सकारात्मक ऊर्जा प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Key result in general relativity}}
{{short description|Key result in general relativity}}
{{general relativity|expanded=theorems}}
{{general relativity|expanded=प्रमेयों}}


सकारात्मक ऊर्जा [[प्रमेय]] (सकारात्मक द्रव्यमान प्रमेय के रूप में भी जाना जाता है) [[सामान्य सापेक्षता]] और [[अंतर ज्यामिति]] में आधारभूत परिणामों के संग्रह को संदर्भित करता है। इसका मानक रूप, मोटे तौर पर बोल रहा है, यह दावा करता है कि एक पृथक प्रणाली की गुरुत्वाकर्षण ऊर्जा गैर-नकारात्मक है, और केवल शून्य हो सकती है जब प्रणाली में कोई गुरुत्वाकर्षण वस्तु न हो। हालांकि इन बयानों को अक्सर मुख्य रूप से प्रकृति में भौतिक होने के बारे में सोचा जाता है, उन्हें प्रमेय के रूप में औपचारिक रूप दिया जा सकता है जो अंतर ज्यामिति, [[आंशिक अंतर समीकरण]] और [[ज्यामितीय माप सिद्धांत]] की तकनीकों का उपयोग करके सिद्ध किया जा सकता है।
सकारात्मक ऊर्जा [[प्रमेय]] (सकारात्मक द्रव्यमान प्रमेय के रूप में भी जाना जाता है) [[सामान्य सापेक्षता]] और [[अंतर ज्यामिति]] में आधारभूत परिणामों के संग्रह को संदर्भित करता है। इसका मानक रूप, सामान्यतः बोल रहा है, यह प्रमाणित करता है कि एक पृथक प्रणाली की गुरुत्वाकर्षण ऊर्जा गैर-नकारात्मक है, और केवल शून्य हो सकती है जब प्रणाली में कोई गुरुत्वाकर्षण वस्तु न हो। चूँकि इन कथनों को प्रायः मुख्य रूप से प्रकृति में भौतिक होने के बारे में सोचा जाता है, उन्हें प्रमेय के रूप में औपचारिक रूप दिया जा सकता है जो अंतर ज्यामिति, [[आंशिक अंतर समीकरण]] और [[ज्यामितीय माप सिद्धांत]] की विधिों का उपयोग करके सिद्ध किया जा सकता है।


1979 और 1981 में [[रिचर्ड स्कोन]] और [[शिंग-तुंग यौ]] सकारात्मक द्रव्यमान प्रमेय का प्रमाण देने वाले पहले व्यक्ति थे। 1982 में [[एडवर्ड विटन]] ने वैकल्पिक प्रमाण की रूपरेखा दी, जिसे बाद में गणितज्ञों ने सख्ती से भर दिया। विटेन और यौ को इस विषय पर उनके काम के लिए आंशिक रूप से गणित में [[ फील्ड मेडल ]] से सम्मानित किया गया।
1979 और 1981 में [[रिचर्ड स्कोन]] और [[शिंग-तुंग यौ]] सकारात्मक द्रव्यमान प्रमेय का प्रमाण देने वाले पहले व्यक्ति थे। 1982 में [[एडवर्ड विटन]] ने वैकल्पिक प्रमाण की रूपरेखा दी, जिसे बाद में गणितज्ञों ने सख्ती से भर दिया। विटेन और यौ को इस विषय पर उनके काम के लिए आंशिक रूप से गणित में [[ फील्ड मेडल |क्षेत्र मेडल]] से सम्मानित किया गया है।


स्कोएन-यॉ / विटेन सकारात्मक ऊर्जा प्रमेय का अचूक सूत्रीकरण निम्नलिखित बताता है:
स्कोएन-यॉ / विटेन सकारात्मक ऊर्जा प्रमेय का अचूक सूत्रीकरण निम्नलिखित बताता है:
{{quote|असम्बद्ध रूप से सपाट प्रारंभिक डेटा सेट को देखते हुए, प्रत्येक अनंत क्षेत्र की ऊर्जा-गति को [[मिन्कोव्स्की अंतरिक्ष]] के एक तत्व के रूप में परिभाषित किया जा सकता है। बशर्ते कि प्रारंभिक डेटा सेट [[भौगोलिक रूप से पूर्ण]] हो और [[ऊर्जा की स्थिति#गणितीय कथन|प्रमुख ऊर्जा स्थिति]] को संतुष्ट करता हो, ऐसा प्रत्येक तत्व मूल के [[कारणीय संरचना|कारण भविष्य]] में होना चाहिए। यदि किसी अनंत क्षेत्र में अशक्त ऊर्जा-संवेग है, तो प्रारंभिक डेटा सेट इस अर्थ में तुच्छ है कि इसे मिन्कोस्की अंतरिक्ष में ज्यामितीय रूप से एम्बेड किया जा सकता है।}}
{{quote|असम्बद्ध रूप से सपाट प्रारंभिक डेटा सेट को देखते हुए, प्रत्येक अनंत क्षेत्र की ऊर्जा-गति को [[मिन्कोव्स्की अंतरिक्ष]] के एक तत्व के रूप में परिभाषित किया जा सकता है। बशर्ते कि प्रारंभिक डेटा सेट [[भौगोलिक रूप से पूर्ण]] हो और [[ऊर्जा की स्थिति#गणितीय कथन|प्रमुख ऊर्जा स्थिति]] को संतुष्ट करता हो, ऐसा प्रत्येक तत्व मूल के [[कारणीय संरचना|कारण भविष्य]] में होना चाहिए। यदि किसी अनंत क्षेत्र में अशक्त ऊर्जा-संवेग है, तो प्रारंभिक डेटा सेट इस अर्थ में तुच्छ है कि इसे मिन्कोस्की अंतरिक्ष में ज्यामितीय रूप से एम्बेड किया जा सकता है।}}


इन शब्दों के अर्थ पर नीचे चर्चा की गई है। ऊर्जा-संवेग की विभिन्न धारणाओं और प्रारंभिक विवरण समुच्चय के विभिन्न वर्गों के लिए वैकल्पिक और गैर-समतुल्य सूत्रीकरण हैं। इन सभी योगों को कड़ाई से सिद्ध नहीं किया गया है, और यह वर्तमान में [[खुली समस्या]] है कि क्या उपरोक्त सूत्रीकरण मनमाना आयाम के प्रारंभिक विवरण समुच्चयों के लिए है।
इन शब्दों के अर्थ पर नीचे चर्चा की गई है। ऊर्जा-संवेग की विभिन्न धारणाओं और प्रारंभिक विवरण समुच्चय के विभिन्न वर्गों के लिए वैकल्पिक और गैर-समतुल्य सूत्रीकरण हैं। इन सभी योगों को कड़ाई से सिद्ध नहीं किया गया है, और यह वर्तमान में [[खुली समस्या]] है कि क्या उपरोक्त सूत्रीकरण इच्छानुसारा आयाम के प्रारंभिक विवरण समुच्चयों के लिए है।
 
'''इन सभी योगों को कड़ाई से सिद्ध नहीं किया गया है, और यह वर्तमान में एक [[खुली समस्या]] है कि क्या उपरोक्त सूत्रीकरण मनमाना'''
 
== ऐतिहासिक सिंहावलोकन ==
== ऐतिहासिक सिंहावलोकन ==
एडीएम द्रव्यमान के लिए प्रमेय का मूल प्रमाण रिचर्ड स्कोएन और शिंग-तुंग याउ द्वारा 1979 में परिवर्तनशील विधियों और न्यूनतम सतहों का उपयोग करके प्रदान किया गया था। [[ अतिगुरुत्वाकर्षण ]] के संदर्भ में सकारात्मक ऊर्जा प्रमेयों से प्रेरित होकर, एडवर्ड विटन ने 1981 में स्पिनरों के उपयोग के आधार पर एक और प्रमाण दिया। बोंडी द्रव्यमान के लिए प्रमेय का विस्तार [[मैल्कम लुडविगसेन]] और जेम्स विकर्स, गैरी होरोविट्ज़ और [[मैल्कम पेरी (भौतिक विज्ञानी)]], और स्कोएन और याउ द्वारा दिया गया था।
एडीएम द्रव्यमान के लिए प्रमेय का मूल प्रमाण रिचर्ड स्कोएन और शिंग-तुंग याउ द्वारा 1979 में परिवर्तनशील विधियों और न्यूनतम सतहों का उपयोग करके प्रदान किया गया था। [[ अतिगुरुत्वाकर्षण |अतिगुरुत्वाकर्षण]] के संदर्भ में सकारात्मक ऊर्जा प्रमेयों से प्रेरित होकर, एडवर्ड विटन ने 1981 में स्पिनरों के उपयोग के आधार पर एक और प्रमाण दिया। बोंडी द्रव्यमान के लिए प्रमेय का विस्तार [[मैल्कम लुडविगसेन]] और जेम्स विकर्स, गैरी होरोविट्ज़ और [[मैल्कम पेरी (भौतिक विज्ञानी)]], और स्कोएन और याउ द्वारा दिया गया था।


[[गैरी गिबन्स]], [[स्टीफन हॉकिंग]], होरोविट्ज़ और पेरी ने प्रमेय के विस्तार को एसिम्प्टोटिक रूप से [[एंटी-डी सिटर स्पेसटाइम|एंटी-डी सिटर अंतरिक्ष समय]] और आइंस्टीन फील्ड समीकरणों आइंस्टीन-मैक्सवेल समीकरणों के रूप में बढाया है | आइंस्टीन-मैक्सवेल सिद्धांत के रूप में साबित किया है। असम्बद्ध रूप से एंटी-डी सिटर अंतरिक्ष समय का द्रव्यमान गैर-ऋणात्मक है और एंटी-डी सिटर अंतरिक्ष समय के लिए केवल शून्य के बराबर है। आइंस्टीन-मैक्सवेल सिद्धांत में, विद्युत आवेश के साथ अंतरिक्ष-समय के लिए <math>Q</math> और [[चुंबकीय प्रभार]] <math>P</math>अंतरिक्ष-समय का द्रव्यमान संतुष्ट करता है (गाऊसी इकाइयों में)
[[गैरी गिबन्स]], [[स्टीफन हॉकिंग]], होरोविट्ज़ और पेरी ने प्रमेय के विस्तार को एसिम्प्टोटिक रूप से [[एंटी-डी सिटर स्पेसटाइम|एंटी-डी सिटर अंतरिक्ष समय]] और आइंस्टीन क्षेत्र समीकरणों आइंस्टीन-मैक्सवेल समीकरणों के रूप में बढाया है | आइंस्टीन-मैक्सवेल सिद्धांत के रूप में सिद्ध किया है। असम्बद्ध रूप से एंटी-डी सिटर अंतरिक्ष समय का द्रव्यमान गैर-ऋणात्मक है और एंटी-डी सिटर अंतरिक्ष समय के लिए केवल शून्य के बराबर है। आइंस्टीन-मैक्सवेल सिद्धांत में, विद्युत आवेश के साथ अंतरिक्ष-समय के लिए <math>Q</math> और [[चुंबकीय प्रभार]] <math>P</math>अंतरिक्ष-समय का द्रव्यमान संतुष्ट करता है (गाऊसी इकाइयों में)


:<math>M \geq \sqrt{Q^2 + P^2},</math>
:<math>M \geq \sqrt{Q^2 + P^2},</math>
Line 27: Line 24:
* यदि प्रमुख ऊर्जा स्थिति को संतुष्ट करता है
* यदि प्रमुख ऊर्जा स्थिति को संतुष्ट करता है
:: <math>R^g-|k|_g^2+(\operatorname{tr}_gk)^2\geq 2\big|\operatorname{div}^gk-d(\operatorname{tr}_gk)\big|_g,</math>
:: <math>R^g-|k|_g^2+(\operatorname{tr}_gk)^2\geq 2\big|\operatorname{div}^gk-d(\operatorname{tr}_gk)\big|_g,</math>
:कहाँ {{math|''R''<sup>''g''</sup>}} की [[अदिश वक्रता]] को दर्शाता है {{mvar|g}}.<ref>In local coordinates, this says {{math|''R'' - ''g<sup>ik</sup>g<sup>jl</sup>k<sub>ij</sub>k<sub>kl</sub>'' + (''g<sup>ij</sup>k<sub>ij</sub>'')<sup>2</sup> ≥ 2(''g<sup>pq</sup>''(''g<sup>ij</sup>k''<sub>''pi'';''j''</sub> - (''g<sup>ij</sup>k<sub>ij</sub>'')<sub>;''p''</sub>)(''g<sup>kl</sup>k''<sub>''qk'';''l''</sub> - (''g<sup>kl</sup>k<sub>kl</sub>'')<sub>;''q''</sub>))<sup>1/2</sup>}} or, in the usual "raised and lowered index" notation, this says {{math|''R'' - ''k<sup>ij</sup>k<sub>ij</sub>'' + (''k<sub>i</sub><sup>i</sup>'')<sup>2</sup> ≥ 2((''k''<sub>''pi''</sub><sup>;''i''</sup> - (''k<sub>i</sub><sup>i</sup>'')<sub>;''p''</sub>)(''k''<sup>''pj''</sup><sub>;''j''</sub> - (''k<sup>j</sup><sub>j</sub>'')<sup>;''p''</sup>))<sup>1/2</sup>}}</ref>
:जहाँ {{math|''R''<sup>''g''</sup>}} की [[अदिश वक्रता]] को दर्शाता है {{mvar|g}}.<ref>In local coordinates, this says {{math|''R'' - ''g<sup>ik</sup>g<sup>jl</sup>k<sub>ij</sub>k<sub>kl</sub>'' + (''g<sup>ij</sup>k<sub>ij</sub>'')<sup>2</sup> ≥ 2(''g<sup>pq</sup>''(''g<sup>ij</sup>k''<sub>''pi'';''j''</sub> - (''g<sup>ij</sup>k<sub>ij</sub>'')<sub>;''p''</sub>)(''g<sup>kl</sup>k''<sub>''qk'';''l''</sub> - (''g<sup>kl</sup>k<sub>kl</sub>'')<sub>;''q''</sub>))<sup>1/2</sup>}} or, in the usual "raised and lowered index" notation, this says {{math|''R'' - ''k<sup>ij</sup>k<sub>ij</sub>'' + (''k<sub>i</sub><sup>i</sup>'')<sup>2</sup> ≥ 2((''k''<sub>''pi''</sub><sup>;''i''</sup> - (''k<sub>i</sub><sup>i</sup>'')<sub>;''p''</sub>)(''k''<sup>''pj''</sup><sub>;''j''</sub> - (''k<sup>j</sup><sub>j</sub>'')<sup>;''p''</sup>))<sup>1/2</sup>}}</ref>
ध्यान दें कि एक समय-सममित प्रारंभिक विवरण समुच्चय {{math|(''M'', ''g'', 0)}} प्रमुख ऊर्जा की स्थिति को संतुष्ट करता है अगर और केवल अगर की अदिश वक्रता {{mvar|g}} ऋणात्मक है। एक कहता है कि एक लोरेंत्ज़ियन कई गुना {{math|({{overline|''M''}}, {{overline|''g''}})}} प्रारंभिक विवरण समुच्चय का विकास है {{math|(''M'', ''g'', ''k'')}} यदि (अनिवार्य रूप से स्पेसलाइक) हाइपरसफेस एम्बेडिंग है {{mvar|M}} में {{math|{{overline|''M''}}}}, एक साथ सतत इकाई सामान्य वेक्टर क्षेत्र के साथ, जैसे कि प्रेरित मीट्रिक है {{mvar|g}} और दी गई इकाई सामान्य के संबंध में दूसरा मौलिक रूप है {{mvar|k}}.
ध्यान दें कि एक समय-सममित प्रारंभिक विवरण समुच्चय {{math|(''M'', ''g'', 0)}} प्रमुख ऊर्जा की स्थिति को संतुष्ट करता है अगर और केवल अगर की अदिश वक्रता {{mvar|g}} ऋणात्मक है। एक कहता है कि एक लोरेंत्ज़ियन कई गुना {{math|({{overline|''M''}}, {{overline|''g''}})}} प्रारंभिक विवरण समुच्चय का विकास है {{math|(''M'', ''g'', ''k'')}} यदि {{mvar|M}} में {{math|{{overline|''M''}}}} (अनिवार्य रूप से स्पेसलाइक) हाइपरसफेस एम्बेडिंग है, एक साथ सतत इकाई सामान्य वेक्टर क्षेत्र के साथ, जैसे कि प्रेरित मीट्रिक है {{mvar|g}} और दी गई इकाई सामान्य के संबंध में दूसरा मौलिक रूप {{mvar|k}} है |


यह परिभाषा सामान्य सापेक्षता के गणित से प्रेरित है। एक लोरेंत्ज़ियन कई गुना दिया गया {{math|({{overline|''M''}}, {{overline|''g''}})}} आयाम का {{math|''n'' + 1}} और एक स्पेसलाइक विसर्जन {{mvar|f}} कनेक्टेड से {{mvar|n}}-आयामी कई गुना {{mvar|M}} में {{math|{{overline|''M''}}}} जिसमें तुच्छ सामान्य बंडल है, कोई प्रेरित रिमेंनियन मीट्रिक पर विचार कर सकता है {{math|''g'' {{=}} ''f''<sup> *</sup>{{overline|''g''}}}} साथ ही [[दूसरा मौलिक रूप]] {{mvar|k}} का {{mvar|f}} सतत इकाई सामान्य सदिश क्षेत्र के दो विकल्पों में से किसी एक के संबंध में {{mvar|f}}. ट्रिपल {{math|(''M'', ''g'', ''k'')}} एक प्रारंभिक विवरण समुच्चय है। [[गॉस-कोडैज़ी समीकरण]]ों के अनुसार, किसी के पास है
यह परिभाषा सामान्य सापेक्षता के गणित से प्रेरित है। एक लोरेंत्ज़ियन कई गुना दिया गया {{math|({{overline|''M''}}, {{overline|''g''}})}} आयाम का {{math|''n'' + 1}} और एक स्पेसलाइक विसर्जन {{mvar|f}} कनेक्टेड से {{mvar|n}}-आयामी कई गुना {{mvar|M}} में {{math|{{overline|''M''}}}} जिसमें तुच्छ सामान्य बंडल है, कोई प्रेरित रिमेंनियन मीट्रिक पर विचार कर सकता है {{math|''g'' {{=}} ''f''<sup> *</sup>{{overline|''g''}}}} साथ ही [[दूसरा मौलिक रूप]] {{mvar|k}} का {{mvar|f}} सतत इकाई सामान्य सदिश क्षेत्र के दो विकल्पों में से किसी एक के संबंध में {{mvar|f}}. ट्रिपल {{math|(''M'', ''g'', ''k'')}} एक प्रारंभिक विवरण समुच्चय है। [[गॉस-कोडैज़ी समीकरण]] के अनुसार, किसी के पास है |
:<math>\begin{align}
:<math>\begin{align}
\overline{G}(\nu,\nu)&=\frac{1}{2}\Big(R^g-|k|_g^2+(\operatorname{tr}^gk)^2\Big)\\
\overline{G}(\nu,\nu)&=\frac{1}{2}\Big(R^g-|k|_g^2+(\operatorname{tr}^gk)^2\Big)\\
\overline{G}(\nu,\cdot)&=d(\operatorname{tr}^gk)-\operatorname{div}^gk.
\overline{G}(\nu,\cdot)&=d(\operatorname{tr}^gk)-\operatorname{div}^gk.
\end{align}</math>
\end{align}</math>
कहाँ {{math|{{overline|''G''}}}} [[आइंस्टीन टेंसर]] को दर्शाता है {{math|Ric<sup>{{overline|''g''}}</sup> - {{sfrac|1|2}}''R''<sup>{{overline|''g''}}</sup>{{overline|''g''}}}} का {{overline|''g''}} और {{math|''ν''}} निरंतर इकाई सामान्य वेक्टर क्षेत्र को दर्शाता है {{mvar|f}} परिभाषित करते थे {{mvar|k}}. तो ऊपर दी गई प्रमुख ऊर्जा की स्थिति, इस लोरेंत्ज़ियन संदर्भ में, इस दावे के समान है {{math|{{overline|''G''}}(''ν'', ⋅)}}, जब साथ में सदिश क्षेत्र के रूप में देखा जाता है {{mvar|f}}, समयबद्ध या अशक्त है और उसी दिशा में उन्मुख है {{math|''ν''}}.<ref>It is typical to assume {{math|{{overline|''M''}}}} to be time-oriented and for {{math|''ν''}} to be then specifically defined as the future-pointing unit normal vector field along {{mvar|f}}; in this case the dominant energy condition as given above for an initial data set arising from a spacelike immersion into {{math|{{overline|''M''}}}} is automatically true if the dominant energy condition in its [[energy conditions#Mathematical statement|usual spacetime form]] is assumed.</ref>
जहाँ {{math|{{overline|''G''}}}} [[आइंस्टीन टेंसर]] को दर्शाता है {{math|Ric<sup>{{overline|''g''}}</sup> - {{sfrac|1|2}}''R''<sup>{{overline|''g''}}</sup>{{overline|''g''}}}} का {{overline|''g''}} और {{math|''ν''}} निरंतर इकाई सामान्य वेक्टर क्षेत्र {{mvar|k}} को दर्शाता है {{mvar|f}} परिभाषित करते थे . तो ऊपर दी गई प्रमुख ऊर्जा की स्थिति, इस लोरेंत्ज़ियन संदर्भ में, इस दावे के समान है {{math|{{overline|''G''}}(''ν'', ⋅)}}, जब साथ में सदिश क्षेत्र के रूप में देखा जाता है {{mvar|f}}, समयबद्ध या अशक्त है और {{math|''ν''}} के सामान उसी दिशा में उन्मुख होता है |<ref>It is typical to assume {{math|{{overline|''M''}}}} to be time-oriented and for {{math|''ν''}} to be then specifically defined as the future-pointing unit normal vector field along {{mvar|f}}; in this case the dominant energy condition as given above for an initial data set arising from a spacelike immersion into {{math|{{overline|''M''}}}} is automatically true if the dominant energy condition in its [[energy conditions#Mathematical statement|usual spacetime form]] is assumed.</ref>
 


असम्बद्ध रूप से समतल प्रारंभिक विवरण समुच्चय के सिरों


असम्बद्ध रूप से फ्लैट प्रारंभिक विवरण समुच्चय  के सिरों
साहित्य में असम्बद्ध रूप से समतल की कई अलग-अलग धारणाएं हैं जो पारस्परिक रूप से समकक्ष नहीं हैं। सामान्यतः इसे वेटेड होल्डर स्पेस या वेटेड सोबोलेव स्पेस के रूप में परिभाषित किया जाता है।


साहित्य में असम्बद्ध रूप से फ्लैट की कई अलग-अलग धारणाएं हैं जो पारस्परिक रूप से समकक्ष नहीं हैं। आमतौर पर इसे वेटेड होल्डर स्पेस या वेटेड सोबोलेव स्पेस के रूप में परिभाषित किया जाता है।
चूँकि, कुछ विशेषताएं हैं जो वस्तुतः सभी दृष्टिकोणों के लिए सामान्य हैं। प्रारंभिक विवरण समुच्चय पर विचार करता है {{math|(''M'', ''g'', ''k'')}} जिसकी सीमा हो भी सकती है और नहीं भी; होने देना {{mvar|n}} इसके आयाम को निरूपित करती है। एक के लिए आवश्यक है कि एक कॉम्पैक्ट सब समुच्चय हो {{mvar|K}} का {{mvar|M}} जैसे कि पूरक के प्रत्येक जुड़े हुए घटक {{math|''M'' − ''K''}} यूक्लिडियन अंतरिक्ष में एक बंद गेंद के पूरक के लिए भिन्न है {{math|ℝ<sup>''n''</sup>}}. ऐसे जुड़े हुए घटकों को सिरों {{mvar|M}} कहा जाता है .
 
हालाँकि, कुछ विशेषताएं हैं जो वस्तुतः सभी दृष्टिकोणों के लिए सामान्य हैं। प्रारंभिक विवरण समुच्चय पर विचार करता है {{math|(''M'', ''g'', ''k'')}} जिसकी सीमा हो भी सकती है और नहीं भी; होने देना {{mvar|n}} इसके आयाम को निरूपित करें। एक के लिए आवश्यक है कि एक कॉम्पैक्ट सबसमुच्चय हो {{mvar|K}} का {{mvar|M}} जैसे कि पूरक के प्रत्येक जुड़े हुए घटक {{math|''M'' − ''K''}} यूक्लिडियन अंतरिक्ष में एक बंद गेंद के पूरक के लिए भिन्न है {{math|ℝ<sup>''n''</sup>}}. ऐसे जुड़े हुए घटकों को सिरों कहा जाता है {{mvar|M}}.


== औपचारिक बयान ==
== औपचारिक बयान ==
Line 52: Line 47:
:<math>h_{ij}=(\Phi^\ast g)_{ij}-\delta_{ij}-\frac{m}{2|x|}\delta_{ij}</math>
:<math>h_{ij}=(\Phi^\ast g)_{ij}-\delta_{ij}-\frac{m}{2|x|}\delta_{ij}</math>
on {{math|ℝ<sup>3</sup> − ''B''<sub>1</sub>(0)}} ऐसा है कि किसी के लिए {{math|''i'', ''j'', ''p'', ''q''}}, कार्यों <math>|x|^2h_{ij}(x),</math> <math>|x|^3\partial_ph_{ij}(x),</math> and <math>|x|^4\partial_p\partial_qh_{ij}(x)</math> सभी बंधे हुए हैं।}}
on {{math|ℝ<sup>3</sup> − ''B''<sub>1</sub>(0)}} ऐसा है कि किसी के लिए {{math|''i'', ''j'', ''p'', ''q''}}, कार्यों <math>|x|^2h_{ij}(x),</math> <math>|x|^3\partial_ph_{ij}(x),</math> and <math>|x|^4\partial_p\partial_qh_{ij}(x)</math> सभी बंधे हुए हैं।}}
शॉन और यौ के प्रमेय का दावा है कि {{mvar|m}} अऋणात्मक होना चाहिए। यदि, इसके अलावा, कार्य करता है <math>|x|^5\partial_p\partial_q\partial_rh_{ij}(x),</math> <math>|x|^5\partial_p\partial_q\partial_r\partial_sh_{ij}(x),</math> और <math>|x|^5\partial_p\partial_q\partial_r\partial_s\partial_th_{ij}(x)</math> किसी के लिए बाध्य हैं <math>i,j,p,q,r,s,t,</math> तब {{mvar|m}} सकारात्मक होना चाहिए जब तक कि सीमा न हो {{mvar|M}} खाली है और {{math|(''M'', ''g'')}} सममितीय है {{math|ℝ<sup>3</sup>}} इसके मानक रीमैनियन मीट्रिक के साथ।
शॉन और यौ के प्रमेय का प्रमाणित है कि {{mvar|m}} अऋणात्मक होना चाहिए। यदि, इसके अतिरिक्त, कार्य करता है <math>|x|^5\partial_p\partial_q\partial_rh_{ij}(x),</math> <math>|x|^5\partial_p\partial_q\partial_r\partial_sh_{ij}(x),</math> और <math>|x|^5\partial_p\partial_q\partial_r\partial_s\partial_th_{ij}(x)</math> किसी के लिए बाध्य हैं <math>i,j,p,q,r,s,t,</math> तब {{mvar|m}} सकारात्मक होना चाहिए जब तक कि सीमा न हो {{mvar|M}} खाली है और {{math|(''M'', ''g'')}} सममितीय है {{math|ℝ<sup>3</sup>}} इसके मानक रीमैनियन मीट्रिक के साथ।


ध्यान दें कि शर्तें चालू हैं {{mvar|h}} यह दावा कर रहे हैं {{mvar|h}}, इसके कुछ डेरिवेटिव के साथ, जब छोटे होते हैं {{mvar|x}} बड़ी है। तब से {{mvar|h}} के बीच के दोष को माप रहा है {{mvar|g}} निर्देशांक में {{mvar|Φ}} और का मानक प्रतिनिधित्व {{math|''t'' {{=}} constant}} [[श्वार्जस्चिल्ड मीट्रिक]] का टुकड़ा, ये स्थितियाँ श्वार्ज़स्चिल्ड शब्द का परिमाणीकरण हैं। इसे विशुद्ध रूप से गणितीय अर्थ में विषम रूप से फ्लैट के एक मजबूत रूप के रूप में व्याख्या किया जा सकता है, जहां का गुणांक {{math|{{!}}''x''{{!}}<sup>−1</sup>}} मीट्रिक के विस्तार का हिस्सा यूक्लिडियन मीट्रिक का एक स्थिर गुणक घोषित किया जाता है, जैसा कि एक सामान्य सममित 2-टेंसर के विपरीत होता है।
ध्यान दें कि परंतु चालू हैं {{mvar|h}} यह प्रमाणित कर रहे हैं {{mvar|h}}, इसके कुछ व्युत्पन्न के साथ, जब छोटे होते हैं {{mvar|x}} बड़ी है। तब से {{mvar|h}} के बीच के दोष को माप रहा है {{mvar|g}} निर्देशांक में {{mvar|Φ}} और का मानक प्रतिनिधित्व {{math|''t'' {{=}} नियत}} [[श्वार्जस्चिल्ड मीट्रिक]] का टुकड़ा, ये स्थितियाँ श्वार्ज़स्चिल्ड शब्द का परिमाणीकरण हैं। इसे विशुद्ध रूप से गणितीय अर्थ में विषम रूप से समतल के एक शक्तिशाली रूप के रूप में व्याख्या किया जा सकता है, जहां का गुणांक {{math|{{!}}''x''{{!}}<sup>−1</sup>}} मीट्रिक के विस्तार का भाग यूक्लिडियन मीट्रिक का एक स्थिर गुणक घोषित किया जाता है, जैसा कि एक सामान्य सममित 2-टेंसर के विपरीत होता है।


यह भी ध्यान दें कि स्कोएन और याउ का प्रमेय, जैसा कि ऊपर कहा गया है, वास्तव में (उपस्थिति के बावजूद) बहु सिरों के मामले का मजबूत रूप है। अगर {{math|(''M'', ''g'')}} कई छोरों के साथ एक पूर्ण रीमैनियन मैनिफोल्ड है, तो उपरोक्त परिणाम किसी एक छोर पर लागू होता है, बशर्ते कि हर दूसरे छोर में एक सकारात्मक औसत वक्रता क्षेत्र हो। यह गारंटी है, उदाहरण के लिए, यदि प्रत्येक छोर उपरोक्त अर्थों में असमान रूप से सपाट है; एक सीमा के रूप में एक बड़ा समन्वय क्षेत्र चुन सकता है, और प्रत्येक छोर के संबंधित शेष को तब तक हटा सकता है जब तक कि एकल छोर के साथ रिमेंनियन मैनिफोल्ड-विथ-बाउंड्री न हो जाए।
यह भी ध्यान दें कि स्कोएन और याउ का प्रमेय, जैसा कि ऊपर कहा गया है, वास्तव में (उपस्थिति के अतिरिक्त) बहु सिरों के स्थितियों का शक्तिशाली रूप है। अगर {{math|(''M'', ''g'')}} कई छोरों के साथ एक पूर्ण रीमैनियन मैनिफोल्ड है, तो उपरोक्त परिणाम किसी एक छोर पर प्रयुक्त होता है, परंतु कि हर दूसरे छोर में एक सकारात्मक औसत वक्रता क्षेत्र हो। यह निश्चित है, उदाहरण के लिए, यदि प्रत्येक छोर उपरोक्त अर्थों में असमान रूप से सपाट है; एक सीमा के रूप में एक बड़ा समन्वय क्षेत्र चुन सकता है, और प्रत्येक छोर के संबंधित शेष को तब तक हटा सकता है जब तक कि एकल छोर के साथ रिमेंनियन मैनिफोल्ड-विथ-बाउंड्री न हो जाए।


=== स्कोएन और याउ (1981) ===
=== स्कोएन और याउ (1981) ===
होने देना {{math|(''M'', ''g'', ''k'')}} प्रमुख ऊर्जा स्थिति को संतुष्ट करने वाला प्रारंभिक विवरण समुच्चय हो। लगता है कि {{math|(''M'', ''g'')}} एक उन्मुख त्रि-आयामी चिकनी पूर्ण रीमैनियन मैनिफोल्ड (बिना सीमा के) है; मान लीजिए कि इसके बहुत से सिरे हैं, जिनमें से प्रत्येक निम्नलिखित अर्थों में असम्बद्ध रूप से सपाट है।
होने देना {{math|(''M'', ''g'', ''k'')}} प्रमुख ऊर्जा स्थिति को संतुष्ट करने वाला प्रारंभिक विवरण समुच्चय हो। लगता है कि {{math|(''M'', ''g'')}} एक उन्मुख त्रि-आयामी चिकनी पूर्ण रीमैनियन मैनिफोल्ड (बिना सीमा के) है; मान लीजिए कि इसके बहुत से सिरे हैं, जिनमें से प्रत्येक निम्नलिखित अर्थों में असम्बद्ध रूप से सपाट है।


लगता है कि <math>K\subset M</math> एक खुला प्रीकॉम्पैक्ट सबसमुच्चय है जैसे कि <math>M\smallsetminus K</math> बहुत से जुड़े हुए घटक हैं <math>M_1,\ldots,M_n,</math> और प्रत्येक के लिए <math>i=1,\ldots,n</math> एक भिन्नता है <math>\Phi_i:\mathbb{R}^3\smallsetminus B_1(0)\to M_i</math> ऐसा कि सममित 2-टेंसर <math>h_{ij}=(\Phi^\ast g)_{ij}-\delta_{ij}</math> निम्नलिखित शर्तों को संतुष्ट करता है:
लगता है कि <math>K\subset M</math> एक खुला प्रीकॉम्पैक्ट सबसमुच्चय है जैसे कि <math>M\smallsetminus K</math> बहुत से जुड़े हुए घटक हैं <math>M_1,\ldots,M_n,</math> और प्रत्येक के लिए <math>i=1,\ldots,n</math> एक भिन्नता है <math>\Phi_i:\mathbb{R}^3\smallsetminus B_1(0)\to M_i</math> ऐसा कि सममित 2-टेंसर <math>h_{ij}=(\Phi^\ast g)_{ij}-\delta_{ij}</math> निम्नलिखित कथनों को संतुष्ट करता है:
* <math>|x|h_{ij}(x),</math> <math>|x|^2\partial_ph_{ij}(x),</math> और <math>|x|^3\partial_p\partial_qh_{ij}(x)</math> सभी के लिए बाध्य हैं <math>i,j,p,q.</math>
* <math>|x|h_{ij}(x),</math> <math>|x|^2\partial_ph_{ij}(x),</math> और <math>|x|^3\partial_p\partial_qh_{ij}(x)</math> सभी के लिए बाध्य हैं <math>i,j,p,q.</math>
यह भी मान लीजिए
यह भी मान लीजिए
Line 69: Line 64:
निष्कर्ष यह है कि प्रत्येक की एडीएम ऊर्जा <math>M_1,\ldots,M_n,</math> के रूप में परिभाषित
निष्कर्ष यह है कि प्रत्येक की एडीएम ऊर्जा <math>M_1,\ldots,M_n,</math> के रूप में परिभाषित
: <math>\text{E}(M_i)=\frac{1}{16\pi}\lim_{r\to\infty}\int_{|x|=r}\sum_{p=1}^3\sum_{q=1}^3\big(\partial_q(\Phi_i^\ast g)_{pq}-\partial_p(\Phi_i^\ast g)_{qq}\big)\frac{x^p}{|x|}\,d\mathcal{H}^2(x),</math>
: <math>\text{E}(M_i)=\frac{1}{16\pi}\lim_{r\to\infty}\int_{|x|=r}\sum_{p=1}^3\sum_{q=1}^3\big(\partial_q(\Phi_i^\ast g)_{pq}-\partial_p(\Phi_i^\ast g)_{qq}\big)\frac{x^p}{|x|}\,d\mathcal{H}^2(x),</math>
अऋणात्मक है। इसके अलावा, मान लीजिए कि इसके अलावा
अऋणात्मक है। इसके अतिरिक्त, मान लीजिए कि इसके अतिरिक्त
* <math>|x|^4\partial_p\partial_q\partial_r h_{ij}(x)</math> और <math>|x|^4\partial_p\partial_r\partial_s\partial_t h_{ij}(x)</math> किसी के लिए बाध्य हैं <math>i,j,p,q,r,s,</math>
* <math>|x|^4\partial_p\partial_q\partial_r h_{ij}(x)</math> और <math>|x|^4\partial_p\partial_r\partial_s\partial_t h_{ij}(x)</math> किसी के लिए बाध्य हैं <math>i,j,p,q,r,s,</math>
धारणा है कि <math>\text{E}(M_i)=0</math> कुछ के लिए <math>i\in\{1,\ldots,n\}</math> इसका आशय है {{math|''n'' {{=}} 1}}, वह {{mvar|M}} के लिए भिन्न है {{math|ℝ<sup>3</sup>}}, और वह Minkowski स्पेस {{math|ℝ<sup>3,1</sup>}} प्रारंभिक विवरण समुच्चय का विकास है {{math|(''M'', ''g'', ''k'')}}.
धारणा है कि <math>\text{E}(M_i)=0</math> कुछ के लिए <math>i\in\{1,\ldots,n\}</math> इसका आशय है {{math|''n'' {{=}} 1}}, वह {{mvar|M}} के लिए भिन्न है {{math|ℝ<sup>3</sup>}}, और वह मिंकोवस्की स्पेस {{math|ℝ<sup>3,1</sup>}} प्रारंभिक विवरण समुच्चय {{math|(''M'', ''g'', ''k'')}} का विकास है .


=== जानना (1981) ===
=== जानना (1981) ===
देर <math>(M,g)</math> एक उन्मुख त्रि-आयामी चिकनी पूर्ण रीमैनियन मैनिफोल्ड (सीमा के बिना) बनें। होने देना <math>k</math> एक चिकनी सममित 2-टेंसर ऑन हो <math>M</math> ऐसा है कि
देर <math>(M,g)</math> एक उन्मुख त्रि-आयामी चिकनी पूर्ण रीमैनियन मैनिफोल्ड (सीमा के बिना) बनें होने देना <math>k</math> एक चिकनी सममित 2-टेंसर ऑन हो <math>M</math> ऐसा है कि
: <math>R^g-|k|_g^2+(\operatorname{tr}_gk)^2\geq 2\big|\operatorname{div}^gk-d(\operatorname{tr}_gk)\big|_g.</math>
: <math>R^g-|k|_g^2+(\operatorname{tr}_gk)^2\geq 2\big|\operatorname{div}^gk-d(\operatorname{tr}_gk)\big|_g.</math>
लगता है कि <math>K\subset M</math> एक खुला प्रीकॉम्पैक्ट सबसमुच्चय है जैसे कि <math>M\smallsetminus K</math> बहुत से जुड़े हुए घटक हैं <math>M_1,\ldots,M_n,</math> और प्रत्येक के लिए <math>\alpha=1,\ldots,n</math> एक भिन्नता है <math>\Phi_\alpha:\mathbb{R}^3\smallsetminus B_1(0)\to M_i</math> ऐसा कि सममित 2-टेंसर <math>h_{ij}=(\Phi^\ast_\alpha g)_{ij}-\delta_{ij}</math> निम्नलिखित शर्तों को संतुष्ट करता है:
लगता है कि <math>K\subset M</math> एक खुला प्रीकॉम्पैक्ट सबसमुच्चय है जैसे कि <math>M\smallsetminus K</math> बहुत से जुड़े हुए घटक हैं <math>M_1,\ldots,M_n,</math> और प्रत्येक के लिए <math>\alpha=1,\ldots,n</math> एक भिन्नता है <math>\Phi_\alpha:\mathbb{R}^3\smallsetminus B_1(0)\to M_i</math> ऐसा कि सममित 2-टेंसर <math>h_{ij}=(\Phi^\ast_\alpha g)_{ij}-\delta_{ij}</math> निम्नलिखित कथनों को संतुष्ट करता है:
* <math>|x|h_{ij}(x),</math> <math>|x|^2\partial_ph_{ij}(x),</math> और <math>|x|^3\partial_p\partial_qh_{ij}(x)</math> सभी के लिए बाध्य हैं <math>i,j,p,q.</math>
* <math>|x|h_{ij}(x),</math> <math>|x|^2\partial_ph_{ij}(x),</math> और <math>|x|^3\partial_p\partial_qh_{ij}(x)</math> सभी के लिए बाध्य हैं <math>i,j,p,q.</math>
* <math>|x|^2(\Phi_\alpha^\ast k)_{ij}(x)</math> और <math>|x|^3\partial_p(\Phi_\alpha^\ast k)_{ij}(x),</math> सभी के लिए बाध्य हैं <math>i,j,p.</math>
* <math>|x|^2(\Phi_\alpha^\ast k)_{ij}(x)</math> और <math>|x|^3\partial_p(\Phi_\alpha^\ast k)_{ij}(x),</math> सभी के लिए बाध्य हैं <math>i,j,p.</math>
Line 82: Line 77:
: <math>\text{E}(M_\alpha)=\frac{1}{16\pi}\lim_{r\to\infty}\int_{|x|=r}\sum_{p=1}^3\sum_{q=1}^3\big(\partial_q(\Phi_\alpha^\ast g)_{pq}-\partial_p(\Phi_\alpha^\ast g)_{qq}\big)\frac{x^p}{|x|}\,d\mathcal{H}^2(x),</math>
: <math>\text{E}(M_\alpha)=\frac{1}{16\pi}\lim_{r\to\infty}\int_{|x|=r}\sum_{p=1}^3\sum_{q=1}^3\big(\partial_q(\Phi_\alpha^\ast g)_{pq}-\partial_p(\Phi_\alpha^\ast g)_{qq}\big)\frac{x^p}{|x|}\,d\mathcal{H}^2(x),</math>
: <math>\text{P}(M_\alpha)_p=\frac{1}{8\pi}\lim_{r\to\infty}\int_{|x|=r}\sum_{q=1}^3\big((\Phi_\alpha^\ast k)_{pq}-\big((\Phi_\alpha^\ast k)_{11}+(\Phi_\alpha^\ast k)_{22}+(\Phi_\alpha^\ast k)_{33}\big)\delta_{pq}\big)\frac{x^q}{|x|}\,d\mathcal{H}^2(x).</math>
: <math>\text{P}(M_\alpha)_p=\frac{1}{8\pi}\lim_{r\to\infty}\int_{|x|=r}\sum_{q=1}^3\big((\Phi_\alpha^\ast k)_{pq}-\big((\Phi_\alpha^\ast k)_{11}+(\Phi_\alpha^\ast k)_{22}+(\Phi_\alpha^\ast k)_{33}\big)\delta_{pq}\big)\frac{x^q}{|x|}\,d\mathcal{H}^2(x).</math>
प्रत्येक के लिए <math>\alpha=1,\ldots,n,</math> इसे एक वेक्टर के रूप में मानें <math>(\text{P}(M_\alpha)_1,\text{P}(M_\alpha)_2,\text{P}(M_\alpha)_3,\text{E}(M_\alpha))</math> मिन्कोवस्की अंतरिक्ष में। विटन का निष्कर्ष यह है कि प्रत्येक के लिए <math>\alpha</math> यह आवश्यक रूप से भविष्य की ओर इशारा करने वाला गैर-स्पेसलाइक वेक्टर है। यदि यह वेक्टर किसी के लिए शून्य है <math>\alpha,</math> तब <math>n=1,</math> <math>M</math> के लिए डिफियोमॉर्फिक है <math>\mathbb{R}^3,</math> और प्रारंभिक विवरण समुच्चय का अधिकतम विश्व स्तर पर अतिशयोक्तिपूर्ण विकास <math>(M,g,k)</math> शून्य वक्रता है।
प्रत्येक के लिए <math>\alpha=1,\ldots,n,</math> इसे एक वेक्टर के रूप में मानें <math>(\text{P}(M_\alpha)_1,\text{P}(M_\alpha)_2,\text{P}(M_\alpha)_3,\text{E}(M_\alpha))</math> मिन्कोवस्की अंतरिक्ष में। विटन का निष्कर्ष यह है कि प्रत्येक के लिए <math>\alpha</math> यह आवश्यक रूप से भविष्य की ओर संकेत करने वाला गैर-स्पेसलाइक वेक्टर है। यदि यह वेक्टर किसी के लिए शून्य है <math>\alpha,</math> तब <math>n=1,</math> <math>M</math> के लिए डिफियोमॉर्फिक है <math>\mathbb{R}^3,</math> और प्रारंभिक विवरण समुच्चय का अधिकतम विश्व स्तर पर अतिशयोक्तिपूर्ण विकास <math>(M,g,k)</math> शून्य वक्रता है।


=== एक्सटेंशन और टिप्पणी ===
=== विस्तार और टिप्पणी ===
उपरोक्त कथनों के अनुसार, विट्टन का निष्कर्ष स्कोएन और याउ के निष्कर्ष से अधिक मजबूत है। हालाँकि, स्कोएन और यॉ द्वारा एक तीसरा पेपर <ref>{{cite journal |last1=Schoen |first1=Richard |last2=Yau |first2=Shing Tung |title=सामान्य सापेक्षता में अंतरिक्ष-समय की ऊर्जा और रैखिक गति|journal=Comm. Math. Phys. |date=1981 |volume=79 |issue=1 |pages=47–51|doi=10.1007/BF01208285 |s2cid=120151656 }}</ref> दिखाता है कि उनका 1981 का परिणाम विटन्स का तात्पर्य है, केवल अतिरिक्त धारणा को बनाए रखना <math>|x|^4 R^{\Phi_i^\ast g}</math> और <math>|x|^5 \partial_pR^{\Phi_i^\ast g}</math> किसी के लिए बाध्य हैं <math>p.</math> यह भी ध्यान दिया जाना चाहिए कि स्कोएन और याओ का 1981 का परिणाम उन पर निर्भर करता है
उपरोक्त कथनों के अनुसार, विट्टन का निष्कर्ष स्कोएन और याउ के निष्कर्ष से अधिक शक्तिशाली है। चूँकि, स्कोएन और यॉ द्वारा एक तीसरा पेपर <ref>{{cite journal |last1=Schoen |first1=Richard |last2=Yau |first2=Shing Tung |title=सामान्य सापेक्षता में अंतरिक्ष-समय की ऊर्जा और रैखिक गति|journal=Comm. Math. Phys. |date=1981 |volume=79 |issue=1 |pages=47–51|doi=10.1007/BF01208285 |s2cid=120151656 }}</ref> दिखाता है कि उनका 1981 का परिणाम विटन्स का तात्पर्य है, केवल अतिरिक्त धारणा को बनाए रखना <math>|x|^4 R^{\Phi_i^\ast g}</math> और <math>|x|^5 \partial_pR^{\Phi_i^\ast g}</math> किसी के लिए बाध्य हैं <math>p.</math> यह भी ध्यान दिया जाना चाहिए कि स्कोएन और याओ का 1981 का परिणाम उन पर निर्भर करता है |
1979 का परिणाम, जो विरोधाभास से सिद्ध होता है; इसलिए उनके 1981 के परिणाम का विस्तार भी विरोधाभासी है। इसके विपरीत, विटेन का प्रमाण तार्किक रूप से प्रत्यक्ष है, एडीएम ऊर्जा को सीधे एक गैर-नकारात्मक मात्रा के रूप में प्रदर्शित करता है। इसके अलावा, मामले में विटन का सबूत <math>\operatorname{tr}_gk=0</math> टोपोलॉजिकल स्थिति के तहत उच्च-आयामी मैनिफोल्ड्स के लिए बहुत प्रयास किए बिना बढ़ाया जा सकता है कि मैनिफोल्ड एक स्पिन संरचना को स्वीकार करता है। <ref>{{cite journal |last1=Bartnik |first1=Robert |title=एक असम्बद्ध रूप से फ्लैट मैनिफोल्ड का द्रव्यमान|journal=Comm. Pure Appl. Math. |date=1986 |volume=39 |issue=5 |pages=661–693|doi=10.1002/cpa.3160390505 }}</ref> स्कोएन और याउ के 1979 के परिणाम और प्रमाण को आठ से कम किसी भी आयाम के मामले में बढ़ाया जा सकता है। <ref>{{cite book |last1=Schoen |first1=Richard M. |chapter=Variational theory for the total scalar curvature functional for Riemannian metrics and related topics |title=Topics in calculus of variations (Montecatini Terme, 1987) |date=1989 |pages=120–154 |series=Lecture Notes in Mathematics |volume=1365 |publisher=Springer |location= Berlin}}</ref> हाल ही में, स्कोएन और याउ (1981) के तरीकों का उपयोग करते हुए विटन के परिणाम को उसी संदर्भ में विस्तारित किया गया है। <ref>{{cite journal |last1=Eichmair |first1=Michael |last2=Huang |first2=Lan-Hsuan |last3=Lee |first3=Dan A. |last4=Schoen |first4=Richard |title=अंतरिक्ष-समय सकारात्मक द्रव्यमान प्रमेय आठ से कम आयामों में|journal=[[Journal of the European Mathematical Society]] |date=2016 |volume=18 |issue=1 |pages=83–121|doi=10.4171/JEMS/584 |doi-access=free |s2cid=119633794 |arxiv=1110.2087 }}</ref> संक्षेप में: स्कोएन और याउ के तरीकों का पालन करते हुए, सकारात्मक ऊर्जा प्रमेय आठ से कम आयाम में सिद्ध किया गया है, जबकि विट्टन का अनुसरण करते हुए, यह किसी भी आयाम में सिद्ध हुआ है, लेकिन स्पिन मैनिफोल्ड्स की समुच्चयिंग पर प्रतिबंध के साथ।


अप्रैल 2017 तक, स्कोएन और याउ ने प्रीप्रिंट जारी किया है जो विशेष मामले में सामान्य उच्च-आयामी मामला साबित करता है <math>\operatorname{tr}_gk=0,</math> आयाम या टोपोलॉजी पर बिना किसी प्रतिबंध के। हालाँकि, यह अभी तक (मई 2020 तक) अकादमिक पत्रिका में नहीं आया है।
1979 का परिणाम, जो विरोधाभास से सिद्ध होता है; इसलिए उनके 1981 के परिणाम का विस्तार भी विरोधाभासी है। इसके विपरीत, विटेन का प्रमाण तार्किक रूप से प्रत्यक्ष है, एडीएम ऊर्जा को सीधे एक गैर-नकारात्मक मात्रा के रूप में प्रदर्शित करता है। इसके अतिरिक्त, स्थितियों में विटन का सबूत <math>\operatorname{tr}_gk=0</math> टोपोलॉजिकल स्थिति के तहत उच्च-आयामी मैनिफोल्ड्स के लिए बहुत प्रयास किए बिना बढ़ाया जा सकता है कि मैनिफोल्ड एक स्पिन संरचना को स्वीकार करता है। <ref>{{cite journal |last1=Bartnik |first1=Robert |title=एक असम्बद्ध रूप से फ्लैट मैनिफोल्ड का द्रव्यमान|journal=Comm. Pure Appl. Math. |date=1986 |volume=39 |issue=5 |pages=661–693|doi=10.1002/cpa.3160390505 }}</ref> स्कोएन और याउ के 1979 के परिणाम और प्रमाण को आठ से कम किसी भी आयाम के स्थितियों में बढ़ाया जा सकता है। <ref>{{cite book |last1=Schoen |first1=Richard M. |chapter=Variational theory for the total scalar curvature functional for Riemannian metrics and related topics |title=Topics in calculus of variations (Montecatini Terme, 1987) |date=1989 |pages=120–154 |series=Lecture Notes in Mathematics |volume=1365 |publisher=Springer |location= Berlin}}</ref> अभी ही में, स्कोएन और याउ (1981) के तरीकों का उपयोग करते हुए विटन के परिणाम को उसी संदर्भ में विस्तारित किया गया है। <ref>{{cite journal |last1=Eichmair |first1=Michael |last2=Huang |first2=Lan-Hsuan |last3=Lee |first3=Dan A. |last4=Schoen |first4=Richard |title=अंतरिक्ष-समय सकारात्मक द्रव्यमान प्रमेय आठ से कम आयामों में|journal=[[Journal of the European Mathematical Society]] |date=2016 |volume=18 |issue=1 |pages=83–121|doi=10.4171/JEMS/584 |doi-access=free |s2cid=119633794 |arxiv=1110.2087 }}</ref> संक्षेप में: स्कोएन और याउ के तरीकों का पालन करते हुए, सकारात्मक ऊर्जा प्रमेय आठ से कम आयाम में सिद्ध किया गया है, जबकि विट्टन का अनुसरण करते हुए, यह किसी भी आयाम में सिद्ध हुआ है, किन्तु स्पिन मैनिफोल्ड्स की समुच्चयिंग पर प्रतिबंध के साथ होता है।
 
अप्रैल 2017 तक, स्कोएन और याउ ने प्रीप्रिंट जारी किया है जो विशेष स्थितियों में सामान्य उच्च-आयामी स्थिति सिद्ध करता है <math>\operatorname{tr}_gk=0,</math> आयाम या टोपोलॉजी पर बिना किसी प्रतिबंध के। चूँकि, यह अभी तक (मई 2020 तक) अकादमिक पत्रिका में नहीं आया है।


== अनुप्रयोग ==
== अनुप्रयोग ==
Line 107: Line 103:
* Choquet-Bruhat, Yvonne. ''General relativity and the Einstein equations.'' Oxford Mathematical Monographs. Oxford University Press, Oxford, 2009. xxvi+785 pp. {{ISBN|978-0-19-923072-3}}
* Choquet-Bruhat, Yvonne. ''General relativity and the Einstein equations.'' Oxford Mathematical Monographs. Oxford University Press, Oxford, 2009. xxvi+785 pp. {{ISBN|978-0-19-923072-3}}
* Wald, Robert M. ''General relativity.'' University of Chicago Press, Chicago, IL, 1984. xiii+491 pp. {{ISBN|0-226-87032-4}}
* Wald, Robert M. ''General relativity.'' University of Chicago Press, Chicago, IL, 1984. xiii+491 pp. {{ISBN|0-226-87032-4}}
[[Category: सामान्य सापेक्षता में गणितीय तरीके]] [[Category: सामान्य सापेक्षता में प्रमेय]]


[[Category: Machine Translated Page]]
[[Category:Created On 29/03/2023]]
[[Category:Created On 29/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:सामान्य सापेक्षता में गणितीय तरीके]]
[[Category:सामान्य सापेक्षता में प्रमेय]]

Latest revision as of 21:36, 3 May 2023

सकारात्मक ऊर्जा प्रमेय (सकारात्मक द्रव्यमान प्रमेय के रूप में भी जाना जाता है) सामान्य सापेक्षता और अंतर ज्यामिति में आधारभूत परिणामों के संग्रह को संदर्भित करता है। इसका मानक रूप, सामान्यतः बोल रहा है, यह प्रमाणित करता है कि एक पृथक प्रणाली की गुरुत्वाकर्षण ऊर्जा गैर-नकारात्मक है, और केवल शून्य हो सकती है जब प्रणाली में कोई गुरुत्वाकर्षण वस्तु न हो। चूँकि इन कथनों को प्रायः मुख्य रूप से प्रकृति में भौतिक होने के बारे में सोचा जाता है, उन्हें प्रमेय के रूप में औपचारिक रूप दिया जा सकता है जो अंतर ज्यामिति, आंशिक अंतर समीकरण और ज्यामितीय माप सिद्धांत की विधिों का उपयोग करके सिद्ध किया जा सकता है।

1979 और 1981 में रिचर्ड स्कोन और शिंग-तुंग यौ सकारात्मक द्रव्यमान प्रमेय का प्रमाण देने वाले पहले व्यक्ति थे। 1982 में एडवर्ड विटन ने वैकल्पिक प्रमाण की रूपरेखा दी, जिसे बाद में गणितज्ञों ने सख्ती से भर दिया। विटेन और यौ को इस विषय पर उनके काम के लिए आंशिक रूप से गणित में क्षेत्र मेडल से सम्मानित किया गया है।

स्कोएन-यॉ / विटेन सकारात्मक ऊर्जा प्रमेय का अचूक सूत्रीकरण निम्नलिखित बताता है:

असम्बद्ध रूप से सपाट प्रारंभिक डेटा सेट को देखते हुए, प्रत्येक अनंत क्षेत्र की ऊर्जा-गति को मिन्कोव्स्की अंतरिक्ष के एक तत्व के रूप में परिभाषित किया जा सकता है। बशर्ते कि प्रारंभिक डेटा सेट भौगोलिक रूप से पूर्ण हो और प्रमुख ऊर्जा स्थिति को संतुष्ट करता हो, ऐसा प्रत्येक तत्व मूल के कारण भविष्य में होना चाहिए। यदि किसी अनंत क्षेत्र में अशक्त ऊर्जा-संवेग है, तो प्रारंभिक डेटा सेट इस अर्थ में तुच्छ है कि इसे मिन्कोस्की अंतरिक्ष में ज्यामितीय रूप से एम्बेड किया जा सकता है।

इन शब्दों के अर्थ पर नीचे चर्चा की गई है। ऊर्जा-संवेग की विभिन्न धारणाओं और प्रारंभिक विवरण समुच्चय के विभिन्न वर्गों के लिए वैकल्पिक और गैर-समतुल्य सूत्रीकरण हैं। इन सभी योगों को कड़ाई से सिद्ध नहीं किया गया है, और यह वर्तमान में खुली समस्या है कि क्या उपरोक्त सूत्रीकरण इच्छानुसारा आयाम के प्रारंभिक विवरण समुच्चयों के लिए है।

ऐतिहासिक सिंहावलोकन

एडीएम द्रव्यमान के लिए प्रमेय का मूल प्रमाण रिचर्ड स्कोएन और शिंग-तुंग याउ द्वारा 1979 में परिवर्तनशील विधियों और न्यूनतम सतहों का उपयोग करके प्रदान किया गया था। अतिगुरुत्वाकर्षण के संदर्भ में सकारात्मक ऊर्जा प्रमेयों से प्रेरित होकर, एडवर्ड विटन ने 1981 में स्पिनरों के उपयोग के आधार पर एक और प्रमाण दिया। बोंडी द्रव्यमान के लिए प्रमेय का विस्तार मैल्कम लुडविगसेन और जेम्स विकर्स, गैरी होरोविट्ज़ और मैल्कम पेरी (भौतिक विज्ञानी), और स्कोएन और याउ द्वारा दिया गया था।

गैरी गिबन्स, स्टीफन हॉकिंग, होरोविट्ज़ और पेरी ने प्रमेय के विस्तार को एसिम्प्टोटिक रूप से एंटी-डी सिटर अंतरिक्ष समय और आइंस्टीन क्षेत्र समीकरणों आइंस्टीन-मैक्सवेल समीकरणों के रूप में बढाया है | आइंस्टीन-मैक्सवेल सिद्धांत के रूप में सिद्ध किया है। असम्बद्ध रूप से एंटी-डी सिटर अंतरिक्ष समय का द्रव्यमान गैर-ऋणात्मक है और एंटी-डी सिटर अंतरिक्ष समय के लिए केवल शून्य के बराबर है। आइंस्टीन-मैक्सवेल सिद्धांत में, विद्युत आवेश के साथ अंतरिक्ष-समय के लिए और चुंबकीय प्रभार अंतरिक्ष-समय का द्रव्यमान संतुष्ट करता है (गाऊसी इकाइयों में)

सुधांशु दत्ता मजुमदार-अकिलिस पापापेट्रो चरम ब्लैक होल समाधान के लिए समानता के साथ।

प्रारंभिक विवरण समुच्चय

प्रारंभिक विवरण समुच्चय में रीमैनियन कई गुना होता है (M, g) और एक सममित 2-टेंसर क्षेत्र k पर M. एक का कहना है कि एक प्रारंभिक विवरण समुच्चय (M, g, k):

  • समय-सममित है यदि k शून्य है
  • अधिकतम है अगर trgk = 0 [1]
  • यदि प्रमुख ऊर्जा स्थिति को संतुष्ट करता है
जहाँ Rg की अदिश वक्रता को दर्शाता है g.[2]

ध्यान दें कि एक समय-सममित प्रारंभिक विवरण समुच्चय (M, g, 0) प्रमुख ऊर्जा की स्थिति को संतुष्ट करता है अगर और केवल अगर की अदिश वक्रता g ऋणात्मक है। एक कहता है कि एक लोरेंत्ज़ियन कई गुना (M, g) प्रारंभिक विवरण समुच्चय का विकास है (M, g, k) यदि M में M (अनिवार्य रूप से स्पेसलाइक) हाइपरसफेस एम्बेडिंग है, एक साथ सतत इकाई सामान्य वेक्टर क्षेत्र के साथ, जैसे कि प्रेरित मीट्रिक है g और दी गई इकाई सामान्य के संबंध में दूसरा मौलिक रूप k है |

यह परिभाषा सामान्य सापेक्षता के गणित से प्रेरित है। एक लोरेंत्ज़ियन कई गुना दिया गया (M, g) आयाम का n + 1 और एक स्पेसलाइक विसर्जन f कनेक्टेड से n-आयामी कई गुना M में M जिसमें तुच्छ सामान्य बंडल है, कोई प्रेरित रिमेंनियन मीट्रिक पर विचार कर सकता है g = f *g साथ ही दूसरा मौलिक रूप k का f सतत इकाई सामान्य सदिश क्षेत्र के दो विकल्पों में से किसी एक के संबंध में f. ट्रिपल (M, g, k) एक प्रारंभिक विवरण समुच्चय है। गॉस-कोडैज़ी समीकरण के अनुसार, किसी के पास है |

जहाँ G आइंस्टीन टेंसर को दर्शाता है Ricg - 1/2Rgg का g और ν निरंतर इकाई सामान्य वेक्टर क्षेत्र k को दर्शाता है f परिभाषित करते थे . तो ऊपर दी गई प्रमुख ऊर्जा की स्थिति, इस लोरेंत्ज़ियन संदर्भ में, इस दावे के समान है G(ν, ⋅), जब साथ में सदिश क्षेत्र के रूप में देखा जाता है f, समयबद्ध या अशक्त है और ν के सामान उसी दिशा में उन्मुख होता है |[3]

असम्बद्ध रूप से समतल प्रारंभिक विवरण समुच्चय के सिरों

साहित्य में असम्बद्ध रूप से समतल की कई अलग-अलग धारणाएं हैं जो पारस्परिक रूप से समकक्ष नहीं हैं। सामान्यतः इसे वेटेड होल्डर स्पेस या वेटेड सोबोलेव स्पेस के रूप में परिभाषित किया जाता है।

चूँकि, कुछ विशेषताएं हैं जो वस्तुतः सभी दृष्टिकोणों के लिए सामान्य हैं। प्रारंभिक विवरण समुच्चय पर विचार करता है (M, g, k) जिसकी सीमा हो भी सकती है और नहीं भी; होने देना n इसके आयाम को निरूपित करती है। एक के लिए आवश्यक है कि एक कॉम्पैक्ट सब समुच्चय हो K का M जैसे कि पूरक के प्रत्येक जुड़े हुए घटक MK यूक्लिडियन अंतरिक्ष में एक बंद गेंद के पूरक के लिए भिन्न है n. ऐसे जुड़े हुए घटकों को सिरों M कहा जाता है .

औपचारिक बयान

स्कोएन और याउ (1979)

होने देना (M, g, 0) प्रमुख ऊर्जा स्थिति को संतुष्ट करने वाला एक समय-सममित प्रारंभिक विवरण समुच्चय हो। लगता है कि (M, g) एक उन्मुख त्रि-आयामी चिकनी रीमैनियन कई गुना सीमा के साथ है, और प्रत्येक सीमा घटक में सकारात्मक औसत वक्रता है। मान लीजिए कि इसका एक छोर है, और यह निम्नलिखित अर्थों में स्पर्शोन्मुख रूप से श्वार्ज़स्चिल्ड है:

मान लीजिए कि K का एक खुला प्रीकॉम्पैक्ट सबसेट है M ऐसा है कि एक भिन्नता है Φ : ℝ3B1(0) → MK, और मान लीजिए कि एक संख्या है m ऐसा कि सममित 2-टेंसर

on 3B1(0) ऐसा है कि किसी के लिए i, j, p, q, कार्यों and सभी बंधे हुए हैं।

शॉन और यौ के प्रमेय का प्रमाणित है कि m अऋणात्मक होना चाहिए। यदि, इसके अतिरिक्त, कार्य करता है और किसी के लिए बाध्य हैं तब m सकारात्मक होना चाहिए जब तक कि सीमा न हो M खाली है और (M, g) सममितीय है 3 इसके मानक रीमैनियन मीट्रिक के साथ।

ध्यान दें कि परंतु चालू हैं h यह प्रमाणित कर रहे हैं h, इसके कुछ व्युत्पन्न के साथ, जब छोटे होते हैं x बड़ी है। तब से h के बीच के दोष को माप रहा है g निर्देशांक में Φ और का मानक प्रतिनिधित्व t = नियत श्वार्जस्चिल्ड मीट्रिक का टुकड़ा, ये स्थितियाँ श्वार्ज़स्चिल्ड शब्द का परिमाणीकरण हैं। इसे विशुद्ध रूप से गणितीय अर्थ में विषम रूप से समतल के एक शक्तिशाली रूप के रूप में व्याख्या किया जा सकता है, जहां का गुणांक |x|−1 मीट्रिक के विस्तार का भाग यूक्लिडियन मीट्रिक का एक स्थिर गुणक घोषित किया जाता है, जैसा कि एक सामान्य सममित 2-टेंसर के विपरीत होता है।

यह भी ध्यान दें कि स्कोएन और याउ का प्रमेय, जैसा कि ऊपर कहा गया है, वास्तव में (उपस्थिति के अतिरिक्त) बहु सिरों के स्थितियों का शक्तिशाली रूप है। अगर (M, g) कई छोरों के साथ एक पूर्ण रीमैनियन मैनिफोल्ड है, तो उपरोक्त परिणाम किसी एक छोर पर प्रयुक्त होता है, परंतु कि हर दूसरे छोर में एक सकारात्मक औसत वक्रता क्षेत्र हो। यह निश्चित है, उदाहरण के लिए, यदि प्रत्येक छोर उपरोक्त अर्थों में असमान रूप से सपाट है; एक सीमा के रूप में एक बड़ा समन्वय क्षेत्र चुन सकता है, और प्रत्येक छोर के संबंधित शेष को तब तक हटा सकता है जब तक कि एकल छोर के साथ रिमेंनियन मैनिफोल्ड-विथ-बाउंड्री न हो जाए।

स्कोएन और याउ (1981)

होने देना (M, g, k) प्रमुख ऊर्जा स्थिति को संतुष्ट करने वाला प्रारंभिक विवरण समुच्चय हो। लगता है कि (M, g) एक उन्मुख त्रि-आयामी चिकनी पूर्ण रीमैनियन मैनिफोल्ड (बिना सीमा के) है; मान लीजिए कि इसके बहुत से सिरे हैं, जिनमें से प्रत्येक निम्नलिखित अर्थों में असम्बद्ध रूप से सपाट है।

लगता है कि एक खुला प्रीकॉम्पैक्ट सबसमुच्चय है जैसे कि बहुत से जुड़े हुए घटक हैं और प्रत्येक के लिए एक भिन्नता है ऐसा कि सममित 2-टेंसर निम्नलिखित कथनों को संतुष्ट करता है:

  • और सभी के लिए बाध्य हैं

यह भी मान लीजिए

  • और किसी के लिए बाध्य हैं
  • और किसी के लिए
  • घिरा है।

निष्कर्ष यह है कि प्रत्येक की एडीएम ऊर्जा के रूप में परिभाषित

अऋणात्मक है। इसके अतिरिक्त, मान लीजिए कि इसके अतिरिक्त

  • और किसी के लिए बाध्य हैं

धारणा है कि कुछ के लिए इसका आशय है n = 1, वह M के लिए भिन्न है 3, और वह मिंकोवस्की स्पेस 3,1 प्रारंभिक विवरण समुच्चय (M, g, k) का विकास है .

जानना (1981)

देर एक उन्मुख त्रि-आयामी चिकनी पूर्ण रीमैनियन मैनिफोल्ड (सीमा के बिना) बनें होने देना एक चिकनी सममित 2-टेंसर ऑन हो ऐसा है कि

लगता है कि एक खुला प्रीकॉम्पैक्ट सबसमुच्चय है जैसे कि बहुत से जुड़े हुए घटक हैं और प्रत्येक के लिए एक भिन्नता है ऐसा कि सममित 2-टेंसर निम्नलिखित कथनों को संतुष्ट करता है:

  • और सभी के लिए बाध्य हैं
  • और सभी के लिए बाध्य हैं

प्रत्येक के लिए एडीएम ऊर्जा और रैखिक गति को परिभाषित करें

प्रत्येक के लिए इसे एक वेक्टर के रूप में मानें मिन्कोवस्की अंतरिक्ष में। विटन का निष्कर्ष यह है कि प्रत्येक के लिए यह आवश्यक रूप से भविष्य की ओर संकेत करने वाला गैर-स्पेसलाइक वेक्टर है। यदि यह वेक्टर किसी के लिए शून्य है तब के लिए डिफियोमॉर्फिक है और प्रारंभिक विवरण समुच्चय का अधिकतम विश्व स्तर पर अतिशयोक्तिपूर्ण विकास शून्य वक्रता है।

विस्तार और टिप्पणी

उपरोक्त कथनों के अनुसार, विट्टन का निष्कर्ष स्कोएन और याउ के निष्कर्ष से अधिक शक्तिशाली है। चूँकि, स्कोएन और यॉ द्वारा एक तीसरा पेपर [4] दिखाता है कि उनका 1981 का परिणाम विटन्स का तात्पर्य है, केवल अतिरिक्त धारणा को बनाए रखना और किसी के लिए बाध्य हैं यह भी ध्यान दिया जाना चाहिए कि स्कोएन और याओ का 1981 का परिणाम उन पर निर्भर करता है |

1979 का परिणाम, जो विरोधाभास से सिद्ध होता है; इसलिए उनके 1981 के परिणाम का विस्तार भी विरोधाभासी है। इसके विपरीत, विटेन का प्रमाण तार्किक रूप से प्रत्यक्ष है, एडीएम ऊर्जा को सीधे एक गैर-नकारात्मक मात्रा के रूप में प्रदर्शित करता है। इसके अतिरिक्त, स्थितियों में विटन का सबूत टोपोलॉजिकल स्थिति के तहत उच्च-आयामी मैनिफोल्ड्स के लिए बहुत प्रयास किए बिना बढ़ाया जा सकता है कि मैनिफोल्ड एक स्पिन संरचना को स्वीकार करता है। [5] स्कोएन और याउ के 1979 के परिणाम और प्रमाण को आठ से कम किसी भी आयाम के स्थितियों में बढ़ाया जा सकता है। [6] अभी ही में, स्कोएन और याउ (1981) के तरीकों का उपयोग करते हुए विटन के परिणाम को उसी संदर्भ में विस्तारित किया गया है। [7] संक्षेप में: स्कोएन और याउ के तरीकों का पालन करते हुए, सकारात्मक ऊर्जा प्रमेय आठ से कम आयाम में सिद्ध किया गया है, जबकि विट्टन का अनुसरण करते हुए, यह किसी भी आयाम में सिद्ध हुआ है, किन्तु स्पिन मैनिफोल्ड्स की समुच्चयिंग पर प्रतिबंध के साथ होता है।

अप्रैल 2017 तक, स्कोएन और याउ ने प्रीप्रिंट जारी किया है जो विशेष स्थितियों में सामान्य उच्च-आयामी स्थिति सिद्ध करता है आयाम या टोपोलॉजी पर बिना किसी प्रतिबंध के। चूँकि, यह अभी तक (मई 2020 तक) अकादमिक पत्रिका में नहीं आया है।

अनुप्रयोग

  • 1984 में स्कोएन ने अपने काम में सकारात्मक द्रव्यमान प्रमेय का इस्तेमाल किया जिसने यामाबे समस्या का समाधान पूरा किया।
  • ह्यूबर्ट ब्रे के रिमेंनियन पेनरोज़ असमानता के प्रमाण में सकारात्मक द्रव्यमान प्रमेय का उपयोग किया गया था।

संदर्भ

  1. In local coordinates, this says gijkij = 0
  2. In local coordinates, this says R - gikgjlkijkkl + (gijkij)2 ≥ 2(gpq(gijkpi;j - (gijkij);p)(gklkqk;l - (gklkkl);q))1/2 or, in the usual "raised and lowered index" notation, this says R - kijkij + (kii)2 ≥ 2((kpi;i - (kii);p)(kpj;j - (kjj);p))1/2
  3. It is typical to assume M to be time-oriented and for ν to be then specifically defined as the future-pointing unit normal vector field along f; in this case the dominant energy condition as given above for an initial data set arising from a spacelike immersion into M is automatically true if the dominant energy condition in its usual spacetime form is assumed.
  4. Schoen, Richard; Yau, Shing Tung (1981). "सामान्य सापेक्षता में अंतरिक्ष-समय की ऊर्जा और रैखिक गति". Comm. Math. Phys. 79 (1): 47–51. doi:10.1007/BF01208285. S2CID 120151656.
  5. Bartnik, Robert (1986). "एक असम्बद्ध रूप से फ्लैट मैनिफोल्ड का द्रव्यमान". Comm. Pure Appl. Math. 39 (5): 661–693. doi:10.1002/cpa.3160390505.
  6. Schoen, Richard M. (1989). "Variational theory for the total scalar curvature functional for Riemannian metrics and related topics". Topics in calculus of variations (Montecatini Terme, 1987). Lecture Notes in Mathematics. Vol. 1365. Berlin: Springer. pp. 120–154.
  7. Eichmair, Michael; Huang, Lan-Hsuan; Lee, Dan A.; Schoen, Richard (2016). "अंतरिक्ष-समय सकारात्मक द्रव्यमान प्रमेय आठ से कम आयामों में". Journal of the European Mathematical Society. 18 (1): 83–121. arXiv:1110.2087. doi:10.4171/JEMS/584. S2CID 119633794.

Textbooks

  • Choquet-Bruhat, Yvonne. General relativity and the Einstein equations. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2009. xxvi+785 pp. ISBN 978-0-19-923072-3
  • Wald, Robert M. General relativity. University of Chicago Press, Chicago, IL, 1984. xiii+491 pp. ISBN 0-226-87032-4