अवकल फलन: Difference between revisions
No edit summary |
No edit summary |
||
(9 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Notion in calculus}} | {{Short description|Notion in calculus}}[[ गणना |गणना]] में, '''अवकल फलन (गणित''') स्वतंत्र वेरिएबल्स में परिवर्तन के संबंध में फलन <math>y=f(x)</math> में परिवर्तन के मुख्य भाग का प्रतिनिधित्व करता है। अवकल <math>dy</math> द्वारा परिभाषित किया गया है | ||
[[ गणना ]] में, | |||
:<math>dy = f'(x)\,dx,</math> | :<math>dy = f'(x)\,dx,</math> | ||
जहाँ <math>f'(x)</math> <math>x</math> के संबंध में f का व्युत्पन्न है, और <math>dx</math> एक अतिरिक्त वास्तविक [[चर (गणित)|वेरिएबल्स (गणित)]] (जिससे <math>dy</math> <math>x</math> और <math>dx</math> का एक फलन हो) है। अंकन ऐसा है कि समीकरण | |||
:<math>dy = \frac{dy}{dx}\, dx</math> | :<math>dy = \frac{dy}{dx}\, dx</math> | ||
धारण करता है, जहां [[लीबनिज संकेतन]] | धारण करता है, जहां [[लीबनिज संकेतन]] <math>dy/dx</math> में व्युत्पन्न का प्रतिनिधित्व किया जाता है, और यह अवकल के भागफल के रूप में व्युत्पन्न के संबंध में संगत है। लिखता भी है | ||
:<math>df(x) = f'(x)\,dx.</math> | :<math>df(x) = f'(x)\,dx.</math> | ||
वेरिएबल्स का सटीक अर्थ <math>dy</math> और <math>dx</math> आवेदन के संदर्भ और गणितीय कठोरता के आवश्यक स्तर पर निर्भर करता है। इन वेरिएबल्स का डोमेन विशेष ज्यामितीय महत्व पर ले सकता है यदि अवकल को विशेष अवकल रूप, या विश्लेषणात्मक महत्व के रूप में माना जाता है, यदि अवकल को किसी फलन की वृद्धि के लिए [[रैखिक सन्निकटन]] के रूप में माना जाता है। परंपरागत रूप से, वेरिएबल्स <math>dx</math> और <math>dy</math> बहुत छोटा (अनंत) माना जाता है, और इस व्याख्या को गैर-मानक विश्लेषण में कठोर बनाया जाता है। | |||
== इतिहास और उपयोग == | == इतिहास और उपयोग == | ||
अवकल को पहली बार [[आइजैक न्यूटन]] द्वारा सहज या अनुमानी परिभाषा के माध्यम से प्रस्तुत किया गया था और [[लाइबनिट्स|गॉटफ्रीड लाइबनिट्स]] द्वारा आगे बढ़ाया गया था,जिन्होंने फ़ंक्शन के तर्क <math>x</math> में एक अनंत रूप से छोटे परिवर्तन <math>dx</math> के अनुरूप फ़ंक्शन के मान <math>y</math> में एक अनंत रूप से छोटे परिवर्तन (या अनंत) के रूप में अंतर <math>dy</math> के बारे में सोचा था। उस कारण से, <math>x</math> के संबंध में <math>x</math> के परिवर्तन की तात्कालिक दर, जो फ़ंक्शन के व्युत्पन्न का मान है, <math> \frac{dy}{dx} </math> को अंश द्वारा दर्शाया गया है | |||
डेरिवेटिव के लिए लाइबनिज संकेतन कहा जाता है। भागफल <math>dy/dx</math> अनंत रूप से छोटा नहीं है; किन्तु यह [[वास्तविक संख्या]] है। | |||
डेरिवेटिव के लिए लाइबनिज संकेतन कहा जाता है। भागफल <math>dy/dx</math> | |||
उदाहरण के लिए, बिशप बर्कले द्वारा प्रसिद्ध पैम्फलेट [[विश्लेषक]] द्वारा इस रूप में इनफिनिटिमल्स के उपयोग की व्यापक रूप से आलोचना की गई थी। [[ऑगस्टिन-लुई कॉची]] ( | उदाहरण के लिए, बिशप बर्कले द्वारा प्रसिद्ध पैम्फलेट [[विश्लेषक]] द्वारा इस रूप में इनफिनिटिमल्स के उपयोग की व्यापक रूप से आलोचना की गई थी। [[ऑगस्टिन-लुई कॉची]] (1823) ने लीबनिज के इनफिनिटिमल्स के परमाणुवाद की अपील के बिना अंतर को परिभाषित किया।<ref>For a detailed historical account of the differential, see {{harvnb|Boyer|1959}}, especially page 275 for Cauchy's contribution on the subject. An abbreviated account appears in {{harvnb|Kline|1972|loc=Chapter 40}}.</ref><ref>Cauchy explicitly denied the possibility of actual infinitesimal and infinite quantities {{harv|Boyer|1959|pp=273–275}}, and took the radically different point of view that "a variable quantity becomes infinitely small when its numerical value decreases indefinitely in such a way as to converge to zero" ({{harvnb|Cauchy|1823|p=12}}; translation from {{harvnb|Boyer|1959|p=273}}).</ref> इसके अतिरिक्त, कॉची, जीन ले रोंड डी'अलेम्बर्ट का अनुसरण करते हुए, लीबनिज़ और उनके उत्तराधिकारियों के तार्किक क्रम को उल्टा कर दिया: व्युत्पन्न ही मौलिक वस्तु बन गया, जिसे अवकल भागफलों की [[सीमा (गणित)]] के रूप में परिभाषित किया गया था, और अवकल तब थे इसके संदर्भ में परिभाषित किया गया है। अर्थात्, अवकल <math>dy</math> को परिभाषित करने के लिए कोई भी स्वतंत्र था अभिव्यक्ति द्वारा | ||
:<math>dy = f'(x)\,dx</math> | :<math>dy = f'(x)\,dx</math> | ||
जिसमें <math>dy</math> और <math>dx</math> परिमित वास्तविक मान लेने वाले बस नए | जिसमें <math>dy</math> और <math>dx</math> परिमित वास्तविक मान लेने वाले बस नए वेरिएबल्स हैं,<ref>{{harvnb|Boyer|1959|p=275}}</ref> नियत अतिसूक्ष्म नहीं जैसा कि लाइबनिज के लिए था।<ref>{{harvnb|Boyer|1959|p=12}}: "The differentials as thus defined are only new ''variables'', and not fixed infinitesimals..."</ref> | ||
के अनुसार {{harvtxt|Boyer|1959|p=12}}, कॉची का दृष्टिकोण लीबनिज के अतिसूक्ष्म दृष्टिकोण पर महत्वपूर्ण तार्किक सुधार था, क्योंकि, अत्यल्प मात्राओं की आध्यात्मिक धारणा को | के अनुसार {{harvtxt|Boyer|1959|p=12}}, कॉची का दृष्टिकोण लीबनिज के अतिसूक्ष्म दृष्टिकोण पर महत्वपूर्ण तार्किक सुधार था, क्योंकि, अत्यल्प मात्राओं की आध्यात्मिक धारणा को प्रायुक्त करने के अतिरिक्त, मात्राएँ <math>dy</math> और <math>dx</math> अब किसी भी अन्य वास्तविक मात्राएँ सार्थक विधि के समान ही हेरफेर किया जा सकता है। अवकलों के प्रति कॉची का समग्र अवधारणात्मक दृष्टिकोण आधुनिक विश्लेषणात्मक उपचारों में मानक बना हुआ है,<ref>{{harvnb|Courant|1937a|loc=II, §9}}: "Here we remark merely in passing that it is possible to use this approximate representation of the increment <math>\Delta y</math> by the linear expression <math>hf(x)</math> to construct a logically satisfactory definition of a "differential", as was done by Cauchy in particular."</ref> चूंकि कठोरता पर अंतिम शब्द, सीमा की पूरी तरह से आधुनिक धारणा, अंततः [[कार्ल वीयरस्ट्रास]] के कारण थी।<ref>{{harvnb|Boyer|1959|p=284}}</ref> | ||
भौतिक उपचारों में, जैसे कि [[ऊष्मप्रवैगिकी]] के सिद्धांत पर | भौतिक उपचारों में, जैसे कि [[ऊष्मप्रवैगिकी]] के सिद्धांत पर प्रायुक्त होने वाले, अनंत दृश्य अभी भी प्रबल है। {{harvtxt|कुरेंट |जॉन|1999|p=184}} इनफिनिटिमल डिफरेंशियल के भौतिक उपयोग को उनकी गणितीय असंभवता के साथ इस प्रकार मिलाते हैं। अवकल परिमित गैर-शून्य मानों का प्रतिनिधित्व करते हैं जो उस विशेष उद्देश्य के लिए आवश्यक शुद्धता की डिग्री से छोटे होते हैं जिसके लिए उनका लक्ष्य होता है। इस प्रकार भौतिक अतिसूक्ष्मों को त्रुटिहीन अर्थ रखने के लिए संबंधित गणितीय अतिसूक्ष्म से अपील करने की आवश्यकता नहीं है। | ||
[[गणितीय विश्लेषण]] और विभेदक ज्यामिति में बीसवीं शताब्दी के विकास के बाद, यह स्पष्ट हो गया कि | [[गणितीय विश्लेषण]] और विभेदक ज्यामिति में बीसवीं शताब्दी के विकास के बाद, यह स्पष्ट हो गया कि फलन के अवकल की धारणा को विभिन्न तरीकों से विस्तारित किया जा सकता है। [[वास्तविक विश्लेषण]] में, किसी फलन की वृद्धि के प्रमुख भाग के रूप में सीधे अवकल से निपटना अधिक वांछनीय है। यह सीधे इस धारणा की ओर जाता है कि बिंदु पर फलन का अवकल वेतन वृद्धि <math>\Delta x</math> का रैखिक फलन है। यह दृष्टिकोण विभिन्न प्रकार के अधिक परिष्कृत स्थानों के लिए अवकल (रेखीय मानचित्र के रूप में) को विकसित करने की अनुमति देता है, अंततः इस तरह की धारणाओं को जन्म देता है जैसे कि फ्रेचेट या गेटॉक्स व्युत्पन्न। इसी तरह, विभेदक ज्यामिति में, बिंदु पर फलन का अवकल स्पर्शरेखा सदिश (अनंत रूप से छोटा विस्थापन) का रैखिक फलन है, जो इसे प्रकार के रूप के रूप में प्रदर्शित करता है: फलन का [[बाहरी व्युत्पन्न]]। गैर-मानक कैलकुलस में, अवकलों को इनफिनिटिमल्स के रूप में माना जाता है, जिसे स्वयं कठोर (देखें अवकल (इनफिनिटिमल)) आधार पर रखा जा सकता है। | ||
== परिभाषा == | == परिभाषा == | ||
[[File:Sentido geometrico del diferencial de una funcion.png|thumb|upright=1.25| | [[File:Sentido geometrico del diferencial de una funcion.png|thumb|upright=1.25|फलन का अवकल <math>f(x)</math> बिंदु पर <math>x_0</math>.]]अवकल कैलकुलस के आधुनिक उपचारों में अवकल को इस प्रकार परिभाषित किया गया है।<ref>See, for instance, the influential treatises of {{harvnb|Courant|1937a}}, {{harvnb|Kline|1977}}, {{harvnb|Goursat|1904}}, and {{harvnb|Hardy|1908}}. Tertiary sources for this definition include also {{harvnb|Tolstov|2001}} and {{harvnb|Itô|1993|loc=§106}}.</ref> एकल वास्तविक वेरिएबल्स <math>x</math> के फलन <math>f(x)</math> का अवकल दो स्वतंत्र वास्तविक वेरिएबल्स <math>x</math> और <math>\Delta x</math> का फलन <math>df</math> है | ||
:<math>df(x, \Delta x) \stackrel{\mathrm{def}}{=} f'(x)\,\Delta x.</math> | :<math>df(x, \Delta x) \stackrel{\mathrm{def}}{=} f'(x)\,\Delta x.</math> | ||
या दोनों तर्कों को दबा दिया जा सकता है, | या दोनों तर्कों को दबा दिया जा सकता है, अर्थात् कोई <math>df(x)</math> या केवल <math>df</math> देख सकता है। यदि <math>y=f(x)</math>, अवकल को <math>dy</math> के रूप में भी लिखा जा सकता है। तब से <math>dx(x,\Delta x)=\Delta x</math>, यह लिखने के लिए पारंपरिक है <math>dx=\Delta x</math> जिससे निम्नलिखित समानता हो: | ||
:<math>df(x) = f'(x) \, dx</math> | :<math>df(x) = f'(x) \, dx</math> | ||
अवकल की यह धारणा सामान्यतः तब प्रायुक्त होती है जब किसी फलन के लिए रैखिक सन्निकटन मांगा जाता है, जिसमें वृद्धि का मान <math>\Delta x</math> काफी छोटा है। अधिक सटीक, यदि <math>f</math> पर अवकलीय फलन है <math>x</math>, फिर में अवकल <math>y</math>-मान | |||
:<math>\Delta y \stackrel{\rm{def}}{=} f(x+\Delta x) - f(x)</math> | :<math>\Delta y \stackrel{\rm{def}}{=} f(x+\Delta x) - f(x)</math> | ||
Line 45: | Line 40: | ||
:<math>\Delta y \approx dy</math> | :<math>\Delta y \approx dy</math> | ||
जिसमें | जिसमें <math>\Delta x</math> को पर्याप्त रूप से छोटा करने के लिए बाध्य करके त्रुटि को <math>\Delta x</math> के सापेक्ष वांछित के रूप में छोटा किया जा सकता है; अर्थात्, | ||
:<math>\frac{\Delta y - dy}{\Delta x}\to 0</math> | :<math>\frac{\Delta y - dy}{\Delta x}\to 0</math> | ||
जैसा <math>\Delta x\rightarrow 0</math>. इस कारण से, किसी | जैसा <math>\Delta x\rightarrow 0</math>. इस कारण से, किसी फलन के अवकल को मुख्य भाग के रूप में जाना जाता है | [[प्रमुख भाग]] (रैखिक) भाग फलन के वृद्धि में होता है: अवकल वृद्धि <math>\Delta x</math> का रैखिक फलन है, और यद्यपि त्रुटि <math>\varepsilon</math> अरेखीय हो सकता है, यह तेजी से शून्य हो जाता है क्योंकि <math>\Delta x</math> शून्य हो जाता है। | ||
== कई | == कई वेरिएबल्स में अवकल == | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
! | !ऑपरेटर / फलन | ||
!<math>f(x)</math> | !<math>f(x)</math> | ||
!<math>f(x, y, u(x, y), v(x, y))</math> | !<math>f(x, y, u(x, y), v(x, y))</math> | ||
|- | |- | ||
| | |अवकल | ||
|1: <math>df \, \overset{\underset{\mathrm{def}}{}}{=} \, f'_x\,dx</math> | |1: <math>df \, \overset{\underset{\mathrm{def}}{}}{=} \, f'_x\,dx</math> | ||
|2: <math>d_x f \, | |2: <math>d_x f \, | ||
Line 66: | Line 61: | ||
f'_x dx + f'_y dy + f'_u du + f'_v dv</math>]] | f'_x dx + f'_y dy + f'_u du + f'_v dv</math>]] | ||
|- | |- | ||
|[[Partial derivative]] | |[[Partial derivative|आंशिक व्युत्पन्न]] | ||
|<math>f'_x \, \overset{\underset{\mathrm{(1)}}{}}{=} \, \frac{df}{dx}</math> | |<math>f'_x \, \overset{\underset{\mathrm{(1)}}{}}{=} \, \frac{df}{dx}</math> | ||
|<math>f'_x \, | |<math>f'_x \, | ||
Line 73: | Line 68: | ||
\frac{\partial f}{\partial x}</math> | \frac{\partial f}{\partial x}</math> | ||
|- | |- | ||
|[[Total derivative]] | |[[Total derivative|कुल व्युत्पन्न]] | ||
|<math>\frac{df}{dx} \, | |<math>\frac{df}{dx} \, | ||
\overset{\underset{\mathrm{(1)}}{}}{=} \, | \overset{\underset{\mathrm{(1)}}{}}{=} \, | ||
Line 82: | Line 77: | ||
(f'_y \frac{dy}{dx} = 0) </math> | (f'_y \frac{dy}{dx} = 0) </math> | ||
|} | |} | ||
अगले {{harvtxt|Goursat|1904|loc=I, §15}}, से अधिक स्वतंत्र | अगले {{harvtxt|Goursat|1904|loc=I, §15}}, से अधिक स्वतंत्र वेरिएबल्स के फलनों के लिए, | ||
: <math> y = f(x_1,\dots,x_n), </math> | : <math> y = f(x_1,\dots,x_n), </math> | ||
किसी | किसी एक वेरिएबल्स x<sub>1</sub> के संबंध में y का आंशिक अंतर y में परिवर्तन का मुख्य भाग है जो उस एक वेरिएबल्स में परिवर्तन dx<sub>1</sub> के परिणामस्वरूप होता है। आंशिक अंतर इसलिए है | ||
: <math> \frac{\partial y}{\partial x_1} dx_1 </math> | : <math> \frac{\partial y}{\partial x_1} dx_1 </math> | ||
x | x<sub>1</sub> के संबंध में y का आंशिक अवकलज सम्मिलित है. सभी स्वतंत्र वेरिएबल्स के संबंध में आंशिक अवकलों का योग कुल अवकल है | ||
: <math> dy = \frac{\partial y}{\partial x_1} dx_1 + \cdots + \frac{\partial y}{\partial x_n} dx_n, </math> | : <math> dy = \frac{\partial y}{\partial x_1} dx_1 + \cdots + \frac{\partial y}{\partial x_n} dx_n, </math> | ||
जो y में परिवर्तन का मुख्य भाग है जो स्वतंत्र | जो y में परिवर्तन का मुख्य भाग है जो स्वतंत्र वेरिएबल्स x<sub>''i''</sub> में परिवर्तनों के परिणामस्वरूप होता है. | ||
अधिक सटीक रूप से, बहुभिन्नरूपी कलन के संदर्भ में, निम्नलिखित {{harvtxt| | अधिक सटीक रूप से, बहुभिन्नरूपी कलन के संदर्भ में, निम्नलिखित {{harvtxt|कुरंट|1937b}}, यदि f अवकलीय फलन है, तो फ्रेचेट व्युत्पन्न द्वारा, वृद्धि | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 99: | Line 94: | ||
&{}= \frac{\partial y}{\partial x_1} \Delta x_1 + \cdots + \frac{\partial y}{\partial x_n} \Delta x_n + \varepsilon_1\Delta x_1 +\cdots+\varepsilon_n\Delta x_n | &{}= \frac{\partial y}{\partial x_1} \Delta x_1 + \cdots + \frac{\partial y}{\partial x_n} \Delta x_n + \varepsilon_1\Delta x_1 +\cdots+\varepsilon_n\Delta x_n | ||
\end{align}</math> | \end{align}</math> | ||
जहां त्रुटि शब्द ε<sub> | जहां त्रुटि शब्द ε<sub>''i''</sub> वृद्धि Δx<sub>''i''</sub> के रूप में शून्य हो जाती है संयुक्त रूप से शून्य हो जाते हैं। कुल अवकल को तब कड़ाई से परिभाषित किया जाता है | ||
:<math>dy = \frac{\partial y}{\partial x_1} \Delta x_1 + \cdots + \frac{\partial y}{\partial x_n} \Delta x_n.</math> | :<math>dy = \frac{\partial y}{\partial x_1} \Delta x_1 + \cdots + \frac{\partial y}{\partial x_n} \Delta x_n.</math> | ||
Line 106: | Line 101: | ||
किसी के पास | किसी के पास | ||
:<math>dy = \frac{\partial y}{\partial x_1}\,d x_1 + \cdots + \frac{\partial y}{\partial x_n}\,d x_n.</math> | :<math>dy = \frac{\partial y}{\partial x_1}\,d x_1 + \cdots + \frac{\partial y}{\partial x_n}\,d x_n.</math> | ||
जैसा कि | जैसा कि वेरिएबल्स के मामले में, अनुमानित तत्समक धारण करता है | ||
:<math>dy \approx \Delta y</math> | :<math>dy \approx \Delta y</math> | ||
जिसमें | जिसमें पर्याप्त रूप से छोटे वेतन वृद्धि पर ध्यान केंद्रित करके <math>\sqrt{\Delta x_1^2+\cdots +\Delta x_n^2}</math> के सापेक्ष कुल त्रुटि को वांछित के रूप में छोटा किया जा सकता है। | ||
=== त्रुटि अनुमान के लिए कुल | === त्रुटि अनुमान के लिए कुल अवकल का अनुप्रयोग === | ||
मापन में, [[प्रायोगिक अनिश्चितता विश्लेषण]] में कुल अंतर का उपयोग | मापन में, [[प्रायोगिक अनिश्चितता विश्लेषण]] में कुल अंतर का उपयोग पैरामीटर <math>x, y, \ldots</math>, के <math>\Delta x,\Delta y,\ldots </math> की त्रुटियों के आधार पर फ़लन <math>f</math> की त्रुटि <math>\Delta f</math> का अनुमान लगाने में किया जाता है। यह मानते हुए कि परिवर्तन लगभग रैखिक होने के लिए पर्याप्त छोटा है: | ||
:<math>\Delta f(x)=f'(x)\Delta x</math> | :<math>\Delta f(x)=f'(x)\Delta x</math> | ||
और यह कि सभी | और यह कि सभी वेरिएबल्स स्वतंत्र हैं, फिर सभी वेरिएबल्स के लिए, | ||
:<math>\Delta f = f_x \Delta x + f_y \Delta y + \cdots</math> | :<math>\Delta f = f_x \Delta x + f_y \Delta y + \cdots</math> | ||
ऐसा इसलिए है क्योंकि | ऐसा इसलिए है क्योंकि विशेष पैरामीटर <math>x</math> के संबंध में व्युत्पन्न <math>f_x</math> फ़ंक्शन <math>f</math> की संवेदनशीलता को <math>x</math> में परिवर्तन के लिए देता है, विशेष रूप से त्रुटि <math>\Delta x</math> है। जैसा कि उन्हें स्वतंत्र माना जाता है, विश्लेषण सबसे खराब स्थिति का वर्णन करता है। घटक त्रुटियों के निरपेक्ष मूल्यों का उपयोग किया जाता है, क्योंकि सरल संगणना के बाद, व्युत्पन्न में ऋणात्मक चिह्न हो सकता है। इस सिद्धांत से योग, गुणन आदि के त्रुटि नियम व्युत्पन्न होते हैं, जैसे: | ||
: | :मान लिजिये <math>f(a,b)=ab</math>; | ||
:<math>\Delta f=f_a\Delta a+f_b\Delta b</math>; डेरिवेटिव का | :<math>\Delta f=f_a\Delta a+f_b\Delta b</math>; डेरिवेटिव का मानांकन | ||
:Δf = bΔa + aΔb; f से विभाजित करना, जो a × b है | :Δf = bΔa + aΔb; f से विभाजित करना, जो a × b है | ||
Line 130: | Line 125: | ||
कहने का तात्पर्य यह है कि गुणन में, कुल सापेक्ष त्रुटि प्राचलों की सापेक्ष त्रुटियों का योग होती है। | कहने का तात्पर्य यह है कि गुणन में, कुल सापेक्ष त्रुटि प्राचलों की सापेक्ष त्रुटियों का योग होती है। | ||
यह समझने के लिए कि यह किस प्रकार | यह समझने के लिए कि यह किस प्रकार फलन पर निर्भर करता है, उस मामले पर विचार करें जहां फलन <math>f(a,b)=a\ln b</math> है। फिर, यह गणना की जा सकती है कि त्रुटि अनुमान है | ||
:Δf/f = Δa/a + Δb/(b ln b) | :Δf/f = Δa/a + Δb/(b ln b) | ||
अतिरिक्त ' | एक साधारण उत्पाद के मामले में एक अतिरिक्त '{{nowrap|ln ''b''}}' कारक नहीं मिला थ। यह अतिरिक्त कारक त्रुटि को छोटा करता है, क्योंकि {{nowrap|ln ''b''}} एक नंगे b जितना बड़ा नहीं है। | ||
== उच्च-क्रम | == उच्च-क्रम अवकल == | ||
किसी एकल | किसी एकल वेरिएबल्स x के फलन y = f(x) के उच्च-क्रम के अवकलों को इसके माध्यम से परिभाषित किया जा सकता है:<ref>{{harvnb|Cauchy|1823}}. See also, for instance, {{harvnb|Goursat|1904|loc=I, §14}}.</ref> | ||
:<math>d^2y = d(dy) = d(f'(x)dx) = (df'(x))dx = f''(x)\,(dx)^2,</math> | :<math>d^2y = d(dy) = d(f'(x)dx) = (df'(x))dx = f''(x)\,(dx)^2,</math> | ||
और, सामान्य तौर पर, | और, सामान्य तौर पर, | ||
Line 141: | Line 136: | ||
अनौपचारिक रूप से, यह उच्च क्रम के डेरिवेटिव के लिए लिबनिज़ के अंकन को प्रेरित करता है | अनौपचारिक रूप से, यह उच्च क्रम के डेरिवेटिव के लिए लिबनिज़ के अंकन को प्रेरित करता है | ||
:<math>f^{(n)}(x) = \frac{d^n f}{dx^n}.</math> | :<math>f^{(n)}(x) = \frac{d^n f}{dx^n}.</math> | ||
जब स्वतंत्र | जब स्वतंत्र वेरिएबल्स x को स्वयं अन्य वेरिएबल्स पर निर्भर रहने की अनुमति दी जाती है, तो अभिव्यक्ति अधिक जटिल हो जाती है, क्योंकि इसमें x में ही उच्च क्रम के अवकल भी सम्मिलित होने चाहिए। इस प्रकार, उदाहरण के लिए, | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Line 149: | Line 144: | ||
इत्यादि। | इत्यादि। | ||
इसी तरह के विचार कई | इसी तरह के विचार कई वेरिएबल्स के फलनों के उच्च क्रम के अवकल को परिभाषित करने के लिए प्रायुक्त होते हैं। उदाहरण के लिए, यदि f दो वेरिएबल्स x और y का फलन है, तो | ||
:<math>d^nf = \sum_{k=0}^n \binom{n}{k}\frac{\partial^n f}{\partial x^k \partial y^{n-k}}(dx)^k(dy)^{n-k},</math> | :<math>d^nf = \sum_{k=0}^n \binom{n}{k}\frac{\partial^n f}{\partial x^k \partial y^{n-k}}(dx)^k(dy)^{n-k},</math> | ||
जहाँ <math display="inline">\binom{n}{k}</math> [[द्विपद गुणांक]] है। अधिक वेरिएबल्स में, समान अभिव्यक्ति धारण करती है, लेकिन द्विपद विस्तार के अतिरिक्त उपयुक्त [[बहुपद गुणांक]] विस्तार के साथ।<ref>{{harvnb|Goursat|1904|loc=I, §14}}</ref> | |||
कई | कई वेरिएबल्स में उच्च क्रम के अवकल भी अधिक जटिल हो जाते हैं जब स्वतंत्र वेरिएबल्स को स्वयं अन्य वेरिएबल्स पर निर्भर रहने की अनुमति दी जाती है। उदाहरण के लिए, x और y के फलन f के लिए, जिन्हें सहायक वेरिएबल्स पर निर्भर रहने की अनुमति है, के पास है | ||
:<math>d^2f = \left(\frac{\partial^2f}{\partial x^2}(dx)^2+2\frac{\partial^2f}{\partial x\partial y}dx\,dy + \frac{\partial^2f}{\partial y^2}(dy)^2\right) + \frac{\partial f}{\partial x}d^2x + \frac{\partial f}{\partial y}d^2y.</math> | :<math>d^2f = \left(\frac{\partial^2f}{\partial x^2}(dx)^2+2\frac{\partial^2f}{\partial x\partial y}dx\,dy + \frac{\partial^2f}{\partial y^2}(dy)^2\right) + \frac{\partial f}{\partial x}d^2x + \frac{\partial f}{\partial y}d^2y.</math> | ||
इस सांकेतिक अक्षमता के कारण, उच्च क्रम के | इस सांकेतिक अक्षमता के कारण, उच्च क्रम के अवकलों के उपयोग की व्यापक रूप से आलोचना की गई थी {{harvnb|हैडमार्ड|1935}}, जिन्होंने निष्कर्ष निकाला: | ||
: अंत में, समानता का अर्थ या प्रतिनिधित्व क्या है? | : अंत में, समानता का अर्थ या प्रतिनिधित्व क्या है? | ||
::<math>d^2z = r\,dx^2 + 2s\,dx\,dy + t\,dy^2\,?</math> | ::<math>d^2z = r\,dx^2 + 2s\,dx\,dy + t\,dy^2\,?</math> | ||
: ए मोन एविस, रिएन डू टाउट। | : ए मोन एविस, रिएन डू टाउट। | ||
वह है: अंत में, समानता [...] का क्या अर्थ है, या प्रतिनिधित्व किया गया है? मेरी राय में, कुछ भी नहीं। इस संशयवाद के | वह है: अंत में, समानता [...] का क्या अर्थ है, या प्रतिनिधित्व किया गया है? मेरी राय में, कुछ भी नहीं। इस संशयवाद के अतिरिक्त, उच्च क्रम के अवकल विश्लेषण में महत्वपूर्ण उपकरण के रूप में उभरे थे।<ref>In particular to [[infinite dimensional holomorphy]] {{harv|Hille|Phillips|1974}} and [[numerical analysis]] via the calculus of [[finite differences]].</ref> | ||
इन संदर्भों में, वृद्धि Δx पर | |||
इन संदर्भों में, वृद्धि Δx पर प्रायुक्त फलन f के nवें क्रम के अवकल को इसके द्वारा परिभाषित किया जाता है | |||
:<math>d^nf(x,\Delta x) = \left.\frac{d^n}{dt^n} f(x+t\Delta x)\right|_{t=0}</math> | :<math>d^nf(x,\Delta x) = \left.\frac{d^n}{dt^n} f(x+t\Delta x)\right|_{t=0}</math> | ||
या समकक्ष अभिव्यक्ति, जैसे | या समकक्ष अभिव्यक्ति, जैसे | ||
:<math>\lim_{t\to 0}\frac{\Delta^n_{t\Delta x} f}{t^n}</math> | :<math>\lim_{t\to 0}\frac{\Delta^n_{t\Delta x} f}{t^n}</math> | ||
जहाँ <math>\Delta^n_{t\Delta x} f</math> वृद्धि tΔx के साथ nवां [[आगे का अंतर|आगे का अवकल]] है। | |||
यह परिभाषा तब भी समझ में आती है जब f कई | यह परिभाषा तब भी समझ में आती है जब f कई वेरिएबल्स का फलन है (सादगी के लिए यहाँ वेक्टर तर्क के रूप में लिया गया है)। फिर इस तरह से परिभाषित nवां अवकल सदिश वृद्धि Δx में डिग्री n का सजातीय फलन है। इसके अतिरिक्त, बिंदु x पर f की [[टेलर श्रृंखला]] द्वारा दी गई है | ||
:<math>f(x+\Delta x)\sim f(x) + df(x,\Delta x) + \frac{1}{2}d^2f(x,\Delta x) + \cdots + \frac{1}{n!}d^nf(x,\Delta x) + \cdots</math> | :<math>f(x+\Delta x)\sim f(x) + df(x,\Delta x) + \frac{1}{2}d^2f(x,\Delta x) + \cdots + \frac{1}{n!}d^nf(x,\Delta x) + \cdots</math> | ||
उच्च क्रम गैटॉक्स व्युत्पन्न इन विचारों को अनंत आयामी स्थानों के लिए सामान्यीकृत करता है। | उच्च क्रम गैटॉक्स व्युत्पन्न इन विचारों को अनंत आयामी स्थानों के लिए सामान्यीकृत करता है। | ||
== गुण == | == गुण == | ||
अवकल के कई गुण व्युत्पन्न, आंशिक व्युत्पन्न और कुल व्युत्पन्न के संबंधित गुणों से सीधे विधि से अनुसरण करते हैं। इसमे सम्मिलित है:<ref>{{harvnb|Goursat|1904|loc=I, §17}}</ref> | |||
* [[रैखिकता]]: स्थिरांक a और b और | * [[रैखिकता]]: स्थिरांक a और b और अवकलीय फलन f और g के लिए, | ||
::<math>d(af+bg) = a\,df + b\,dg.</math> | ::<math>d(af+bg) = a\,df + b\,dg.</math> | ||
* उत्पाद नियम: दो अलग-अलग | * उत्पाद नियम: दो अलग-अलग फलनों f और g के लिए, | ||
::<math>d(fg) = f\,dg+g\,df.</math> | ::<math>d(fg) = f\,dg+g\,df.</math> | ||
इन दो गुणों के साथ ऑपरेशन डी [[सार बीजगणित]] में व्युत्पन्न (अमूर्त बीजगणित) के रूप में जाना जाता है। वे शक्ति नियम | इन दो गुणों के साथ ऑपरेशन डी [[सार बीजगणित]] में व्युत्पन्न (अमूर्त बीजगणित) के रूप में जाना जाता है। वे शक्ति नियम प्रायुक्त करते हैं | ||
::<math> d( f^n ) = n f^{n-1} df </math> | ::<math> d( f^n ) = n f^{n-1} df </math> | ||
इसके | इसके अतिरिक्त, व्यापकता के बढ़ते स्तर में [[श्रृंखला नियम]] के विभिन्न रूप धारण करते हैं:<ref>{{harvnb|Goursat|1904|loc=I, §§14,16}}</ref> | ||
* यदि y = f(u) वेरिएबल u का | * यदि y = f(u) वेरिएबल u का अवकलीय फलन है और u = g(x) x का अवकलीय फलन है, तो | ||
::<math>dy = f'(u)\,du = f'(g(x))g'(x)\,dx.</math> | ::<math>dy = f'(u)\,du = f'(g(x))g'(x)\,dx.</math> | ||
* | * यदि {{nowrap|1=''y'' = ''f''(''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>)}} और सभी वेरिएबल्स x<sub>1</sub>, ..., x<sub>''n''</sub> दूसरे वेरिएबल t पर निर्भर करते हैं, फिर चेन रूल द्वारा कई वेरिएबल्स के लिए, के पास है | ||
:: <math>\begin{align} | :: <math>\begin{align} | ||
Line 188: | Line 184: | ||
&= \frac{\partial y}{\partial x_1} \frac{dx_1}{dt}\,dt + \cdots + \frac{\partial y}{\partial x_n} \frac{dx_n}{dt}\,dt. | &= \frac{\partial y}{\partial x_1} \frac{dx_1}{dt}\,dt + \cdots + \frac{\partial y}{\partial x_n} \frac{dx_n}{dt}\,dt. | ||
\end{align}</math> | \end{align}</math> | ||
:अनुमानिक रूप से, कई | :अनुमानिक रूप से, कई वेरिएबल्स के लिए श्रृंखला नियम को इस समीकरण के दोनों पक्षों के माध्यम से अनंत रूप से छोटी मात्रा dt से विभाजित करके समझा जा सकता है। | ||
* अधिक सामान्य अनुरूप भाव धारण करते हैं, जिसमें मध्यवर्ती | * अधिक सामान्य अनुरूप भाव धारण करते हैं, जिसमें मध्यवर्ती वेरिएबल्स x<sub>''i''</sub> होते हैं से अधिक वेरिएबल्स पर निर्भर करते हैं। | ||
== सामान्य सूत्रीकरण == | == सामान्य सूत्रीकरण == | ||
{{See also| | {{See also|फ्रेचेट व्युत्पन्न|गेटॉक्स व्युत्पन्न}} | ||
फलन {{nowrap|''f'' : '''R'''<sup>''n''</sup> → '''R'''<sup>''m''</sup>}} दो [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन अवकलिक्ष]] स्थान के बीच के लिए अवकल की सुसंगत धारणा विकसित की जा सकती है। माना x,Δx ∈ R<sup>n</sup> यूक्लिडियन सदिशों का युग्म हो। फलन f में वृद्धि है | |||
:<math>\Delta f = f(\mathbf{x}+\Delta\mathbf{x}) - f(\mathbf{x}).</math> | :<math>\Delta f = f(\mathbf{x}+\Delta\mathbf{x}) - f(\mathbf{x}).</math> | ||
यदि कोई m × n [[मैट्रिक्स (गणित)]] A | यदि कोई m × n [[मैट्रिक्स (गणित)]] A उपस्थित है, जैसे कि | ||
:<math>\Delta f = A\Delta\mathbf{x} + \|\Delta\mathbf{x}\|\boldsymbol{\varepsilon}</math> | :<math>\Delta f = A\Delta\mathbf{x} + \|\Delta\mathbf{x}\|\boldsymbol{\varepsilon}</math> | ||
जिसमें वेक्टर ''ε'' → 0 के रूप में Δx → 0, फिर ''f'' परिभाषा के अनुसार बिंदु x पर | जिसमें वेक्टर ''ε'' → 0 के रूप में Δx → 0, फिर ''f'' परिभाषा के अनुसार बिंदु x पर अवकलीय है। मैट्रिक्स ''A'' को कभी-कभी [[ जैकबियन मैट्रिक्स |जैकबियन मैट्रिक्स]] के रूप में जाना जाता है, और [[रैखिक परिवर्तन]] जो वेतन वृद्धि Δx ∈ R<sup>n</sup> से जुड़ा होता है सदिश AΔ'x' ∈ 'R'<sup>m</sup>, इस सामान्य सेटिंग में, बिंदु x पर f के अवकल df(x) के रूप में जाना जाता है। यह बिल्कुल फ्रेचेट डेरिवेटिव है, और किसी भी बनच रिक्त स्थान के बीच फलन के लिए काम करने के लिए ही निर्माण किया जा सकता है। | ||
और उपयोगी दृष्टिकोण | और उपयोगी दृष्टिकोण अवकल को सीधे प्रकार के [[दिशात्मक व्युत्पन्न]] के रूप में परिभाषित करना है: | ||
:<math>df(\mathbf{x},\mathbf{h}) = \lim_{t\to 0}\frac{f(\mathbf{x}+t\mathbf{h})-f(\mathbf{x})}{t} = \left.\frac{d}{dt}f(\mathbf{x}+t\mathbf{h})\right|_{t=0},</math> | :<math>df(\mathbf{x},\mathbf{h}) = \lim_{t\to 0}\frac{f(\mathbf{x}+t\mathbf{h})-f(\mathbf{x})}{t} = \left.\frac{d}{dt}f(\mathbf{x}+t\mathbf{h})\right|_{t=0},</math> | ||
जो उच्च क्रम के | जो उच्च क्रम के अवकल को परिभाषित करने के लिए पहले से ही लिया गया दृष्टिकोण है (और कॉची द्वारा निर्धारित परिभाषा के लगभग है)। यदि टी समय और 'एक्स' स्थिति का प्रतिनिधित्व करता है, तो 'एच' विस्थापन के अतिरिक्त वेग का प्रतिनिधित्व करता है जैसा कि हमने इसे पहले माना है। यह अवकल की धारणा का और शोधन देता है: कि यह गतिज वेग का रैखिक फलन होना चाहिए। अवकलिक्ष के किसी दिए गए बिंदु के माध्यम से सभी वेगों का सेट [[स्पर्शरेखा स्थान]] के रूप में जाना जाता है, और इसलिए df स्पर्शरेखा स्थान पर रैखिक फलन देता है: अवकल रूप। इस व्याख्या के साथ, एफ के अवकल को बाहरी व्युत्पन्न के रूप में जाना जाता है, और अवकल ज्यामिति में व्यापक अनुप्रयोग होता है क्योंकि वेग और स्पर्शरेखा स्थान की धारणा किसी भी अलग-अलग कई गुना पर समझ में आती है। यदि, इसके अतिरिक्त, f का आउटपुट मान भी स्थिति (यूक्लिडियन अवकलिक्ष में) का प्रतिनिधित्व करता है, तो आयामी विश्लेषण पुष्टि करता है कि df का आउटपुट मान वेग होना चाहिए। यदि कोई इस विधि से अवकल का इलाज करता है, तो इसे पुशफॉर्वर्ड (अवकल) के रूप में जाना जाता है क्योंकि यह स्रोत स्थान से वेग को लक्ष्य स्थान में वेग में धकेलता है। | ||
== अन्य दृष्टिकोण == | == अन्य दृष्टिकोण == | ||
{{Main| | {{Main|विभेदक (अनंत)}} | ||
* | यद्यपि अतिसूक्ष्म वेतन वृद्धि dx होने की धारणा आधुनिक गणितीय विश्लेषण में अच्छी तरह से परिभाषित नहीं है, अवकल (अनंत) को परिभाषित करने के लिए कई तरह की तकनीकें उपस्थित हैं जिससे किसी फलन के अवकल को इस तरह से नियंत्रित किया जा सके जो इसके साथ संघर्ष न करे। लीबनिज संकेतन। इसमे सम्मिलित है: | ||
* क्रमविनिमेय वलयों के [[ nilpotent ]] तत्वों के रूप में | |||
* सेट थ्योरी के स्मूथ मॉडल में | * अवकल को प्रकार के अवकल फॉर्म के रूप में परिभाषित करना, विशेष रूप से किसी फलन का बाहरी डेरिवेटिव। फिर बिंदु पर स्पर्शरेखा स्थान में वैक्टर के साथ अनंत वेतन वृद्धि की पहचान की जाती है। यह दृष्टिकोण अवकल ज्यामिति और संबंधित क्षेत्रों में लोकप्रिय है, क्योंकि यह अलग-अलग कई गुनाओं के बीच मैपिंग को आसानी से सामान्यीकृत करता है। | ||
* [[अति वास्तविक संख्या]] सिस्टम में इनफिनिटिमल्स के रूप में | * क्रमविनिमेय वलयों के [[ nilpotent |निलपोटेंट]] तत्वों के रूप में अवकल। यह दृष्टिकोण [[बीजगणितीय ज्यामिति]] में लोकप्रिय है।<ref>{{Harvnb|Eisenbud|Harris|1998}}.</ref> | ||
* सेट थ्योरी के स्मूथ मॉडल में अवकल्स। इस दृष्टिकोण को [[ सिंथेटिक अंतर ज्यामिति |सिंथेटिक अवकल ज्यामिति]] या [[चिकना अत्यल्प विश्लेषण]] के रूप में जाना जाता है और यह बीजगणितीय ज्यामितीय दृष्टिकोण से निकटता से संबंधित है, सिवाय इसके कि [[ टोपोस सिद्धांत |टोपोस सिद्धांत]] के विचारों का उपयोग उस तंत्र को छिपाने के लिए किया जाता है जिसके द्वारा निलपोटेंट इनफिनिटिमल प्रस्तुत किए जाते हैं।<ref>See {{Harvnb|Kock|2006}} and {{Harvnb|Moerdijk|Reyes|1991}}.</ref> | |||
* [[अति वास्तविक संख्या]] सिस्टम में इनफिनिटिमल्स के रूप में अवकल, जो वास्तविक संख्याओं के विस्तार होते हैं जिनमें इन्वर्टिबल इनफिनिटिमल्स और अनंत रूप से बड़ी संख्याएँ होती हैं। यह [[अब्राहम रॉबिन्सन]] द्वारा प्रतिपादित अमानक विश्लेषण का दृष्टिकोण है।<ref name="nonstd">See {{Harvnb|Robinson|1996}} and {{Harvnb|Keisler|1986}}.</ref> | |||
== उदाहरण और अनुप्रयोग == | == उदाहरण और अनुप्रयोग == | ||
गणना में प्रयोगात्मक त्रुटियों के प्रसार का अध्ययन करने के लिए [[संख्यात्मक विश्लेषण]] में विभेदकों का प्रभावी ढंग से उपयोग किया जा सकता है, और इस प्रकार किसी समस्या की समग्र [[संख्यात्मक स्थिरता]] {{harv| | गणना में प्रयोगात्मक त्रुटियों के प्रसार का अध्ययन करने के लिए [[संख्यात्मक विश्लेषण]] में विभेदकों का प्रभावी ढंग से उपयोग किया जा सकता है, और इस प्रकार किसी समस्या की समग्र [[संख्यात्मक स्थिरता]] {{harv|कुरंट|1937a}}. मान लीजिए कि वेरिएबल्स x प्रयोग के परिणाम का प्रतिनिधित्व करता है और y x पर प्रायुक्त संख्यात्मक गणना का परिणाम है। प्रश्न यह है कि किस सीमा तक x के मापन में त्रुटियाँ y की गणना के परिणाम को प्रभावित करती हैं। यदि x अपने वास्तविक मान के Δx के अन्दर जाना जाता है, तो टेलर का प्रमेय y की गणना में त्रुटि Δy पर निम्नलिखित अनुमान देता है: | ||
:<math>\Delta y = f'(x)\Delta x + \frac{(\Delta x)^2}{2}f''(\xi)</math> | :<math>\Delta y = f'(x)\Delta x + \frac{(\Delta x)^2}{2}f''(\xi)</math> | ||
जहाँ {{nowrap|1=''ξ'' = ''x'' + ''θ''Δ''x''}} कुछ के लिए {{nowrap|0 < ''θ'' < 1}}. यदि Δx छोटा है, तो दूसरा ऑर्डर शब्द नगण्य है, जिससे Δy, व्यावहारिक उद्देश्यों के लिए, अच्छी तरह से {{nowrap|1=''dy'' = ''f'''(''x'')Δ''x''}} अनुमानित हो। | |||
[[अंतर समीकरण]] को फिर से लिखने के लिए | [[अंतर समीकरण|अवकल समीकरण]] को फिर से लिखने के लिए अवकल अक्सर उपयोगी होता है | ||
: <math> \frac{dy}{dx} = g(x) </math> | : <math> \frac{dy}{dx} = g(x) </math> | ||
Line 226: | Line 224: | ||
: <math> dy = g(x)\,dx, </math> | : <math> dy = g(x)\,dx, </math> | ||
विशेष रूप से जब कोई | विशेष रूप से जब कोई वेरिएबल्स को अलग करना चाहता है। | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
Line 261: | Line 259: | ||
*[http://demonstrations.wolfram.com/DifferentialOfAFunction/ Differential Of A Function] at Wolfram Demonstrations Project | *[http://demonstrations.wolfram.com/DifferentialOfAFunction/ Differential Of A Function] at Wolfram Demonstrations Project | ||
{{DEFAULTSORT:Differential Of A Function}} | {{DEFAULTSORT:Differential Of A Function}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page|Differential Of A Function]] | ||
[[Category:Created On 28/02/2023]] | [[Category:Created On 28/02/2023|Differential Of A Function]] | ||
[[Category:Lua-based templates|Differential Of A Function]] | |||
[[Category:Machine Translated Page|Differential Of A Function]] | |||
[[Category:Pages using sidebar with the child parameter|Differential Of A Function]] | |||
[[Category:Pages with script errors|Differential Of A Function]] | |||
[[Category:Templates Vigyan Ready|Differential Of A Function]] | |||
[[Category:Templates that add a tracking category|Differential Of A Function]] | |||
[[Category:Templates that generate short descriptions|Differential Of A Function]] | |||
[[Category:Templates using TemplateData|Differential Of A Function]] | |||
[[Category:अंतर कलन|Differential Of A Function]] | |||
[[Category:पथरी में रैखिक संचालक|Differential Of A Function]] | |||
[[Category:व्युत्पन्न के सामान्यीकरण|Differential Of A Function]] |
Latest revision as of 12:46, 18 September 2023
गणना में, अवकल फलन (गणित) स्वतंत्र वेरिएबल्स में परिवर्तन के संबंध में फलन में परिवर्तन के मुख्य भाग का प्रतिनिधित्व करता है। अवकल द्वारा परिभाषित किया गया है
जहाँ के संबंध में f का व्युत्पन्न है, और एक अतिरिक्त वास्तविक वेरिएबल्स (गणित) (जिससे और का एक फलन हो) है। अंकन ऐसा है कि समीकरण
धारण करता है, जहां लीबनिज संकेतन में व्युत्पन्न का प्रतिनिधित्व किया जाता है, और यह अवकल के भागफल के रूप में व्युत्पन्न के संबंध में संगत है। लिखता भी है
वेरिएबल्स का सटीक अर्थ और आवेदन के संदर्भ और गणितीय कठोरता के आवश्यक स्तर पर निर्भर करता है। इन वेरिएबल्स का डोमेन विशेष ज्यामितीय महत्व पर ले सकता है यदि अवकल को विशेष अवकल रूप, या विश्लेषणात्मक महत्व के रूप में माना जाता है, यदि अवकल को किसी फलन की वृद्धि के लिए रैखिक सन्निकटन के रूप में माना जाता है। परंपरागत रूप से, वेरिएबल्स और बहुत छोटा (अनंत) माना जाता है, और इस व्याख्या को गैर-मानक विश्लेषण में कठोर बनाया जाता है।
इतिहास और उपयोग
अवकल को पहली बार आइजैक न्यूटन द्वारा सहज या अनुमानी परिभाषा के माध्यम से प्रस्तुत किया गया था और गॉटफ्रीड लाइबनिट्स द्वारा आगे बढ़ाया गया था,जिन्होंने फ़ंक्शन के तर्क में एक अनंत रूप से छोटे परिवर्तन के अनुरूप फ़ंक्शन के मान में एक अनंत रूप से छोटे परिवर्तन (या अनंत) के रूप में अंतर के बारे में सोचा था। उस कारण से, के संबंध में के परिवर्तन की तात्कालिक दर, जो फ़ंक्शन के व्युत्पन्न का मान है, को अंश द्वारा दर्शाया गया है
डेरिवेटिव के लिए लाइबनिज संकेतन कहा जाता है। भागफल अनंत रूप से छोटा नहीं है; किन्तु यह वास्तविक संख्या है।
उदाहरण के लिए, बिशप बर्कले द्वारा प्रसिद्ध पैम्फलेट विश्लेषक द्वारा इस रूप में इनफिनिटिमल्स के उपयोग की व्यापक रूप से आलोचना की गई थी। ऑगस्टिन-लुई कॉची (1823) ने लीबनिज के इनफिनिटिमल्स के परमाणुवाद की अपील के बिना अंतर को परिभाषित किया।[1][2] इसके अतिरिक्त, कॉची, जीन ले रोंड डी'अलेम्बर्ट का अनुसरण करते हुए, लीबनिज़ और उनके उत्तराधिकारियों के तार्किक क्रम को उल्टा कर दिया: व्युत्पन्न ही मौलिक वस्तु बन गया, जिसे अवकल भागफलों की सीमा (गणित) के रूप में परिभाषित किया गया था, और अवकल तब थे इसके संदर्भ में परिभाषित किया गया है। अर्थात्, अवकल को परिभाषित करने के लिए कोई भी स्वतंत्र था अभिव्यक्ति द्वारा
जिसमें और परिमित वास्तविक मान लेने वाले बस नए वेरिएबल्स हैं,[3] नियत अतिसूक्ष्म नहीं जैसा कि लाइबनिज के लिए था।[4] के अनुसार Boyer (1959, p. 12), कॉची का दृष्टिकोण लीबनिज के अतिसूक्ष्म दृष्टिकोण पर महत्वपूर्ण तार्किक सुधार था, क्योंकि, अत्यल्प मात्राओं की आध्यात्मिक धारणा को प्रायुक्त करने के अतिरिक्त, मात्राएँ और अब किसी भी अन्य वास्तविक मात्राएँ सार्थक विधि के समान ही हेरफेर किया जा सकता है। अवकलों के प्रति कॉची का समग्र अवधारणात्मक दृष्टिकोण आधुनिक विश्लेषणात्मक उपचारों में मानक बना हुआ है,[5] चूंकि कठोरता पर अंतिम शब्द, सीमा की पूरी तरह से आधुनिक धारणा, अंततः कार्ल वीयरस्ट्रास के कारण थी।[6]
भौतिक उपचारों में, जैसे कि ऊष्मप्रवैगिकी के सिद्धांत पर प्रायुक्त होने वाले, अनंत दृश्य अभी भी प्रबल है। कुरेंट & जॉन (1999, p. 184) इनफिनिटिमल डिफरेंशियल के भौतिक उपयोग को उनकी गणितीय असंभवता के साथ इस प्रकार मिलाते हैं। अवकल परिमित गैर-शून्य मानों का प्रतिनिधित्व करते हैं जो उस विशेष उद्देश्य के लिए आवश्यक शुद्धता की डिग्री से छोटे होते हैं जिसके लिए उनका लक्ष्य होता है। इस प्रकार भौतिक अतिसूक्ष्मों को त्रुटिहीन अर्थ रखने के लिए संबंधित गणितीय अतिसूक्ष्म से अपील करने की आवश्यकता नहीं है।
गणितीय विश्लेषण और विभेदक ज्यामिति में बीसवीं शताब्दी के विकास के बाद, यह स्पष्ट हो गया कि फलन के अवकल की धारणा को विभिन्न तरीकों से विस्तारित किया जा सकता है। वास्तविक विश्लेषण में, किसी फलन की वृद्धि के प्रमुख भाग के रूप में सीधे अवकल से निपटना अधिक वांछनीय है। यह सीधे इस धारणा की ओर जाता है कि बिंदु पर फलन का अवकल वेतन वृद्धि का रैखिक फलन है। यह दृष्टिकोण विभिन्न प्रकार के अधिक परिष्कृत स्थानों के लिए अवकल (रेखीय मानचित्र के रूप में) को विकसित करने की अनुमति देता है, अंततः इस तरह की धारणाओं को जन्म देता है जैसे कि फ्रेचेट या गेटॉक्स व्युत्पन्न। इसी तरह, विभेदक ज्यामिति में, बिंदु पर फलन का अवकल स्पर्शरेखा सदिश (अनंत रूप से छोटा विस्थापन) का रैखिक फलन है, जो इसे प्रकार के रूप के रूप में प्रदर्शित करता है: फलन का बाहरी व्युत्पन्न। गैर-मानक कैलकुलस में, अवकलों को इनफिनिटिमल्स के रूप में माना जाता है, जिसे स्वयं कठोर (देखें अवकल (इनफिनिटिमल)) आधार पर रखा जा सकता है।
परिभाषा
अवकल कैलकुलस के आधुनिक उपचारों में अवकल को इस प्रकार परिभाषित किया गया है।[7] एकल वास्तविक वेरिएबल्स के फलन का अवकल दो स्वतंत्र वास्तविक वेरिएबल्स और का फलन है
या दोनों तर्कों को दबा दिया जा सकता है, अर्थात् कोई या केवल देख सकता है। यदि , अवकल को के रूप में भी लिखा जा सकता है। तब से , यह लिखने के लिए पारंपरिक है जिससे निम्नलिखित समानता हो:
अवकल की यह धारणा सामान्यतः तब प्रायुक्त होती है जब किसी फलन के लिए रैखिक सन्निकटन मांगा जाता है, जिसमें वृद्धि का मान काफी छोटा है। अधिक सटीक, यदि पर अवकलीय फलन है , फिर में अवकल -मान
संतुष्ट
जहां त्रुटि सन्निकटन में संतुष्ट जैसा . दूसरे शब्दों में, किसी की अनुमानित पहचान होती है
जिसमें को पर्याप्त रूप से छोटा करने के लिए बाध्य करके त्रुटि को के सापेक्ष वांछित के रूप में छोटा किया जा सकता है; अर्थात्,
जैसा . इस कारण से, किसी फलन के अवकल को मुख्य भाग के रूप में जाना जाता है | प्रमुख भाग (रैखिक) भाग फलन के वृद्धि में होता है: अवकल वृद्धि का रैखिक फलन है, और यद्यपि त्रुटि अरेखीय हो सकता है, यह तेजी से शून्य हो जाता है क्योंकि शून्य हो जाता है।
कई वेरिएबल्स में अवकल
ऑपरेटर / फलन | ||
---|---|---|
अवकल | 1: | 2: |
आंशिक व्युत्पन्न | ||
कुल व्युत्पन्न |
अगले Goursat (1904, I, §15), से अधिक स्वतंत्र वेरिएबल्स के फलनों के लिए,
किसी एक वेरिएबल्स x1 के संबंध में y का आंशिक अंतर y में परिवर्तन का मुख्य भाग है जो उस एक वेरिएबल्स में परिवर्तन dx1 के परिणामस्वरूप होता है। आंशिक अंतर इसलिए है
x1 के संबंध में y का आंशिक अवकलज सम्मिलित है. सभी स्वतंत्र वेरिएबल्स के संबंध में आंशिक अवकलों का योग कुल अवकल है
जो y में परिवर्तन का मुख्य भाग है जो स्वतंत्र वेरिएबल्स xi में परिवर्तनों के परिणामस्वरूप होता है.
अधिक सटीक रूप से, बहुभिन्नरूपी कलन के संदर्भ में, निम्नलिखित कुरंट (1937b) , यदि f अवकलीय फलन है, तो फ्रेचेट व्युत्पन्न द्वारा, वृद्धि
जहां त्रुटि शब्द εi वृद्धि Δxi के रूप में शून्य हो जाती है संयुक्त रूप से शून्य हो जाते हैं। कुल अवकल को तब कड़ाई से परिभाषित किया जाता है
चूंकि, इस परिभाषा के साथ,
किसी के पास
जैसा कि वेरिएबल्स के मामले में, अनुमानित तत्समक धारण करता है
जिसमें पर्याप्त रूप से छोटे वेतन वृद्धि पर ध्यान केंद्रित करके के सापेक्ष कुल त्रुटि को वांछित के रूप में छोटा किया जा सकता है।
त्रुटि अनुमान के लिए कुल अवकल का अनुप्रयोग
मापन में, प्रायोगिक अनिश्चितता विश्लेषण में कुल अंतर का उपयोग पैरामीटर , के की त्रुटियों के आधार पर फ़लन की त्रुटि का अनुमान लगाने में किया जाता है। यह मानते हुए कि परिवर्तन लगभग रैखिक होने के लिए पर्याप्त छोटा है:
और यह कि सभी वेरिएबल्स स्वतंत्र हैं, फिर सभी वेरिएबल्स के लिए,
ऐसा इसलिए है क्योंकि विशेष पैरामीटर के संबंध में व्युत्पन्न फ़ंक्शन की संवेदनशीलता को में परिवर्तन के लिए देता है, विशेष रूप से त्रुटि है। जैसा कि उन्हें स्वतंत्र माना जाता है, विश्लेषण सबसे खराब स्थिति का वर्णन करता है। घटक त्रुटियों के निरपेक्ष मूल्यों का उपयोग किया जाता है, क्योंकि सरल संगणना के बाद, व्युत्पन्न में ऋणात्मक चिह्न हो सकता है। इस सिद्धांत से योग, गुणन आदि के त्रुटि नियम व्युत्पन्न होते हैं, जैसे:
- मान लिजिये ;
- ; डेरिवेटिव का मानांकन
- Δf = bΔa + aΔb; f से विभाजित करना, जो a × b है
- Δf/f = Δa/a + Δb/b
कहने का तात्पर्य यह है कि गुणन में, कुल सापेक्ष त्रुटि प्राचलों की सापेक्ष त्रुटियों का योग होती है।
यह समझने के लिए कि यह किस प्रकार फलन पर निर्भर करता है, उस मामले पर विचार करें जहां फलन है। फिर, यह गणना की जा सकती है कि त्रुटि अनुमान है
- Δf/f = Δa/a + Δb/(b ln b)
एक साधारण उत्पाद के मामले में एक अतिरिक्त 'ln b' कारक नहीं मिला थ। यह अतिरिक्त कारक त्रुटि को छोटा करता है, क्योंकि ln b एक नंगे b जितना बड़ा नहीं है।
उच्च-क्रम अवकल
किसी एकल वेरिएबल्स x के फलन y = f(x) के उच्च-क्रम के अवकलों को इसके माध्यम से परिभाषित किया जा सकता है:[8]
और, सामान्य तौर पर,
अनौपचारिक रूप से, यह उच्च क्रम के डेरिवेटिव के लिए लिबनिज़ के अंकन को प्रेरित करता है
जब स्वतंत्र वेरिएबल्स x को स्वयं अन्य वेरिएबल्स पर निर्भर रहने की अनुमति दी जाती है, तो अभिव्यक्ति अधिक जटिल हो जाती है, क्योंकि इसमें x में ही उच्च क्रम के अवकल भी सम्मिलित होने चाहिए। इस प्रकार, उदाहरण के लिए,
इत्यादि।
इसी तरह के विचार कई वेरिएबल्स के फलनों के उच्च क्रम के अवकल को परिभाषित करने के लिए प्रायुक्त होते हैं। उदाहरण के लिए, यदि f दो वेरिएबल्स x और y का फलन है, तो
जहाँ द्विपद गुणांक है। अधिक वेरिएबल्स में, समान अभिव्यक्ति धारण करती है, लेकिन द्विपद विस्तार के अतिरिक्त उपयुक्त बहुपद गुणांक विस्तार के साथ।[9] कई वेरिएबल्स में उच्च क्रम के अवकल भी अधिक जटिल हो जाते हैं जब स्वतंत्र वेरिएबल्स को स्वयं अन्य वेरिएबल्स पर निर्भर रहने की अनुमति दी जाती है। उदाहरण के लिए, x और y के फलन f के लिए, जिन्हें सहायक वेरिएबल्स पर निर्भर रहने की अनुमति है, के पास है
इस सांकेतिक अक्षमता के कारण, उच्च क्रम के अवकलों के उपयोग की व्यापक रूप से आलोचना की गई थी हैडमार्ड 1935 , जिन्होंने निष्कर्ष निकाला:
- अंत में, समानता का अर्थ या प्रतिनिधित्व क्या है?
- ए मोन एविस, रिएन डू टाउट।
वह है: अंत में, समानता [...] का क्या अर्थ है, या प्रतिनिधित्व किया गया है? मेरी राय में, कुछ भी नहीं। इस संशयवाद के अतिरिक्त, उच्च क्रम के अवकल विश्लेषण में महत्वपूर्ण उपकरण के रूप में उभरे थे।[10]
इन संदर्भों में, वृद्धि Δx पर प्रायुक्त फलन f के nवें क्रम के अवकल को इसके द्वारा परिभाषित किया जाता है
या समकक्ष अभिव्यक्ति, जैसे
जहाँ वृद्धि tΔx के साथ nवां आगे का अवकल है।
यह परिभाषा तब भी समझ में आती है जब f कई वेरिएबल्स का फलन है (सादगी के लिए यहाँ वेक्टर तर्क के रूप में लिया गया है)। फिर इस तरह से परिभाषित nवां अवकल सदिश वृद्धि Δx में डिग्री n का सजातीय फलन है। इसके अतिरिक्त, बिंदु x पर f की टेलर श्रृंखला द्वारा दी गई है
उच्च क्रम गैटॉक्स व्युत्पन्न इन विचारों को अनंत आयामी स्थानों के लिए सामान्यीकृत करता है।
गुण
अवकल के कई गुण व्युत्पन्न, आंशिक व्युत्पन्न और कुल व्युत्पन्न के संबंधित गुणों से सीधे विधि से अनुसरण करते हैं। इसमे सम्मिलित है:[11]
- रैखिकता: स्थिरांक a और b और अवकलीय फलन f और g के लिए,
- उत्पाद नियम: दो अलग-अलग फलनों f और g के लिए,
इन दो गुणों के साथ ऑपरेशन डी सार बीजगणित में व्युत्पन्न (अमूर्त बीजगणित) के रूप में जाना जाता है। वे शक्ति नियम प्रायुक्त करते हैं
इसके अतिरिक्त, व्यापकता के बढ़ते स्तर में श्रृंखला नियम के विभिन्न रूप धारण करते हैं:[12]
- यदि y = f(u) वेरिएबल u का अवकलीय फलन है और u = g(x) x का अवकलीय फलन है, तो
- यदि y = f(x1, ..., xn) और सभी वेरिएबल्स x1, ..., xn दूसरे वेरिएबल t पर निर्भर करते हैं, फिर चेन रूल द्वारा कई वेरिएबल्स के लिए, के पास है
- अनुमानिक रूप से, कई वेरिएबल्स के लिए श्रृंखला नियम को इस समीकरण के दोनों पक्षों के माध्यम से अनंत रूप से छोटी मात्रा dt से विभाजित करके समझा जा सकता है।
- अधिक सामान्य अनुरूप भाव धारण करते हैं, जिसमें मध्यवर्ती वेरिएबल्स xi होते हैं से अधिक वेरिएबल्स पर निर्भर करते हैं।
सामान्य सूत्रीकरण
फलन f : Rn → Rm दो यूक्लिडियन अवकलिक्ष स्थान के बीच के लिए अवकल की सुसंगत धारणा विकसित की जा सकती है। माना x,Δx ∈ Rn यूक्लिडियन सदिशों का युग्म हो। फलन f में वृद्धि है
यदि कोई m × n मैट्रिक्स (गणित) A उपस्थित है, जैसे कि
जिसमें वेक्टर ε → 0 के रूप में Δx → 0, फिर f परिभाषा के अनुसार बिंदु x पर अवकलीय है। मैट्रिक्स A को कभी-कभी जैकबियन मैट्रिक्स के रूप में जाना जाता है, और रैखिक परिवर्तन जो वेतन वृद्धि Δx ∈ Rn से जुड़ा होता है सदिश AΔ'x' ∈ 'R'm, इस सामान्य सेटिंग में, बिंदु x पर f के अवकल df(x) के रूप में जाना जाता है। यह बिल्कुल फ्रेचेट डेरिवेटिव है, और किसी भी बनच रिक्त स्थान के बीच फलन के लिए काम करने के लिए ही निर्माण किया जा सकता है।
और उपयोगी दृष्टिकोण अवकल को सीधे प्रकार के दिशात्मक व्युत्पन्न के रूप में परिभाषित करना है:
जो उच्च क्रम के अवकल को परिभाषित करने के लिए पहले से ही लिया गया दृष्टिकोण है (और कॉची द्वारा निर्धारित परिभाषा के लगभग है)। यदि टी समय और 'एक्स' स्थिति का प्रतिनिधित्व करता है, तो 'एच' विस्थापन के अतिरिक्त वेग का प्रतिनिधित्व करता है जैसा कि हमने इसे पहले माना है। यह अवकल की धारणा का और शोधन देता है: कि यह गतिज वेग का रैखिक फलन होना चाहिए। अवकलिक्ष के किसी दिए गए बिंदु के माध्यम से सभी वेगों का सेट स्पर्शरेखा स्थान के रूप में जाना जाता है, और इसलिए df स्पर्शरेखा स्थान पर रैखिक फलन देता है: अवकल रूप। इस व्याख्या के साथ, एफ के अवकल को बाहरी व्युत्पन्न के रूप में जाना जाता है, और अवकल ज्यामिति में व्यापक अनुप्रयोग होता है क्योंकि वेग और स्पर्शरेखा स्थान की धारणा किसी भी अलग-अलग कई गुना पर समझ में आती है। यदि, इसके अतिरिक्त, f का आउटपुट मान भी स्थिति (यूक्लिडियन अवकलिक्ष में) का प्रतिनिधित्व करता है, तो आयामी विश्लेषण पुष्टि करता है कि df का आउटपुट मान वेग होना चाहिए। यदि कोई इस विधि से अवकल का इलाज करता है, तो इसे पुशफॉर्वर्ड (अवकल) के रूप में जाना जाता है क्योंकि यह स्रोत स्थान से वेग को लक्ष्य स्थान में वेग में धकेलता है।
अन्य दृष्टिकोण
यद्यपि अतिसूक्ष्म वेतन वृद्धि dx होने की धारणा आधुनिक गणितीय विश्लेषण में अच्छी तरह से परिभाषित नहीं है, अवकल (अनंत) को परिभाषित करने के लिए कई तरह की तकनीकें उपस्थित हैं जिससे किसी फलन के अवकल को इस तरह से नियंत्रित किया जा सके जो इसके साथ संघर्ष न करे। लीबनिज संकेतन। इसमे सम्मिलित है:
- अवकल को प्रकार के अवकल फॉर्म के रूप में परिभाषित करना, विशेष रूप से किसी फलन का बाहरी डेरिवेटिव। फिर बिंदु पर स्पर्शरेखा स्थान में वैक्टर के साथ अनंत वेतन वृद्धि की पहचान की जाती है। यह दृष्टिकोण अवकल ज्यामिति और संबंधित क्षेत्रों में लोकप्रिय है, क्योंकि यह अलग-अलग कई गुनाओं के बीच मैपिंग को आसानी से सामान्यीकृत करता है।
- क्रमविनिमेय वलयों के निलपोटेंट तत्वों के रूप में अवकल। यह दृष्टिकोण बीजगणितीय ज्यामिति में लोकप्रिय है।[13]
- सेट थ्योरी के स्मूथ मॉडल में अवकल्स। इस दृष्टिकोण को सिंथेटिक अवकल ज्यामिति या चिकना अत्यल्प विश्लेषण के रूप में जाना जाता है और यह बीजगणितीय ज्यामितीय दृष्टिकोण से निकटता से संबंधित है, सिवाय इसके कि टोपोस सिद्धांत के विचारों का उपयोग उस तंत्र को छिपाने के लिए किया जाता है जिसके द्वारा निलपोटेंट इनफिनिटिमल प्रस्तुत किए जाते हैं।[14]
- अति वास्तविक संख्या सिस्टम में इनफिनिटिमल्स के रूप में अवकल, जो वास्तविक संख्याओं के विस्तार होते हैं जिनमें इन्वर्टिबल इनफिनिटिमल्स और अनंत रूप से बड़ी संख्याएँ होती हैं। यह अब्राहम रॉबिन्सन द्वारा प्रतिपादित अमानक विश्लेषण का दृष्टिकोण है।[15]
उदाहरण और अनुप्रयोग
गणना में प्रयोगात्मक त्रुटियों के प्रसार का अध्ययन करने के लिए संख्यात्मक विश्लेषण में विभेदकों का प्रभावी ढंग से उपयोग किया जा सकता है, और इस प्रकार किसी समस्या की समग्र संख्यात्मक स्थिरता (कुरंट 1937a) . मान लीजिए कि वेरिएबल्स x प्रयोग के परिणाम का प्रतिनिधित्व करता है और y x पर प्रायुक्त संख्यात्मक गणना का परिणाम है। प्रश्न यह है कि किस सीमा तक x के मापन में त्रुटियाँ y की गणना के परिणाम को प्रभावित करती हैं। यदि x अपने वास्तविक मान के Δx के अन्दर जाना जाता है, तो टेलर का प्रमेय y की गणना में त्रुटि Δy पर निम्नलिखित अनुमान देता है:
जहाँ ξ = x + θΔx कुछ के लिए 0 < θ < 1. यदि Δx छोटा है, तो दूसरा ऑर्डर शब्द नगण्य है, जिससे Δy, व्यावहारिक उद्देश्यों के लिए, अच्छी तरह से dy = f'(x)Δx अनुमानित हो।
अवकल समीकरण को फिर से लिखने के लिए अवकल अक्सर उपयोगी होता है
प्रपत्र में
विशेष रूप से जब कोई वेरिएबल्स को अलग करना चाहता है।
टिप्पणियाँ
- ↑ For a detailed historical account of the differential, see Boyer 1959, especially page 275 for Cauchy's contribution on the subject. An abbreviated account appears in Kline 1972, Chapter 40.
- ↑ Cauchy explicitly denied the possibility of actual infinitesimal and infinite quantities (Boyer 1959, pp. 273–275), and took the radically different point of view that "a variable quantity becomes infinitely small when its numerical value decreases indefinitely in such a way as to converge to zero" (Cauchy 1823, p. 12; translation from Boyer 1959, p. 273).
- ↑ Boyer 1959, p. 275
- ↑ Boyer 1959, p. 12: "The differentials as thus defined are only new variables, and not fixed infinitesimals..."
- ↑ Courant 1937a, II, §9: "Here we remark merely in passing that it is possible to use this approximate representation of the increment by the linear expression to construct a logically satisfactory definition of a "differential", as was done by Cauchy in particular."
- ↑ Boyer 1959, p. 284
- ↑ See, for instance, the influential treatises of Courant 1937a, Kline 1977, Goursat 1904, and Hardy 1908. Tertiary sources for this definition include also Tolstov 2001 and Itô 1993, §106.
- ↑ Cauchy 1823. See also, for instance, Goursat 1904, I, §14.
- ↑ Goursat 1904, I, §14
- ↑ In particular to infinite dimensional holomorphy (Hille & Phillips 1974) and numerical analysis via the calculus of finite differences.
- ↑ Goursat 1904, I, §17
- ↑ Goursat 1904, I, §§14,16
- ↑ Eisenbud & Harris 1998.
- ↑ See Kock 2006 and Moerdijk & Reyes 1991.
- ↑ See Robinson 1996 and Keisler 1986.
यह भी देखें
- विभेदीकरण के लिए संकेतन
संदर्भ
- Boyer, Carl B. (1959), The history of the calculus and its conceptual development, New York: Dover Publications, MR 0124178.
- Cauchy, Augustin-Louis (1823), Résumé des Leçons données à l'Ecole royale polytechnique sur les applications du calcul infinitésimal, archived from the original on 2007-07-08, retrieved 2009-08-19.
- Courant, Richard (1937a), Differential and integral calculus. Vol. I, Wiley Classics Library, New York: John Wiley & Sons (published 1988), ISBN 978-0-471-60842-4, MR 1009558.
- Courant, Richard (1937b), Differential and integral calculus. Vol. II, Wiley Classics Library, New York: John Wiley & Sons (published 1988), ISBN 978-0-471-60840-0, MR 1009559.
- Courant, Richard; John, Fritz (1999), Introduction to Calculus and Analysis Volume 1, Classics in Mathematics, Berlin, New York: Springer-Verlag, ISBN 3-540-65058-X, MR 1746554
- Eisenbud, David; Harris, Joe (1998), The Geometry of Schemes, Springer-Verlag, ISBN 0-387-98637-5.
- Fréchet, Maurice (1925), "La notion de différentielle dans l'analyse générale", Annales Scientifiques de l'École Normale Supérieure, Série 3, 42: 293–323, doi:10.24033/asens.766, ISSN 0012-9593, MR 1509268.
- Goursat, Édouard (1904), A course in mathematical analysis: Vol 1: Derivatives and differentials, definite integrals, expansion in series, applications to geometry, E. R. Hedrick, New York: Dover Publications (published 1959), MR 0106155.
- Hadamard, Jacques (1935), "La notion de différentiel dans l'enseignement", Mathematical Gazette, XIX (236): 341–342, doi:10.2307/3606323, JSTOR 3606323.
- Hardy, Godfrey Harold (1908), A Course of Pure Mathematics, Cambridge University Press, ISBN 978-0-521-09227-2.
- Hille, Einar; Phillips, Ralph S. (1974), Functional analysis and semi-groups, Providence, R.I.: American Mathematical Society, MR 0423094.
- Itô, Kiyosi (1993), Encyclopedic Dictionary of Mathematics (2nd ed.), MIT Press, ISBN 978-0-262-59020-4.
- Kline, Morris (1977), "Chapter 13: Differentials and the law of the mean", Calculus: An intuitive and physical approach, John Wiley and Sons.
- Kline, Morris (1972), Mathematical thought from ancient to modern times (3rd ed.), Oxford University Press (published 1990), ISBN 978-0-19-506136-9
- Keisler, H. Jerome (1986), Elementary Calculus: An Infinitesimal Approach (2nd ed.).
- Kock, Anders (2006), Synthetic Differential Geometry (PDF) (2nd ed.), Cambridge University Press.
- Moerdijk, I.; Reyes, G.E. (1991), Models for Smooth Infinitesimal Analysis, Springer-Verlag.
- Robinson, Abraham (1996), Non-standard analysis, Princeton University Press, ISBN 978-0-691-04490-3.
- Tolstov, G.P. (2001) [1994], "Differential", Encyclopedia of Mathematics, EMS Press.
बाहरी संबंध
- Differential Of A Function at Wolfram Demonstrations Project