ऑर्थोगोनलाइज़ेशन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
रैखिक बीजगणित में, ऑर्थोगोनलाइज़ेशन [[ऑर्थोगोनल वेक्टर|लांबिक सदिश]] का एक समुच्चय खोजने की प्रक्रिया है जो एक विशेष रैखिक उप-समष्‍टि (रैखिक बीजगणित) को फैलाता है। औपचारिक रूप से, एक [[आंतरिक उत्पाद स्थान|आंतरगुणनसमष्‍टि]] (सामान्यतः [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन समष्‍टि]] R<sup>n</sup>) में सदिश {''v''<sub>1</sub>, ... , v<sub>''k''</sub>} के [[रैखिक रूप से स्वतंत्र]] समुच्चय से प्रारंभ होकर, ऑर्थोगोनलाइज़ेशन के परिणामस्वरूप [[ओर्थोगोनालिटी|लांबिक]] सदिश {u<sub>1</sub>, ... , u<sub>''k''</sub>} का समुच्चय होता है जो सदिश v<sub>1</sub>, ... , v<sub>''k''</sub> के समान उप-समष्‍टि उत्पन्न करता है। नवीन समुच्चय में प्रत्येक सदिश नवीन समुच्चय में प्रत्येक दूसरे सदिश के लिए लांबिक है; और नवीन समुच्चय और प्राचीन समुच्चय का एक ही रैखिक विस्तार है।
रैखिक बीजगणित में, ऑर्थोगोनलाइज़ेशन [[ऑर्थोगोनल वेक्टर|लांबिक सदिश]] का समुच्चय खोजने की प्रक्रिया है जो एक विशेष रैखिक उप-समष्‍टि (रैखिक बीजगणित) को फैलाता है। औपचारिक रूप से, एक [[आंतरिक उत्पाद स्थान|आंतरगुणनसमष्‍टि]] (सामान्यतः [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन समष्‍टि]] R<sup>n</sup>) में सदिश {''v''<sub>1</sub>, ... , v<sub>''k''</sub>} के [[रैखिक रूप से स्वतंत्र]] समुच्चय से प्रारंभ होकर, ऑर्थोगोनलाइज़ेशन के परिणामस्वरूप [[ओर्थोगोनालिटी|लांबिक]] सदिश {u<sub>1</sub>, ... , u<sub>''k''</sub>} का समुच्चय होता है जो सदिश v<sub>1</sub>, ... , v<sub>''k''</sub> के समान उप-समष्‍टि उत्पन्न करते है। नवीन समुच्चय में प्रत्येक सदिश नवीन समुच्चय में प्रत्येक दूसरे सदिश के लिए लांबिक है; और नवीन समुच्चय और प्राचीन समुच्चय का एक ही रैखिक विस्तार है।


इसके अतिरिक्त , यदि हम चाहते हैं कि परिणामी सदिश सभी इकाई सदिश हों, तो हम प्रत्येक सदिश सामान्य करते हैं और प्रक्रिया को ऑर्थोनॉर्मलाइजेशन कहा जाता है।
इसके अतिरिक्त , यदि हम चाहते हैं कि परिणामी सदिश सभी इकाई सदिश हों, तो हम प्रत्येक सदिश सामान्य करते हैं और प्रक्रिया को ऑर्थोनॉर्मलाइजेशन कहा जाता है।
Line 14: Line 14:
कंप्यूटर पर ऑर्थोगोनलाइज़ेशन करते समय, सामान्यतः ग्राम-श्मिट प्रक्रिया पर गृहस्थ परिवर्तन को प्राथमिकता दी जाती है क्योंकि यह अधिक [[संख्यात्मक स्थिरता]] है, अर्थात पूरक त्रुटियों का कम गंभीर प्रभाव होता है।
कंप्यूटर पर ऑर्थोगोनलाइज़ेशन करते समय, सामान्यतः ग्राम-श्मिट प्रक्रिया पर गृहस्थ परिवर्तन को प्राथमिकता दी जाती है क्योंकि यह अधिक [[संख्यात्मक स्थिरता]] है, अर्थात पूरक त्रुटियों का कम गंभीर प्रभाव होता है।


दूसरी ओर, ग्राम-श्मिट प्रक्रिया jवें पुनरावृति के बाद jवां ऑर्थोगोनलाइजन सदिश का उत्पादन करती है, जबकि गृहस्थ प्रतिबिंब का उपयोग करके ऑर्थोगोनलाइज़ेशन मात्र अंत में सभी सदिश उत्पन्न करता है। यह मात्र ग्राम-श्मिट प्रक्रिया को पुनरावृत्त विधियों जैसे अर्नोल्डी पुनरावृत्ति के लिए लागू करता है।
दूसरी ओर, ग्राम-श्मिट प्रक्रिया jवें पुनरावृति के बाद jवां ऑर्थोगोनलाइजन सदिश का उत्पादन करती है, जबकि गृहस्थ प्रतिबिंब का उपयोग करके ऑर्थोगोनलाइज़ेशन मात्र अंत में सभी सदिश उत्पन्न करते है। यह मात्र ग्राम-श्मिट प्रक्रिया को पुनरावृत्त विधियों जैसे अर्नोल्डी पुनरावृत्ति के लिए लागू करते है।


गृहस्थ परिवर्तनों की तुलना में [[ घुमाव देता है |गिवेंस घूर्णन]] अधिक सरलता से [[समानांतर कंप्यूटिंग]] है।
गृहस्थ परिवर्तनों की तुलना में [[ घुमाव देता है |गिवेंस घूर्णन]] अधिक सरलता से [[समानांतर कंप्यूटिंग]] है।
Line 22: Line 22:


== स्थानीय ऑर्थोगोनलाइज़ेशन ==
== स्थानीय ऑर्थोगोनलाइज़ेशन ==
पारंपरिक शोर क्षीणन दृष्टिकोणों में उपयोगी सिग्नल के नुकसान की भरपाई करने के लिए गलत पैरामीटर चयन या डीनोइजिंग धारणाओं की अपर्याप्तता के कारण, प्रारंभिक शोर अनुभाग से उपयोगी सिग्नल की पुनर्प्राप्ति के लिए आरंभिक खंड पर एक वेटिंग ऑपरेटर लगाया जा सकता है। नई denoising प्रक्रिया को सिग्नल और शोर के स्थानीय ऑर्थोगोनलाइजेशन के रूप में जाना जाता है।<ref name="ortho">{{cite journal|last1=Chen|first1=Yangkang|last2=Fomel|first2=Sergey|title=स्थानीय सिग्नल और शोर ऑर्थोगोनलाइजेशन का उपयोग करके यादृच्छिक शोर क्षीणन|journal=Geophysics|date=2015|volume=80|issue=6|page=WD1–WD9|doi=10.1190/GEO2014-0227.1}}</ref>
पारंपरिक रव क्षीणन दृष्टिकोणों में उपयोगी संकेत की क्षतिपूर्ति करने के लिए अनुचित पैरामीटर चयन या डीनोइजिंग धारणाओं की अपर्याप्तता के कारण, प्रारंभिक रव अनुभाग से उपयोगी संकेत की पुनर्प्राप्ति के लिए आरंभिक खंड पर एक भारांकन संचालक लगाया जा सकता है। नवीन डीनोइजिंग प्रक्रिया को संकेत और रव के स्थानीय ऑर्थोगोनलाइजेशन के रूप में जाना जाता है।<ref name="ortho">{{cite journal|last1=Chen|first1=Yangkang|last2=Fomel|first2=Sergey|title=स्थानीय सिग्नल और शोर ऑर्थोगोनलाइजेशन का उपयोग करके यादृच्छिक शोर क्षीणन|journal=Geophysics|date=2015|volume=80|issue=6|page=WD1–WD9|doi=10.1190/GEO2014-0227.1}}</ref> इसमें कई संकेत संसाधन और भूकंपीय अन्वेषण क्षेत्रों में अनुप्रयोगों की एक विस्तृत श्रृंखला है।
इसमें कई सिग्नल प्रोसेसिंग और भूकंपीय अन्वेषण क्षेत्रों में अनुप्रयोगों की एक विस्तृत श्रृंखला है।


== यह भी देखें ==
== यह भी देखें ==
{{wiktionary|orthogonalization}}
{{wiktionary|orthogonalization}}
*ऑर्थोगोनलिटी
*लंबकोणीयता
*[[बायोर्थोगोनल प्रणाली]]
*[[बायोर्थोगोनल प्रणाली|द्विलांबिक प्रणाली]]
*[[ऑर्थोगोनल आधार|लांबिकआधार]]
*[[ऑर्थोगोनल आधार|लांबिक आधार]]


== संदर्भ ==
== संदर्भ ==
<references />
<references />
[[Category: लीनियर अलजेब्रा]]


[[Category: Machine Translated Page]]
[[Category:Created On 18/04/2023]]
[[Category:Created On 18/04/2023]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:लीनियर अलजेब्रा]]

Latest revision as of 09:36, 1 May 2023

रैखिक बीजगणित में, ऑर्थोगोनलाइज़ेशन लांबिक सदिश का समुच्चय खोजने की प्रक्रिया है जो एक विशेष रैखिक उप-समष्‍टि (रैखिक बीजगणित) को फैलाता है। औपचारिक रूप से, एक आंतरगुणनसमष्‍टि (सामान्यतः यूक्लिडियन समष्‍टि Rn) में सदिश {v1, ... , vk} के रैखिक रूप से स्वतंत्र समुच्चय से प्रारंभ होकर, ऑर्थोगोनलाइज़ेशन के परिणामस्वरूप लांबिक सदिश {u1, ... , uk} का समुच्चय होता है जो सदिश v1, ... , vk के समान उप-समष्‍टि उत्पन्न करते है। नवीन समुच्चय में प्रत्येक सदिश नवीन समुच्चय में प्रत्येक दूसरे सदिश के लिए लांबिक है; और नवीन समुच्चय और प्राचीन समुच्चय का एक ही रैखिक विस्तार है।

इसके अतिरिक्त , यदि हम चाहते हैं कि परिणामी सदिश सभी इकाई सदिश हों, तो हम प्रत्येक सदिश सामान्य करते हैं और प्रक्रिया को ऑर्थोनॉर्मलाइजेशन कहा जाता है।

ऑर्थोगोनलाइजेशन किसी भी सममित द्विरेखीय रूप के संबंध में भी संभव है (आवश्यक नहीं कि एक आंतरिक उत्पाद, आवश्यक नहीं कि वास्तविक संख्या से अधिक हो), परन्तु इस अधिक सामान्य समुच्चयन में मानक एल्गोरिदम को शून्य से विभाजन का सामना करना पड़ सकता है।

ऑर्थोगोनलाइज़ेशन एल्गोरिदम

ऑर्थोगोनलाइज़ेशन करने की विधियों में सम्मिलित हैं:

  • ग्राम-श्मिट प्रक्रिया, जो प्रक्षेप्य (रैखिक बीजगणित) का उपयोग करती है
  • गृहस्थ परिवर्तन, जो परावर्तन (गणित) का उपयोग करता है
  • गिवेंस घूर्णन
  • सममित ऑर्थोगोनलाइजेशन, जो विचित्र मान अपघटन का उपयोग करता है

कंप्यूटर पर ऑर्थोगोनलाइज़ेशन करते समय, सामान्यतः ग्राम-श्मिट प्रक्रिया पर गृहस्थ परिवर्तन को प्राथमिकता दी जाती है क्योंकि यह अधिक संख्यात्मक स्थिरता है, अर्थात पूरक त्रुटियों का कम गंभीर प्रभाव होता है।

दूसरी ओर, ग्राम-श्मिट प्रक्रिया jवें पुनरावृति के बाद jवां ऑर्थोगोनलाइजन सदिश का उत्पादन करती है, जबकि गृहस्थ प्रतिबिंब का उपयोग करके ऑर्थोगोनलाइज़ेशन मात्र अंत में सभी सदिश उत्पन्न करते है। यह मात्र ग्राम-श्मिट प्रक्रिया को पुनरावृत्त विधियों जैसे अर्नोल्डी पुनरावृत्ति के लिए लागू करते है।

गृहस्थ परिवर्तनों की तुलना में गिवेंस घूर्णन अधिक सरलता से समानांतर कंप्यूटिंग है।

प्रति-ओलोव लोडिन द्वारा सममित ऑर्थोगोनलाइज़ेशन तैयार किया गया था।[1]


स्थानीय ऑर्थोगोनलाइज़ेशन

पारंपरिक रव क्षीणन दृष्टिकोणों में उपयोगी संकेत की क्षतिपूर्ति करने के लिए अनुचित पैरामीटर चयन या डीनोइजिंग धारणाओं की अपर्याप्तता के कारण, प्रारंभिक रव अनुभाग से उपयोगी संकेत की पुनर्प्राप्ति के लिए आरंभिक खंड पर एक भारांकन संचालक लगाया जा सकता है। नवीन डीनोइजिंग प्रक्रिया को संकेत और रव के स्थानीय ऑर्थोगोनलाइजेशन के रूप में जाना जाता है।[2] इसमें कई संकेत संसाधन और भूकंपीय अन्वेषण क्षेत्रों में अनुप्रयोगों की एक विस्तृत श्रृंखला है।

यह भी देखें

संदर्भ

  1. Löwdin, Per-Olov (1970). "On the nonorthogonality problem". क्वांटम रसायन विज्ञान में अग्रिम. Vol. 5. Elsevier. pp. 185–199.
  2. Chen, Yangkang; Fomel, Sergey (2015). "स्थानीय सिग्नल और शोर ऑर्थोगोनलाइजेशन का उपयोग करके यादृच्छिक शोर क्षीणन". Geophysics. 80 (6): WD1–WD9. doi:10.1190/GEO2014-0227.1.