बहुमान फलन: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Generalized mathematical function}} {{More footnotes needed|date=January 2020}} {{About|multivalued functions as they are considered in mathematical analys...")
 
No edit summary
 
(6 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Generalized mathematical function}}
गणित में '''बहुमान फलन''', जिसे बहुफलन भी कहा जाता है। यह एक समुच्चय मान फलन होता है जिसमें निरंतरता के गुण होते हैं जो इसे स्थानीय रूप से सामान्य फलन के रूप में मानने की स्वीकृति देते हैं।
{{More footnotes needed|date=January 2020}}
{{About|multivalued functions as they are considered in mathematical analysis|set-valued functions as considered in variational analysis|set-valued function}}{{distinguish|Multivariate function}}गणित में, एक बहु-मूल्यवान फ़ंक्शन, जिसे मल्टीफ़ंक्शन और कई-मूल्यवान फ़ंक्शन भी कहा जाता है, निरंतरता गुणों वाला एक [[सेट-वैल्यू फ़ंक्शन]] है जो इसे स्थानीय रूप से सामान्य फ़ंक्शन के रूप में मानने की अनुमति देता है।


बहुविकल्पीय कार्य आमतौर पर [[अंतर्निहित कार्य प्रमेय]] के अनुप्रयोगों में उत्पन्न होते हैं, क्योंकि इस प्रमेय को एक बहुविकल्पीय कार्य के अस्तित्व पर जोर देने के रूप में देखा जा सकता है। विशेष रूप से, एक अवकलनीय फलन का व्युत्क्रम फलन एक बहुमान फलन होता है। उदाहरण के लिए, [[जटिल लघुगणक]] एक बहुविकल्पीय फ़ंक्शन है, जो घातीय फ़ंक्शन के व्युत्क्रम के रूप में है। इसे एक सामान्य कार्य के रूप में नहीं माना जा सकता है, क्योंकि जब कोई एक सर्कल के साथ लघुगणक के एक मान का अनुसरण करता है {{math|0}}, एक पूर्ण मोड़ के बाद शुरुआती मूल्य की तुलना में एक और मूल्य प्राप्त होता है। इस घटना को [[मोनोड्रोमी]] कहा जाता है।
बहुमान फलन सामान्यतः [[अंतर्निहित कार्य प्रमेय|अंतर्निहित फलन प्रमेय]] के अनुप्रयोगों में उत्पन्न होते हैं, क्योंकि इस प्रमेय को बहुमान फलन के अस्तित्व पर महत्व देने के रूप में देखा जा सकता है। विशेष रूप से अवकलनीय फलन का व्युत्क्रम फलन बहुमान फलन होता है। उदाहरण के लिए [[जटिल लघुगणक|समिश्र लघुगणक]] एक बहुमान फलन है जो घातीय फलन के व्युत्क्रम के रूप में है। इसे एक सामान्य फलन के रूप में नहीं माना जा सकता है क्योंकि जब कोई फलन 0 पर केन्द्रित वृत्त के साथ लघुगणक के एक मान का अनुसरण करता है। तो उसे एक पूर्ण मोड़ के बाद प्रारंभिक मान से एक और मान प्राप्त होता है। इस घटना को "[[मोनोड्रोमी]]" कहा जाता है।


एक बहुविकल्पीय फ़ंक्शन को परिभाषित करने का एक अन्य सामान्य तरीका [[विश्लेषणात्मक निरंतरता]] है, जो आमतौर पर कुछ मोनोड्रोमी उत्पन्न करता है: एक बंद वक्र के साथ विश्लेषणात्मक निरंतरता एक अंतिम मान उत्पन्न कर सकती है जो प्रारंभिक मूल्य से भिन्न होती है।
बहुमान फलन को परिभाषित करने का एक अन्य सामान्य प्रकार विश्लेषणात्मक निरंतरता है जो सामान्यतः कुछ मोनोड्रोमी उत्पन्न करता है। एक विवृत वक्र के साथ विश्लेषणात्मक निरंतरता एक अंतिम मान उत्पन्न कर सकती है जो प्रारंभिक मान से भिन्न होता है।


बहुविकल्पीय कार्य [[अंतर समीकरण]]ों के समाधान के रूप में भी उत्पन्न होते हैं, जहां विभिन्न मूल्यों को प्रारंभिक स्थितियों द्वारा पैरामीट्रिज किया जाता है।
बहुमान फलन अंतर समीकरणों के समाधान के रूप में भी उत्पन्न होते हैं, जहां विभिन्न मानों को प्रारंभिक स्थितियों द्वारा पैरामीट्रिज (प्राचलीकरण) किया जाता है।


== प्रेरणा ==
== प्रेरणा ==
मल्टीवैल्यूड फ़ंक्शन शब्द की उत्पत्ति विश्लेषणात्मक निरंतरता से जटिल विश्लेषण में हुई है। अक्सर ऐसा होता है कि कोई जटिल [[विश्लेषणात्मक कार्य]] का मूल्य जानता है <math>f(z)</math> एक बिंदु के कुछ [[पड़ोस (गणित)]] में <math>z=a</math>. यह अंतर्निहित कार्य प्रमेय या [[टेलर श्रृंखला]] द्वारा परिभाषित कार्यों के मामले में है <math>z=a</math>. ऐसी स्थिति में, व्यक्ति एकल-मूल्यवान फलन के क्षेत्र का विस्तार कर सकता है <math>f(z)</math> पर शुरू होने वाले जटिल विमान में घटता के साथ <math>a</math>. ऐसा करने पर, एक बिंदु पर विस्तारित फ़ंक्शन का मान पाता है <math>z=b</math> से चुने हुए वक्र पर निर्भर करता है <math>a</math> को <math>b</math>; चूंकि कोई भी नया मूल्य अन्य मूल्यों की तुलना में अधिक स्वाभाविक नहीं है, वे सभी एक बहु-मूल्यवान कार्य में शामिल हैं।
बहुमान फलन शब्द की उत्पत्ति विश्लेषणात्मक निरंतरता से समिश्र विश्लेषण में हुई है। प्रायः ऐसा होता है कि एक बिंदु <math>z=a</math> के निकट में एक समिश्र विश्लेषणात्मक फलन <math>f(z)</math> का मान जानता है। निहित फलन प्रमेय <math>z=a</math> के आस-पास [[टेलर श्रृंखला]] द्वारा परिभाषित फलनों के लिए यही स्थिति है। ऐसी स्थिति में एक से प्रारम्भ होने वाले समिश्र समतल में वक्रों के साथ एकल मान फलन <math>f(z)</math> के डोमेन का विस्तार किया जा सकता है। ऐसा करने पर कोई यह प्राप्त करता है कि एक बिंदु <math>z=b</math> पर विस्तारित फलन का मान a से b तक के चुने हुए वक्र पर निर्भर करता है क्योंकि कोई भी नया मान दूसरों की तुलना में अधिक स्वाभाविक नहीं होता है। उन सभी बहुमान फलन को इसमें सम्मिलित किया गया है।


उदाहरण के लिए, चलो <math>f(z)=\sqrt{z}\,</math> धनात्मक वास्तविक संख्याओं पर सामान्य [[वर्गमूल]] फलन हो। कोई अपने डोमेन को के आस-पड़ोस तक बढ़ा सकता है <math>z=1</math> जटिल विमान में, और फिर आगे घटता के साथ शुरू होता है <math>z=1</math>, ताकि किसी दिए गए वक्र के साथ मान लगातार भिन्न हों <math>\sqrt{1}=1</math>. ऋणात्मक वास्तविक संख्याओं तक विस्तार करने पर, वर्गमूल के लिए दो विपरीत मान प्राप्त होते हैं—उदाहरण के लिए {{math|±''i''}} के लिए {{math|–1}}—इस पर निर्भर करते हुए कि क्या डोमेन को जटिल तल के ऊपरी या निचले आधे हिस्से के माध्यम से विस्तारित किया गया है। यह परिघटना बहुत बार-बार होती है, nवें मूल के लिए घटित होती है{{mvar|n}}वें मूल, लघुगणक और प्रतिलोम त्रिकोणमितीय फलन।
उदाहरण के लिए मान लीजिए कि <math>f(z)=\sqrt{z}\,</math> धनात्मक वास्तविक संख्याओं पर सामान्य [[वर्गमूल]] फलन है। कोई अपने डोमेन को समिश्र समतल में z = 1 के पास तक बढ़ा सकता है। और फिर <math>z=1</math> से प्रारम्भ होने वाले वक्रों के साथ आगे बढ़ सकता है ताकि किसी दिए गए वक्र के मान निरंतर <math>\sqrt{1}=1</math> से भिन्न हो। ऋणात्मक वास्तविक संख्याओं तक विस्तार करने पर वर्गमूल के लिए दो विपरीत मान प्राप्त होते हैं। उदाहरण के लिए {{math|±''i''}} के लिए {{math|–1}} इस पर निर्भर करता है कि डोमेन को समिश्र समतल के ऊपरी या निचले आधे भाग के माध्यम से विस्तृत किया गया है या नहीं विस्तृत किया गया है। यह घटना बार-बार होती है और {{mvar|n}} वें मूल, लघुगणक और प्रतिलोम त्रिकोणमितीय फलनों के लिए घटित होती है।


एक जटिल बहु-मूल्यवान फ़ंक्शन से एकल-मूल्यवान फ़ंक्शन को परिभाषित करने के लिए, एक से अधिक मानों में से एक को मुख्य मान के रूप में अलग किया जा सकता है, जो पूरे विमान पर एकल-मूल्यवान फ़ंक्शन का उत्पादन करता है जो कुछ सीमा वक्रों के साथ बंद है। वैकल्पिक रूप से, मल्टीवैल्यूड फ़ंक्शन से निपटने से कुछ ऐसा होता है जो हर जगह निरंतर होता है, संभावित मूल्य परिवर्तन की कीमत पर जब कोई बंद पथ (मोनोड्रोमी) का अनुसरण करता है। [[रीमैन सतह]]ों के सिद्धांत में इन समस्याओं का समाधान किया गया है: एक बहु-मूल्यवान फ़ंक्शन पर विचार करने के लिए <math>f(z)</math> किसी भी मूल्य को छोड़े बिना एक सामान्य कार्य के रूप में, एक डोमेन को कई-स्तरित शाखाओं वाले आवरण में गुणा करता है, जो [[कई गुना]] है जो रीमैन सतह से जुड़ा हुआ है <math>f(z)</math>.
समिश्र बहुमान फलन से एकल मान फलन को परिभाषित करने के लिए एक से अधिक मानों में से एक को मुख्य मान के रूप में अलग किया जा सकता है। जो पूरे समतल पर एकल मान फलन का उत्पादन करता है जो कुछ सीमा वक्रों के साथ विवृत है। वैकल्पिक रूप से बहुमान फलन सामने से कुछ ऐसा होता है जो प्रत्येक स्थान पर निरंतर होता है। संभावित मान परिवर्तन की कीमत पर जब कोई विवृत पथ (मोनोड्रोमी) का अनुसरण करता है। तब रीमैन सतहों के सिद्धांत में इन समस्याओं का समाधान किया गया है। एक बहुमान फलन <math>f(z)</math> के किसी भी मान को बिना अलग किए एक सामान्य फलन के रूप में विचार करने के लिए डोमेन को कई-स्तरित आच्छादन समष्टि में कई गुना गुणा करता है जो कि <math>f(z)</math> से संबद्ध रीमैन सतह है।


== उदाहरण ==
== उदाहरण ==
*शून्य से बड़ी प्रत्येक [[वास्तविक संख्या]] के दो वास्तविक वर्गमूल होते हैं, ताकि वर्गमूल को एक बहुमूल्यवान फलन माना जा सके। उदाहरण के लिए, हम लिख सकते हैं <math>\sqrt{4}=\pm 2=\{2,-2\}</math>; हालाँकि शून्य का केवल एक वर्गमूल होता है, <math>\sqrt{0} =\{0\}</math>.
*शून्य से बड़ी प्रत्येक [[वास्तविक संख्या]] के दो वास्तविक वर्गमूल होते हैं ताकि वर्गमूल को एक बहुमान फलन माना जा सके। उदाहरण के लिए, हम <math>\sqrt{4}=\pm 2=\{2,-2\}</math> लिख सकते हैं। हालाँकि शून्य का केवल एक वर्गमूल <math>\sqrt{0} =\{0\}</math> होता है।
*प्रत्येक अशून्य सम्मिश्र संख्या में दो वर्गमूल, तीन घनमूल और सामान्यतया n nवां मूल होता है। 0 का केवल nवाँ मूल 0 है।
*प्रत्येक अशून्य सम्मिश्र संख्या में दो वर्गमूल, तीन घनमूल और सामान्यतःn का nवां वर्गमूल होता है और 0 का केवल nवाँ वर्गमूल 0 होता है।
*जटिल लघुगणक फ़ंक्शन बहु-मूल्यवान है। द्वारा ग्रहण किए गए मान <math>\log(a+bi)</math> वास्तविक संख्या के लिए <math>a</math> और <math>b</math> हैं <math>\log{\sqrt{a^2 + b^2}} + i\arg (a+bi) + 2 \pi n i</math> सभी [[पूर्णांक]]ों के लिए <math>n</math>.
*सम्मिश्र लघुगणक फलन या बहुमान फलन द्वारा ग्रहण किए गए मान <math>\log(a+bi)</math> वास्तविक संख्या के लिए <math>a</math> और <math>b</math> हैं जो <math>\log{\sqrt{a^2 + b^2}} + i\arg (a+bi) + 2 \pi n i</math> के सभी [[पूर्णांक|पूर्णांकों]] के लिए <math>n</math> है।
*प्रतिलोम त्रिकोणमितीय कार्य बहु-मूल्यवान होते हैं क्योंकि त्रिकोणमितीय कार्य आवधिक होते हैं। अपने पास <math display="block">
*प्रतिलोम त्रिकोणमितीय फलन बहुमान होते हैं क्योंकि त्रिकोणमितीय फलन आवधिक होते हैं।<math display="block">
\tan\left(\tfrac{\pi}{4}\right) = \tan\left(\tfrac{5\pi}{4}\right)
\tan\left(\tfrac{\pi}{4}\right) = \tan\left(\tfrac{5\pi}{4}\right)
= \tan\left({\tfrac{-3\pi}{4}}\right) = \tan\left({\tfrac{(2n+1)\pi}{4}}\right) = \cdots = 1.
= \tan\left({\tfrac{-3\pi}{4}}\right) = \tan\left({\tfrac{(2n+1)\pi}{4}}\right) = \cdots = 1.
</math> नतीजतन, आर्कटान (1) सहजता से कई मूल्यों से संबंधित है: {{pi}}/4, 5{{pi}}/4, −3{{pi}}/4, और इसी तरह। हम टैन एक्स के डोमेन को प्रतिबंधित करके आर्कटान को एकल-मूल्यवान फ़ंक्शन के रूप में देख सकते हैं {{nowrap|−{{pi}}/2 < ''x'' < {{pi}}/2}} - एक डोमेन जिस पर tan x नीरस रूप से बढ़ रहा है। इस प्रकार, आर्कटान (एक्स) की सीमा बन जाती है {{nowrap|−{{pi}}/2 < ''y'' < {{pi}}/2}}. प्रतिबंधित डोमेन के इन मानों को प्रमुख मान कहा जाता है।
</math>जिसके परिणाम स्वरूप आर्कटान (1) सहज रूप से कई मानों {{pi}}/4, 5{{pi}}/4, −3{{pi}}/4 से संबंधित है और इसी प्रकार हम tan x के डोमेन को {{nowrap|−{{pi}}/2 < ''x'' < {{pi}}/2}} डोमेन जिस पर tan x नीरस रूप से बढ़ रहा है। tan x के मान को सीमित करके आर्कटान को एकल मान फलन के रूप में मान सकते हैं। इस प्रकार आर्कटान (एक्स) की सीमा{{nowrap|−{{pi}}/2 < ''y'' < {{pi}}/2}} बन जाती है। प्रतिबंधित डोमेन के इन मानों को मुख्य मान कहा जाता है।
* [[ antiderivative ]] को मल्टीवैल्यूड फंक्शन माना जा सकता है। किसी फलन का प्रतिपक्षी उन फलनों का समुच्चय होता है जिसका व्युत्पन्न वह फलन होता है। [[एकीकरण की निरंतरता]] इस तथ्य से अनुसरण करती है कि एक स्थिर कार्य का व्युत्पन्न 0 है।
* विरोधी व्युत्पन्न को बहुमान फलन के रूप में माना जा सकता है। किसी फलन का प्रतिपक्षी उन फलनों का समुच्चय होता है। जिसका व्युत्पन्न वह फलन होता है। एकीकरण की निरंतरता इस तथ्य से अनुसरण करती है कि एक स्थिर फलन का व्युत्पन्न 0 होता है।
*जटिल डोमेन पर व्युत्क्रम अतिपरवलयिक कार्य बहु-मूल्यवान होते हैं क्योंकि अतिशयोक्तिपूर्ण कार्य काल्पनिक अक्ष के साथ आवधिक होते हैं। रियल में, वे आर्कोश और आर्सेच को छोड़कर एकल-मूल्यवान हैं।
*सम्मिश्र डोमेन पर व्युत्क्रम अतिपरवलयिक फलन बहुमान होते हैं क्योंकि अतिपरवलयिक फलन काल्पनिक अक्ष के साथ आवधिक होते हैं। वास्तव में वे आर्कोश और आर्सेच के मान को छोड़कर एकल मान के होते हैं।


ये सभी बहु-मूल्यवान कार्यों के उदाहरण हैं जो गैर-इंजेक्शन कार्यों से आते हैं। चूंकि मूल कार्य उनके इनपुट की सभी सूचनाओं को सुरक्षित नहीं रखते हैं, इसलिए वे उत्क्रमणीय नहीं हैं। अक्सर, एक बहुविकल्पीय फ़ंक्शन का प्रतिबंध मूल फ़ंक्शन का आंशिक व्युत्क्रम होता है।
ये सभी बहुमान फलन के उदाहरण हैं जो गैर अंतःक्षेपक फलन से उत्पन्न होते हैं। चूंकि वर्गमूल फलन उनके इनपुट की सभी सूचनाओं को सुरक्षित नहीं रखते हैं इसलिए वे उत्क्रमणीय नहीं होते हैं। प्रायः बहुमान फलन का प्रतिबंध वर्गमूल फलन का आंशिक व्युत्क्रम होता है।


== शाखा बिंदु ==
== शाखा बिंदु ==
{{Main articles|Branch point}}
{{Main articles|शाखाबिन्दु}}
एक जटिल चर के बहुविकल्पीय कार्यों में [[शाखा बिंदु]] होते हैं। उदाहरण के लिए, nवें मूल और लघुगणक कार्यों के लिए, 0 एक शाखा बिंदु है; आर्कटैंजेंट फ़ंक्शन के लिए, काल्पनिक इकाइयां i और -i शाखा बिंदु हैं। शाखा बिंदुओं का उपयोग करके, इन कार्यों को सीमा को प्रतिबंधित करके एकल-मूल्यवान कार्यों के रूप में पुनर्परिभाषित किया जा सकता है। एक शाखा कट के उपयोग के माध्यम से एक उपयुक्त अंतराल पाया जा सकता है, एक प्रकार का वक्र जो शाखा बिंदुओं के जोड़े को जोड़ता है, इस प्रकार फ़ंक्शन की बहुस्तरीय रीमैन सतह को एक परत में कम कर देता है। जैसा कि वास्तविक कार्यों के मामले में, प्रतिबंधित सीमा को फ़ंक्शन की प्रमुख शाखा कहा जा सकता है।
 
सम्मिश्र चर के बहुमान फलनों में [[शाखा बिंदु]] होते हैं। उदाहरण के लिए nवें मूल और लघुगणक फलनों के लिए 0 एक शाखा बिंदु है। स्पर्शरेखीय फलन के लिए काल्पनिक इकाइयां i और -i शाखा बिंदु हैं। शाखा बिंदुओं का उपयोग करके इन फलनों की सीमा को प्रतिबंधित एकल मान फलनों के रूप में पुनर्परिभाषित किया जा सकता है। एक शाखा बिन्दु के उपयोग के माध्यम से एक उपयुक्त अंतराल पाया जा सकता है। एक प्रकार का वक्र जो शाखा बिंदुओं के जोड़े को जोड़ता है। इस प्रकार के फलन बहुस्तरीय रीमैन सतह को एक परत में अपेक्षाकृत कम कर देते है। जैसा कि वास्तविक फलनों की स्थितियों में प्रतिबंधित सीमा फलनों को मुख्य शाखा बिंदु कहा जा सकता है।


== अनुप्रयोग ==
== अनुप्रयोग ==


भौतिकी में, बहुविकल्पीय कार्य तेजी से महत्वपूर्ण भूमिका निभाते हैं। वे [[पॉल डिराक]] के [[चुंबकीय मोनोपोल]] के लिए गणितीय आधार बनाते हैं, क्रिस्टल में [[क्रिस्टलोग्राफिक दोष]]ों के सिद्धांत के लिए और सामग्री के परिणामस्वरूप [[प्लास्टिसिटी (भौतिकी)]], [[superfluid]] और [[सुपरकंडक्टर]]्स में [[भंवर]] के लिए, और इन प्रणालियों में [[चरण संक्रमण]] के लिए, उदाहरण के लिए पिघलने और [[क्वार्क कारावास]] . वे भौतिकी की कई शाखाओं में [[गेज क्षेत्र]] संरचनाओं के मूल हैं।{{Citation needed|reason=reliable source needed for the paragraph|date=July 2013}}
भौतिकी में बहुमान फलन महत्वपूर्ण भूमिका निभाते हैं। वे [[पॉल डिराक]] के [[चुंबकीय मोनोपोल]] के लिए गणितीय आधार बनाते हैं। क्रिस्टल में दोषों के सिद्धांत और पदार्थों की परिणामी [[प्लास्टिसिटी (भौतिकी)|पराप्रत्यास्थता भौतिकी]] के लिए अति तरल और अतिचालक में चक्रवात और इन प्रणालियों में [[चरण संक्रमण|प्रावस्था संक्रमण]] के लिए गलनांक और [[क्वार्क कारावास|क्वार्क सीमाबद्ध]] मे भौतिकी की कई शाखाओं में गेज क्षेत्र संरचनाओं के लिए मूल हैं।{{Citation needed|reason=reliable source needed for the paragraph|date=July 2013}}


==अग्रिम पठन==
==अग्रिम पठन==
* [[Hagen Kleinert|H. Kleinert]], ''Multivalued Fields in Condensed Matter, Electrodynamics, and Gravitation'', [https://web.archive.org/web/20080315225354/http://www.worldscibooks.com/physics/6742.html World Scientific (Singapore, 2008)] (also available [http://www.physik.fu-berlin.de/~kleinert/re.html#B9 online])
* [[Hagen Kleinert|H. Kleinert]], ''Multivalued Fields in Condensed Matter, Electrodynamics, and Gravitation'', [https://web.archive.org/web/20080315225354/http://www.worldscibooks.com/physics/6742.html World Scientific (Singapore, 2008)] (also available [http://www.physik.fu-berlin.de/~kleinert/re.html#B9 online])
* [[Hagen Kleinert|H. Kleinert]], ''Gauge Fields in Condensed Matter'', Vol. I: Superflow and Vortex Lines, 1–742, Vol. II: Stresses and Defects, 743–1456, World Scientific, Singapore, 1989 (also available online: [http://users.physik.fu-berlin.de/~kleinert/kleiner_reb1/contents1.html Vol. I] and [http://users.physik.fu-berlin.de/~kleinert/kleiner_reb1/contents2.html Vol. II])
* [[Hagen Kleinert|H. Kleinert]], ''Gauge Fields in Condensed Matter'', Vol. I: Superflow and Vortex Lines, 1–742, Vol. II: Stresses and Defects, 743–1456, World Scientific, Singapore, 1989 (also available online: [http://users.physik.fu-berlin.de/~kleinert/kleiner_reb1/contents1.html Vol. I] and [http://users.physik.fu-berlin.de/~kleinert/kleiner_reb1/contents2.html Vol. II])
[[Category: कार्य और मानचित्रण]]


[[Category: Machine Translated Page]]
[[Category:All articles lacking in-text citations]]
[[Category:All articles with unsourced statements]]
[[Category:Articles lacking in-text citations from January 2020]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with unsourced statements from July 2013]]
[[Category:Created On 12/05/2023]]
[[Category:Created On 12/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:कार्य और मानचित्रण]]

Latest revision as of 13:43, 29 August 2023

गणित में बहुमान फलन, जिसे बहुफलन भी कहा जाता है। यह एक समुच्चय मान फलन होता है जिसमें निरंतरता के गुण होते हैं जो इसे स्थानीय रूप से सामान्य फलन के रूप में मानने की स्वीकृति देते हैं।

बहुमान फलन सामान्यतः अंतर्निहित फलन प्रमेय के अनुप्रयोगों में उत्पन्न होते हैं, क्योंकि इस प्रमेय को बहुमान फलन के अस्तित्व पर महत्व देने के रूप में देखा जा सकता है। विशेष रूप से अवकलनीय फलन का व्युत्क्रम फलन बहुमान फलन होता है। उदाहरण के लिए समिश्र लघुगणक एक बहुमान फलन है जो घातीय फलन के व्युत्क्रम के रूप में है। इसे एक सामान्य फलन के रूप में नहीं माना जा सकता है क्योंकि जब कोई फलन 0 पर केन्द्रित वृत्त के साथ लघुगणक के एक मान का अनुसरण करता है। तो उसे एक पूर्ण मोड़ के बाद प्रारंभिक मान से एक और मान प्राप्त होता है। इस घटना को "मोनोड्रोमी" कहा जाता है।

बहुमान फलन को परिभाषित करने का एक अन्य सामान्य प्रकार विश्लेषणात्मक निरंतरता है जो सामान्यतः कुछ मोनोड्रोमी उत्पन्न करता है। एक विवृत वक्र के साथ विश्लेषणात्मक निरंतरता एक अंतिम मान उत्पन्न कर सकती है जो प्रारंभिक मान से भिन्न होता है।

बहुमान फलन अंतर समीकरणों के समाधान के रूप में भी उत्पन्न होते हैं, जहां विभिन्न मानों को प्रारंभिक स्थितियों द्वारा पैरामीट्रिज (प्राचलीकरण) किया जाता है।

प्रेरणा

बहुमान फलन शब्द की उत्पत्ति विश्लेषणात्मक निरंतरता से समिश्र विश्लेषण में हुई है। प्रायः ऐसा होता है कि एक बिंदु के निकट में एक समिश्र विश्लेषणात्मक फलन का मान जानता है। निहित फलन प्रमेय के आस-पास टेलर श्रृंखला द्वारा परिभाषित फलनों के लिए यही स्थिति है। ऐसी स्थिति में एक से प्रारम्भ होने वाले समिश्र समतल में वक्रों के साथ एकल मान फलन के डोमेन का विस्तार किया जा सकता है। ऐसा करने पर कोई यह प्राप्त करता है कि एक बिंदु पर विस्तारित फलन का मान a से b तक के चुने हुए वक्र पर निर्भर करता है क्योंकि कोई भी नया मान दूसरों की तुलना में अधिक स्वाभाविक नहीं होता है। उन सभी बहुमान फलन को इसमें सम्मिलित किया गया है।

उदाहरण के लिए मान लीजिए कि धनात्मक वास्तविक संख्याओं पर सामान्य वर्गमूल फलन है। कोई अपने डोमेन को समिश्र समतल में z = 1 के पास तक बढ़ा सकता है। और फिर से प्रारम्भ होने वाले वक्रों के साथ आगे बढ़ सकता है ताकि किसी दिए गए वक्र के मान निरंतर से भिन्न हो। ऋणात्मक वास्तविक संख्याओं तक विस्तार करने पर वर्गमूल के लिए दो विपरीत मान प्राप्त होते हैं। उदाहरण के लिए ±i के लिए –1 इस पर निर्भर करता है कि डोमेन को समिश्र समतल के ऊपरी या निचले आधे भाग के माध्यम से विस्तृत किया गया है या नहीं विस्तृत किया गया है। यह घटना बार-बार होती है और n वें मूल, लघुगणक और प्रतिलोम त्रिकोणमितीय फलनों के लिए घटित होती है।

समिश्र बहुमान फलन से एकल मान फलन को परिभाषित करने के लिए एक से अधिक मानों में से एक को मुख्य मान के रूप में अलग किया जा सकता है। जो पूरे समतल पर एकल मान फलन का उत्पादन करता है जो कुछ सीमा वक्रों के साथ विवृत है। वैकल्पिक रूप से बहुमान फलन सामने से कुछ ऐसा होता है जो प्रत्येक स्थान पर निरंतर होता है। संभावित मान परिवर्तन की कीमत पर जब कोई विवृत पथ (मोनोड्रोमी) का अनुसरण करता है। तब रीमैन सतहों के सिद्धांत में इन समस्याओं का समाधान किया गया है। एक बहुमान फलन के किसी भी मान को बिना अलग किए एक सामान्य फलन के रूप में विचार करने के लिए डोमेन को कई-स्तरित आच्छादन समष्टि में कई गुना गुणा करता है जो कि से संबद्ध रीमैन सतह है।

उदाहरण

  • शून्य से बड़ी प्रत्येक वास्तविक संख्या के दो वास्तविक वर्गमूल होते हैं ताकि वर्गमूल को एक बहुमान फलन माना जा सके। उदाहरण के लिए, हम लिख सकते हैं। हालाँकि शून्य का केवल एक वर्गमूल होता है।
  • प्रत्येक अशून्य सम्मिश्र संख्या में दो वर्गमूल, तीन घनमूल और सामान्यतःn का nवां वर्गमूल होता है और 0 का केवल nवाँ वर्गमूल 0 होता है।
  • सम्मिश्र लघुगणक फलन या बहुमान फलन द्वारा ग्रहण किए गए मान वास्तविक संख्या के लिए और हैं जो के सभी पूर्णांकों के लिए है।
  • प्रतिलोम त्रिकोणमितीय फलन बहुमान होते हैं क्योंकि त्रिकोणमितीय फलन आवधिक होते हैं।
    जिसके परिणाम स्वरूप आर्कटान (1) सहज रूप से कई मानों π/4, 5π/4, −3π/4 से संबंधित है और इसी प्रकार हम tan x के डोमेन को π/2 < x < π/2 डोमेन जिस पर tan x नीरस रूप से बढ़ रहा है। tan x के मान को सीमित करके आर्कटान को एकल मान फलन के रूप में मान सकते हैं। इस प्रकार आर्कटान (एक्स) की सीमाπ/2 < y < π/2 बन जाती है। प्रतिबंधित डोमेन के इन मानों को मुख्य मान कहा जाता है।
  • विरोधी व्युत्पन्न को बहुमान फलन के रूप में माना जा सकता है। किसी फलन का प्रतिपक्षी उन फलनों का समुच्चय होता है। जिसका व्युत्पन्न वह फलन होता है। एकीकरण की निरंतरता इस तथ्य से अनुसरण करती है कि एक स्थिर फलन का व्युत्पन्न 0 होता है।
  • सम्मिश्र डोमेन पर व्युत्क्रम अतिपरवलयिक फलन बहुमान होते हैं क्योंकि अतिपरवलयिक फलन काल्पनिक अक्ष के साथ आवधिक होते हैं। वास्तव में वे आर्कोश और आर्सेच के मान को छोड़कर एकल मान के होते हैं।

ये सभी बहुमान फलन के उदाहरण हैं जो गैर अंतःक्षेपक फलन से उत्पन्न होते हैं। चूंकि वर्गमूल फलन उनके इनपुट की सभी सूचनाओं को सुरक्षित नहीं रखते हैं इसलिए वे उत्क्रमणीय नहीं होते हैं। प्रायः बहुमान फलन का प्रतिबंध वर्गमूल फलन का आंशिक व्युत्क्रम होता है।

शाखा बिंदु

सम्मिश्र चर के बहुमान फलनों में शाखा बिंदु होते हैं। उदाहरण के लिए nवें मूल और लघुगणक फलनों के लिए 0 एक शाखा बिंदु है। स्पर्शरेखीय फलन के लिए काल्पनिक इकाइयां i और -i शाखा बिंदु हैं। शाखा बिंदुओं का उपयोग करके इन फलनों की सीमा को प्रतिबंधित एकल मान फलनों के रूप में पुनर्परिभाषित किया जा सकता है। एक शाखा बिन्दु के उपयोग के माध्यम से एक उपयुक्त अंतराल पाया जा सकता है। एक प्रकार का वक्र जो शाखा बिंदुओं के जोड़े को जोड़ता है। इस प्रकार के फलन बहुस्तरीय रीमैन सतह को एक परत में अपेक्षाकृत कम कर देते है। जैसा कि वास्तविक फलनों की स्थितियों में प्रतिबंधित सीमा फलनों को मुख्य शाखा बिंदु कहा जा सकता है।

अनुप्रयोग

भौतिकी में बहुमान फलन महत्वपूर्ण भूमिका निभाते हैं। वे पॉल डिराक के चुंबकीय मोनोपोल के लिए गणितीय आधार बनाते हैं। क्रिस्टल में दोषों के सिद्धांत और पदार्थों की परिणामी पराप्रत्यास्थता भौतिकी के लिए अति तरल और अतिचालक में चक्रवात और इन प्रणालियों में प्रावस्था संक्रमण के लिए गलनांक और क्वार्क सीमाबद्ध मे भौतिकी की कई शाखाओं में गेज क्षेत्र संरचनाओं के लिए मूल हैं।[citation needed]

अग्रिम पठन