ताप हस्तांतरण के समय शरीर के तापमान की प्रतिक्रिया में देखी गई देरी का वर्णन करने के लिए उपयोग किया जाने वाला शब्द है सामान्यतः इसमे यह घटना सम्मिलित है क्योंकि शरीर के तापमान के सापेक्ष ताप को स्थिर और संवहन दोनों करने की क्षमता है चूंकि निकाय के घटकों का विन्यास और ताप हस्तांतरण तंत्र का मिश्रण (जैसे चालन/संवहन/विकिरण) उदाहरणों के बीच अपेक्षाकृत भिन्न होता है तापीय जड़त्व के लिए सामान्यतः कोई गणितीय परिभाषा प्रयुक्त नहीं होती है[5] यह घटना पदार्थ या संवहन माध्यम के ताप हस्तांतरण गुणों के संयोजन के साथ होती है एक विस्तृत तापीय भंडारण क्षमता सामान्यतः अधिक सुस्त तापमान प्रतिक्रिया उत्पन्न करती है।
विस्तृत आयतन में ताप क्षमता वाले एक या अधिक घटकों वाली प्रणाली को इंगित करते है कि मॉडलिंग प्रणाली के समय गतिशील या क्षणिक, प्रभावों पर विचार किया जाना चाहिए। स्थिर अवस्था की गणना, जिनमें से कई तापीय जड़त्व के लिए लेखांकन के बिना संतुलन ताप प्रवाह और तापमान के वैध अनुमान उत्पन्न करते हैं फिर भी संतुलन अवस्थाओ के बीच परिवर्तन की गति पर कोई जानकारी नहीं देते हैं आयतनमितीय ताप क्षमता का एक उच्च मान सामान्यतः प्रणाली के संतुलन तक प्राप्त करने के लिए लंबा समय होता है।
अभियांत्रिकी और भौतिकी के अन्य विषयों में देखे गए जड़त्वीय अभिविन्यास के लिए तापीय जड़त्व की उपमाओं को कभी-कभी सावधानी के साथ उपयोग किया जा सकता है।[6] डिजाइन के निर्माण में तापीय जड़त्व को तापीय संचयन प्रभाव के रूप में भी जाना जाता है और तापीय द्रव्यमान दैनिक ताप प्रवाह और तापमान के बीच देरी उत्पन्न कर सकता है जो एसी संचालित आरसी परिपथ में वर्तमान और वोल्टेज के बीच देरी के समान होता है तापीय जड़त्व यांत्रिकी में प्रयुक्त द्रव्यमान-और वेग शब्द की तुलना में प्रत्यक्ष रूप से कम होता है जहां जड़त्व किसी वस्तु के त्वरण को प्रतिबंधित करता है इसी प्रकार तापीय जड़त्व तापीय द्रव्यमान और तापीय तरंग के वेग का एक माप है जो किसी पदार्थ की सतह के तापमान को नियंत्रित करता है।
तापीय प्रवाह
अर्द्ध अनंत दृढ़ पिंड के लिए जहां ताप हस्तांतरण केवल चालन की विसारक प्रक्रिया का प्रभुत्व होता है तापीय जड़त्व को पदार्थ की तापीय क्षमता (e) से अनुमानित किया जा सकता है इसे पदार्थ की स्थिर तापीय चालकता और आयतनमितीय ताप क्षमता के गुणनफल के वर्गमूल के रूप में परिभाषित किया जाता है जहां बाद वाला घनत्व विशिष्ट ताप क्षमता का उत्पाद है:[7][8]
- इकाई W⋅m−1⋅K−1 के साथ तापीय चालकता है।
- इकाई kg⋅m−3 के साथ घनत्व है।
- इकाई J⋅kg−1⋅K−1 के साथ विशिष्ट ताप क्षमता है।
- में J⋅m−2⋅K−1⋅s−1/2 की तापीय जड़त्व की एसआई इकाइयाँ हैं किफ़र्स की गैर-एसआई इकाइयाँ Cal⋅cm−2⋅K−1⋅s−1/2 भी पुराने संदर्भों में अनौपचारिक रूप से उपयोग की जाती हैं।[lower-roman 1]
स्थिर आयतन और स्थिर दाब
गैसों के लिए स्थिर आयतन पर आयतनमितीय ताप क्षमता और स्थिर दाब पर आयतनमितीय ताप क्षमता के बीच अंतर करना आवश्यक होता है जो दाब-आयतन कार्य के कारण सदैव बड़ा होता है क्योंकि गैस स्थिर दाब पर गर्म करने के समय विस्तृत होता है इस प्रकार ऊष्मा को अवशोषित किया जाता है जो कार्य में परिवर्तित हो जाती है स्थिर आयतन और स्थिर दाब ताप क्षमता के बीच अंतर भी विभिन्न प्रकार की विशिष्ट ताप क्षमता (अर्थात, विशिष्ट द्रव्यमान या विशिष्ट मोल ताप क्षमता) में किया जाता है।
यह भी देखें
- तापीय धारिता
- विशिष्ट ताप की क्षमता
- तापमान
- तापीय प्रभाव
- ताप गतिकी समीकरण
संदर्भ
- ↑ Coined by the planetary geophysicist Hugh H. Kieffer.
- ↑ U.S. Army Corps of Engineers Technical Manual: Arctic and Subarctic Construction: Calculation Methods for Determination of Depths of Freeze and Thaw in Soils, TM 5-852-6/AFR 88-19, Volume 6, 1988, Equation 2-1
- ↑ International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), ISBN 92-822-2213-6, archived (PDF) from the original on 2021-06-04, retrieved 2021-12-16
- ↑ Based on values in this table and density.
- ↑ Based on NIST data and density.
- ↑ Sala-Lizarraga, Jose; Picallo-Perez, Ana (2019). इमारतों का ऊर्जा विश्लेषण और थर्मोइकॉनॉमिक्स. Elsevier. pp. 272–273. doi:10.1016/B978-0-12-817611-5.00004-7. ISBN 9780128176115.
- ↑ Veto, M.S.; Christensen, P.R. (2015). "तापीय जड़त्व के गणितीय सिद्धांत पर दोबारा गौर किया गया" (PDF). 46th Lunar and Planetary Science Conference.
- ↑ Dante, Roberto C. (2016). घर्षण सामग्री और उनके अनुप्रयोगों की पुस्तिका. Elsevier. pp. 123–134. doi:10.1016/B978-0-08-100619-1.00009-2.
- ↑ Carslaw, H.S.; Jaeger, J.C. (1959). ठोस पदार्थों में ऊष्मा का चालन. Clarendon Press, Oxford. ISBN 978-0-19-853368-9.