स्यूडोमेट्रिक स्पेस: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Generalization of metric spaces in mathematics}} | {{Short description|Generalization of metric spaces in mathematics}} | ||
गणित में, स्यूडो[[ मीट्रिक स्थान | मीट्रिक | गणित में, स्यूडो[[ मीट्रिक स्थान | मीट्रिक स्पेस]] एक मीट्रिक स्पेस का सामान्यीकरण है जिसमें दो अलग-अलग बिंदुओं के बीच की दूरी शून्य हो सकती है। 1934 में डुरो कुरेपा द्वारा स्यूडोमेट्रिक स्पेस पेश किए गए थे।<ref>{{Cite journal|last=Kurepa|first=Đuro|date=1934|title=Tableaux ramifiés d'ensembles, espaces pseudodistaciés|journal=[[C. R. Acad. Sci. Paris]]|volume=198 (1934)|pages=1563–1565}}</ref><ref>{{Cite book|last=Collatz|first=Lothar|title=कार्यात्मक विश्लेषण और संख्यात्मक गणित|publisher=[[Academic Press]]|year=1966|location=New York, San Francisco, London|pages=51|language=English}}</ref> उसी प्रकार जैसे प्रत्येक [[नॉर्म्ड स्पेस]] एक मेट्रिक स्पेस होता है, वैसे ही प्रत्येक [[अर्धवृत्ताकार स्थान|सेमिनोर्म]] [[अर्धवृत्ताकार स्थान|स्पेस]] एक स्यूडोमेट्रिक स्पेस होता है। इस सादृश्य के कारण शब्द [[ अर्धमितीय स्थान |अर्धमेट्रिक स्पेस]] (जिसका [[टोपोलॉजी]] में अलग अर्थ है) को कभी-कभी विशेष रूप से [[कार्यात्मक विश्लेषण]] में एक पर्याय के रूप में प्रयोग किया जाता है। | ||
जब स्यूडोमेट्रिक्स के परिवार का उपयोग करके टोपोलॉजी उत्पन्न होती है, तो | जब स्यूडोमेट्रिक्स के परिवार का उपयोग करके टोपोलॉजी उत्पन्न होती है, तो स्पेस को [[गेज अंतरिक्ष|गेज स्पेस]] कहा जाता है। | ||
== परिभाषा == | == परिभाषा == | ||
स्यूडोमेट्रिक स्पेस <math>(X,d) | स्यूडोमेट्रिक स्पेस <math>(X,d)</math> गैर-ऋणात्मक वास्तविक-मूल्यवान फलन <math>d : X \times X \longrightarrow \R_{\geq 0}</math> के साथ एक समुच्चय <math>X</math> है जिसे {{visible anchor|स्यूडोमेट्रिक}} कहा जाता है, जैसे कि प्रत्येक <math>x, y, z \in X</math> के लिए | ||
#<math>d(x,x) = 0.</math> | #<math>d(x,x) = 0.</math> | ||
#समरूपता: <math>d(x,y) = d(y,x)</math> | #समरूपता: <math>d(x,y) = d(y,x)</math> | ||
#उपयोगात्मकता/त्रिभुज असमानता: <math>d(x,z) \leq d(x,y) + d(y,z)</math> | #उपयोगात्मकता/त्रिभुज असमानता: <math>d(x,z) \leq d(x,y) + d(y,z)</math> | ||
मीट्रिक | मीट्रिक स्पेस के विपरीत, स्यूडोमेट्रिक स्पेस में बिंदुओं को अलग करने की आवश्यकता नहीं है; अर्थात् अलग-अलग मानों <math>x \neq y</math> के लिए <math>d(x, y) = 0</math> हो सकता है। | ||
Line 16: | Line 18: | ||
कोई भी मीट्रिक स्पेस स्यूडोमेट्रिक स्पेस है। | कोई भी मीट्रिक स्पेस स्यूडोमेट्रिक स्पेस है। | ||
कार्यात्मक विश्लेषण में स्यूडोमेट्रिक्स स्वाभाविक रूप से उत्पन्न होते हैं। | कार्यात्मक विश्लेषण में स्यूडोमेट्रिक्स स्वाभाविक रूप से उत्पन्न होते हैं। वास्तविक मूल्यवान फलनों <math>f : X \to \R</math> के साथ में विशेष बिंदु <math>x_0 \in X</math> के स्थान <math>\mathcal{F}(X)</math> स्पेस पर विचार करें। यह बिंदु तब दिए गए फलनों के स्पेस पर स्यूडोमेट्रिक को प्रेरित करता है <math display=block>d(f,g) = \left|f(x_0) - g(x_0)\right|</math> के लिए <math>f, g \in \mathcal{F}(X)</math> | ||
[[ सेमिनोर्म | सेमिनोर्म]] <math>p</math> स्यूडोमेट्रिक | एक[[ सेमिनोर्म | सेमिनोर्म]] <math>p</math> स्यूडोमेट्रिक <math>d(x, y) = p(x - y)</math> है। यह <math>x</math> (विशेष रूप से, [[अनुवाद (ज्यामिति)]]) के एक एफ़िन फलन का उत्तल कार्य है, और इसलिए <math>x</math> (इसी तरह <math>y</math> के लिए) में उत्तल है। | ||
इसके विपरीत, सजातीय, अनुवाद-अपरिवर्तनीय स्यूडोमेट्रिक सेमिनोर्म को प्रेरित करता है। | इसके विपरीत, सजातीय, अनुवाद-अपरिवर्तनीय स्यूडोमेट्रिक सेमिनोर्म को प्रेरित करता है। | ||
Line 23: | Line 25: | ||
हाइपरबोलिक [[जटिल कई गुना]] के सिद्धांत में स्यूडोमेट्रिक्स भी उत्पन्न होते हैं: [[कोबायाशी मीट्रिक]] देखें। | हाइपरबोलिक [[जटिल कई गुना]] के सिद्धांत में स्यूडोमेट्रिक्स भी उत्पन्न होते हैं: [[कोबायाशी मीट्रिक]] देखें। | ||
प्रत्येक माप स्पेस <math>(\Omega,\mathcal{A},\mu)</math> परिभाषित करके पूर्ण स्यूडोमेट्रिक स्पेस के रूप में देखा जा सकता है <math display=block>d(A,B) := \mu(A \vartriangle B)</math> सभी के लिए <math>A, B \in \mathcal{A},</math> जहाँ त्रिभुज [[सममित अंतर]] को दर्शाता है। | |||
यदि <math>f : X_1 \to X_2</math> फलन है और d<sub>2</sub> X<sub>2</sub> पर स्यूडोमेट्रिक्स है, तब <math>d_1(x, y) := d_2(f(x), f(y))</math> X<sub>1</sub> पर स्यूडोमेट्रिक्स देता है. यदि d<sub>2</sub> मीट्रिक है और f अंतःक्रियात्मक फलन है, तो d<sub>1</sub> पैमाना है। | |||
== टोपोलॉजी == | == टोपोलॉजी == | ||
{{visible anchor| | {{visible anchor|स्यूडोमेट्रिक टोपोलॉजी}} खुली गेंदों द्वारा उत्पन्न [[टोपोलॉजी (संरचना)]] है | ||
<math display=block>B_r(p) = \{x \in X : d(p, x) < r\},</math> | <math display=block>B_r(p) = \{x \in X : d(p, x) < r\},</math> | ||
जो टोपोलॉजी के लिए [[आधार (टोपोलॉजी)]] बनाते हैं।<ref>{{planetmath reference|urlname=PseudometricTopology|title=Pseudometric topology}}</ref> टोपोलॉजिकल स्पेस को | जो टोपोलॉजी के लिए [[आधार (टोपोलॉजी)]] बनाते हैं।<ref>{{planetmath reference|urlname=PseudometricTopology|title=Pseudometric topology}}</ref> टोपोलॉजिकल स्पेस को {{visible anchor|स्यूडोमीट्रिज़ेबल स्पेस}} कहा जाता है<ref>Willard, p. 23</ref> यदि स्पेस को स्यूडोमेट्रिक दिया जा सकता है जैसे कि स्यूडोमेट्रिक टोपोलॉजी स्पेस में दिए गए टोपोलॉजी के साथ मेल खाता है। | ||
स्यूडोमेट्रिक्स और मेट्रिक्स के बीच का अंतर पूरी तरह से सामयिक है। यही है, स्यूडोमेट्रिक मीट्रिक है | स्यूडोमेट्रिक्स और मेट्रिक्स के बीच का अंतर पूरी तरह से सामयिक है। यही है, स्यूडोमेट्रिक एक मीट्रिक है यदि और केवल यदि यह उत्पन्न होने वाली टोपोलॉजी T0 (अर्थात, अलग-अलग बिंदु स्थैतिक रूप से अलग-अलग होते हैं) स्पेस है। | ||
मीट्रिक रिक्त | मीट्रिक रिक्त स्पेस के लिए [[कॉची अनुक्रम]] और समापन (मीट्रिक स्पेस) की परिभाषाएँ अपरिवर्तित स्यूडोमेट्रिक रिक्त स्पेस पर ले जाती हैं।<ref>{{Cite web|last=Cain|first=George|date=Summer 2000|title=Chapter 7: Complete pseudometric spaces|url=http://people.math.gatech.edu/~cain/summer00/ch7.pdf|url-status=live|archive-url=https://archive.today/fnt7f|archive-date=7 October 2020|access-date=7 October 2020}}</ref> | ||
== मीट्रिक पहचान == | == मीट्रिक पहचान == | ||
स्यूडोमेट्रिक का लुप्त होना [[तुल्यता संबंध]] को प्रेरित करता है, जिसे मीट्रिक पहचान कहा जाता है, जो | स्यूडोमेट्रिक का लुप्त होना [[तुल्यता संबंध]] को प्रेरित करता है, जिसे मीट्रिक पहचान कहा जाता है, जो स्यूडोमेट्रिक्स स्पेस को पूर्ण मीट्रिक स्पेस में परिवर्तित करता है। यह <math>x\sim y</math> को परिभाषित करके किया जाता है यदि <math>d(x,y)=0</math> । मान लें कि <math>X^* = X/{\sim}</math> का [[भागफल स्थान (टोपोलॉजी)|भागफल स्पेस (टोपोलॉजी)]] हो इस तुल्यता संबंध से <math>X</math> का विभाग स्थान है और परिभाषित करें | ||
<math display=block>\begin{align} | <math display=block>\begin{align} | ||
d^*:(X/\sim)&\times (X/\sim) \longrightarrow \R_{\geq 0} \\ | d^*:(X/\sim)&\times (X/\sim) \longrightarrow \R_{\geq 0} \\ | ||
d^*([x],[y])&=d(x,y) | d^*([x],[y])&=d(x,y) | ||
\end{align}</math> | \end{align}</math> | ||
यह अच्छी तरह से परिभाषित है क्योंकि किसी | यह अच्छी तरह से परिभाषित है क्योंकि किसी भी <math>x' \in [x]</math> के लिए हमारे पास वह <math>d(x, x') = 0</math> है और इसलिए <math>d(x', y) \leq d(x, x') + d(x, y) = d(x, y)</math> और इसके विपरीत हैं। तब <math>d^*</math><math>X^*</math> पर एक मीट्रिक है और <math>(X^*,d^*)</math> अच्छी तरह से परिभाषित मीट्रिक स्पेस है, जिसे स्यूडोमेट्रिक्स स्पेस <math>(X, d)</math> द्वारा प्रेरित मीट्रिक स्पेस कहा जाता है।<ref>{{cite book|last=Howes|first=Norman R.|title=आधुनिक विश्लेषण और टोपोलॉजी|year=1995|publisher=Springer|location=New York, NY|isbn=0-387-97986-7|url=https://www.springer.com/mathematics/analysis/book/978-0-387-97986-1|access-date=10 September 2012|page=27|quote=Let <math>(X,d)</math> be a pseudo-metric space and define an equivalence relation <math>\sim</math> in <math>X</math> by <math>x \sim y</math> if <math>d(x,y)=0</math>. Let <math>Y</math> be the quotient space <math>X/\sim</math> and <math>p : X\to Y</math> the canonical projection that maps each point of <math>X</math> onto the equivalence class that contains it. Define the metric <math>\rho</math> in <math>Y</math> by <math>\rho(a,b) = d(p^{-1}(a),p^{-1}(b))</math> for each pair <math>a,b \in Y</math>. It is easily shown that <math>\rho</math> is indeed a metric and <math>\rho</math> defines the quotient topology on <math>Y</math>.}}</ref><ref>{{cite book|title=विश्लेषण में एक व्यापक पाठ्यक्रम|last=Simon|first=Barry|publisher=American Mathematical Society|year=2015|isbn=978-1470410995|location=Providence, Rhode Island}}</ref> | ||
इस निर्माण का उदाहरण | मीट्रिक पहचान प्रेरित टोपोलॉजी को संरक्षित करती है। अर्थात् उपसमुच्चय <math>A \subseteq X</math> में खुला (या बंद) <math>(X, d)</math> है यदि और केवल यदि <math>\pi(A) = [A]</math> में खुला (या बंद) <math>\left(X^*, d^*\right)</math> है और <math>A</math> संतृप्त है। सामयिक पहचान [[कोलमोगोरोव भागफल]] है। | ||
इस निर्माण का एक उदाहरण इसके कॉची अनुक्रमों द्वारा एक मीट्रिक स्पेस का पूरा होना है। | |||
== यह भी देखें == | == यह भी देखें == | ||
* {{annotated link| | * {{annotated link|सामान्यीकृत मीट्रिक}} | ||
* {{annotated link| | * {{annotated link|मीट्रिक हस्ताक्षर}} | ||
* {{annotated link| | * {{annotated link|मीट्रिक स्थान }} | ||
* {{annotated link| | * {{annotated link|मेट्रिजेबल टोपोलॉजिकल वेक्टर स्पेस}} | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
Line 71: | Line 74: | ||
{{DEFAULTSORT:Pseudometric Space}} | {{DEFAULTSORT:Pseudometric Space}} | ||
[[Category: | [[Category:CS1]] | ||
[[Category:Created On 24/04/2023]] | [[Category:CS1 English-language sources (en)]] | ||
[[Category:Created On 24/04/2023|Pseudometric Space]] | |||
[[Category:Lua-based templates|Pseudometric Space]] | |||
[[Category:Machine Translated Page|Pseudometric Space]] | |||
[[Category:Pages with script errors|Pseudometric Space]] | |||
[[Category:Templates Vigyan Ready|Pseudometric Space]] | |||
[[Category:Templates that add a tracking category|Pseudometric Space]] | |||
[[Category:Templates that generate short descriptions|Pseudometric Space]] | |||
[[Category:Templates using TemplateData|Pseudometric Space]] | |||
[[Category:Wikipedia articles incorporating text from PlanetMath|स्यूडोमेट्रिक स्पेस]] | |||
[[Category:टोपोलॉजिकल रिक्त स्थान के गुण|Pseudometric Space]] | |||
[[Category:मीट्रिक ज्यामिति|Pseudometric Space]] |
Latest revision as of 13:54, 1 May 2023
गणित में, स्यूडो मीट्रिक स्पेस एक मीट्रिक स्पेस का सामान्यीकरण है जिसमें दो अलग-अलग बिंदुओं के बीच की दूरी शून्य हो सकती है। 1934 में डुरो कुरेपा द्वारा स्यूडोमेट्रिक स्पेस पेश किए गए थे।[1][2] उसी प्रकार जैसे प्रत्येक नॉर्म्ड स्पेस एक मेट्रिक स्पेस होता है, वैसे ही प्रत्येक सेमिनोर्म स्पेस एक स्यूडोमेट्रिक स्पेस होता है। इस सादृश्य के कारण शब्द अर्धमेट्रिक स्पेस (जिसका टोपोलॉजी में अलग अर्थ है) को कभी-कभी विशेष रूप से कार्यात्मक विश्लेषण में एक पर्याय के रूप में प्रयोग किया जाता है।
जब स्यूडोमेट्रिक्स के परिवार का उपयोग करके टोपोलॉजी उत्पन्न होती है, तो स्पेस को गेज स्पेस कहा जाता है।
परिभाषा
स्यूडोमेट्रिक स्पेस गैर-ऋणात्मक वास्तविक-मूल्यवान फलन के साथ एक समुच्चय है जिसे स्यूडोमेट्रिक कहा जाता है, जैसे कि प्रत्येक के लिए
- समरूपता:
- उपयोगात्मकता/त्रिभुज असमानता:
मीट्रिक स्पेस के विपरीत, स्यूडोमेट्रिक स्पेस में बिंदुओं को अलग करने की आवश्यकता नहीं है; अर्थात् अलग-अलग मानों के लिए हो सकता है।
उदाहरण
कोई भी मीट्रिक स्पेस स्यूडोमेट्रिक स्पेस है। कार्यात्मक विश्लेषण में स्यूडोमेट्रिक्स स्वाभाविक रूप से उत्पन्न होते हैं। वास्तविक मूल्यवान फलनों के साथ में विशेष बिंदु के स्थान स्पेस पर विचार करें। यह बिंदु तब दिए गए फलनों के स्पेस पर स्यूडोमेट्रिक को प्रेरित करता है
इसके विपरीत, सजातीय, अनुवाद-अपरिवर्तनीय स्यूडोमेट्रिक सेमिनोर्म को प्रेरित करता है।
हाइपरबोलिक जटिल कई गुना के सिद्धांत में स्यूडोमेट्रिक्स भी उत्पन्न होते हैं: कोबायाशी मीट्रिक देखें।
प्रत्येक माप स्पेस परिभाषित करके पूर्ण स्यूडोमेट्रिक स्पेस के रूप में देखा जा सकता है
यदि फलन है और d2 X2 पर स्यूडोमेट्रिक्स है, तब X1 पर स्यूडोमेट्रिक्स देता है. यदि d2 मीट्रिक है और f अंतःक्रियात्मक फलन है, तो d1 पैमाना है।
टोपोलॉजी
स्यूडोमेट्रिक टोपोलॉजी खुली गेंदों द्वारा उत्पन्न टोपोलॉजी (संरचना) है
स्यूडोमेट्रिक्स और मेट्रिक्स के बीच का अंतर पूरी तरह से सामयिक है। यही है, स्यूडोमेट्रिक एक मीट्रिक है यदि और केवल यदि यह उत्पन्न होने वाली टोपोलॉजी T0 (अर्थात, अलग-अलग बिंदु स्थैतिक रूप से अलग-अलग होते हैं) स्पेस है।
मीट्रिक रिक्त स्पेस के लिए कॉची अनुक्रम और समापन (मीट्रिक स्पेस) की परिभाषाएँ अपरिवर्तित स्यूडोमेट्रिक रिक्त स्पेस पर ले जाती हैं।[5]
मीट्रिक पहचान
स्यूडोमेट्रिक का लुप्त होना तुल्यता संबंध को प्रेरित करता है, जिसे मीट्रिक पहचान कहा जाता है, जो स्यूडोमेट्रिक्स स्पेस को पूर्ण मीट्रिक स्पेस में परिवर्तित करता है। यह को परिभाषित करके किया जाता है यदि । मान लें कि का भागफल स्पेस (टोपोलॉजी) हो इस तुल्यता संबंध से का विभाग स्थान है और परिभाषित करें
मीट्रिक पहचान प्रेरित टोपोलॉजी को संरक्षित करती है। अर्थात् उपसमुच्चय में खुला (या बंद) है यदि और केवल यदि में खुला (या बंद) है और संतृप्त है। सामयिक पहचान कोलमोगोरोव भागफल है।
इस निर्माण का एक उदाहरण इसके कॉची अनुक्रमों द्वारा एक मीट्रिक स्पेस का पूरा होना है।
यह भी देखें
- सामान्यीकृत मीट्रिक – Metric geometry
- मीट्रिक हस्ताक्षर
- मीट्रिक स्थान
- मेट्रिजेबल टोपोलॉजिकल वेक्टर स्पेस
टिप्पणियाँ
- ↑ Kurepa, Đuro (1934). "Tableaux ramifiés d'ensembles, espaces pseudodistaciés". C. R. Acad. Sci. Paris. 198 (1934): 1563–1565.
- ↑ Collatz, Lothar (1966). कार्यात्मक विश्लेषण और संख्यात्मक गणित (in English). New York, San Francisco, London: Academic Press. p. 51.
- ↑ "Pseudometric topology". PlanetMath.
- ↑ Willard, p. 23
- ↑ Cain, George (Summer 2000). "Chapter 7: Complete pseudometric spaces" (PDF). Archived from the original on 7 October 2020. Retrieved 7 October 2020.
- ↑ Howes, Norman R. (1995). आधुनिक विश्लेषण और टोपोलॉजी. New York, NY: Springer. p. 27. ISBN 0-387-97986-7. Retrieved 10 September 2012.
Let be a pseudo-metric space and define an equivalence relation in by if . Let be the quotient space and the canonical projection that maps each point of onto the equivalence class that contains it. Define the metric in by for each pair . It is easily shown that is indeed a metric and defines the quotient topology on .
- ↑ Simon, Barry (2015). विश्लेषण में एक व्यापक पाठ्यक्रम. Providence, Rhode Island: American Mathematical Society. ISBN 978-1470410995.
संदर्भ
- Arkhangel'skii, A.V.; Pontryagin, L.S. (1990). General Topology I: Basic Concepts and Constructions Dimension Theory. Encyclopaedia of Mathematical Sciences. Springer. ISBN 3-540-18178-4.
- Steen, Lynn Arthur; Seebach, Arthur (1995) [1970]. Counterexamples in Topology (new ed.). Dover Publications. ISBN 0-486-68735-X.
- Willard, Stephen (2004) [1970], General Topology (Dover reprint of 1970 ed.), Addison-Wesley
- This article incorporates material from Pseudometric space on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.
- "Example of pseudometric space". PlanetMath.