स्थिर अवस्था (रसायन विज्ञान): Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 2: | Line 2: | ||
{{other uses|स्थिर अवस्था (बहुविकल्पी)}} | {{other uses|स्थिर अवस्था (बहुविकल्पी)}} | ||
[[रसायन विज्ञान]] में, | [[रसायन विज्ञान]] में, [[स्थिर अवस्था]] एक ऐसी स्थिति हैं। जिसमें सभी [[थर्मोडायनामिक चर]] चल रहे [[रासायनिक प्रक्रिया]] के अतिरिक्त स्थिर होते हैं | जो उन्हें बदलने का प्रयास करते हैं। संपूर्ण प्रणाली के स्थिर अवस्था में होने के लिए, अर्थात प्रणाली के सभी स्तर चर स्थिर होने के लिए, प्रणाली के माध्यम से एक प्रवाह होना चाहिए ([[द्रव्यमान संतुलन]] की तुलना करें)। इस तरह की प्रणाली का सरल उदाहरण एक बाथटब की स्थिति हैं। जिसमें नल चल रहा है किन्तु नाली अनप्लग हैं। एक निश्चित समय के बाद, पानी एक ही दर से अंदर और बाहर बहता है, इसलिए जल स्तर (स्तर चर आयतन) स्थिर हो जाता है और प्रणाली स्थिर स्थिति में है। | ||
स्थिर अवस्था अवधारणा [[रासायनिक संतुलन]] से भिन्न है। यद्यपि दोनों | स्थिर अवस्था अवधारणा [[रासायनिक संतुलन]] से भिन्न है। यद्यपि दोनों ऐसी स्थिति बना सकते हैं | जहां रासायनिक संतुलन में एक प्रणाली में [[एकाग्रता|सांद्रता]] नहीं बदलती हैं। शुद्ध प्रतिक्रिया दर शून्य है ([[उत्पाद (रसायन विज्ञान)]] [[अभिकारक]] में उसी दर पर परिवर्तित होता है जैसे अभिकारक उत्पादों में परिवर्तित होते हैं), जबकि ऐसी कोई सीमा उपस्थित नहीं है स्थिर अवस्था की अवधारणा में वास्तव में, स्थिर अवस्था के विकास के लिए [[रासायनिक प्रतिक्रिया]] का होना पूर्ण रूप से आवश्यक नहीं है। | ||
स्थिर स्थिति शब्द का उपयोग ऐसी स्थिति का वर्णन करने के लिए भी किया जाता हैं। जहां प्रणाली के कुछ, किन्तु सभी स्तर चर स्थिर नहीं होते हैं। ऐसी स्थिर अवस्था के विकास के लिए, प्रणाली को प्रवाह प्रणाली नहीं होना चाहिए। इसलिए, ऐसी स्थिर स्थिति | स्थिर स्थिति शब्द का उपयोग ऐसी स्थिति का वर्णन करने के लिए भी किया जाता हैं। जहां प्रणाली के कुछ, किन्तु सभी स्तर चर स्थिर नहीं होते हैं। ऐसी स्थिर अवस्था के विकास के लिए, प्रणाली को प्रवाह प्रणाली नहीं होना चाहिए। इसलिए, ऐसी स्थिर स्थिति बंद प्रणाली में विकसित हो सकती हैं। जहां रासायनिक प्रतिक्रियाओं की श्रृंखला होती है। रासायनिक गतिज में साहित्य सामान्यतः इस स्थिति को संदर्भित करता हैं। इसे 'स्थिर स्तर [[सन्निकटन]]' कहते हैं। | ||
सरल प्रणालियों में स्थिर अवस्था को स्तर चर द्वारा धीरे-धीरे कम या बढ़ते हुए संपर्क किया जाता हैं। जब तक कि वे अपने स्थिर स्तर मूल्य तक नहीं पहुंच जाते है। अधिक जटिल प्रणालियों में स्तर चर सैद्धांतिक स्थिर अवस्था के आसपास उतार-चढ़ाव कर सकते हैं या तो सदैव के लिए (एक [[सीमा चक्र]]) या धीरे-धीरे निकट और निकट आ रहे हैं। यह सैद्धांतिक रूप से स्थिर अवस्था तक पहुँचने में अनंत समय लेता | सरल प्रणालियों में स्थिर अवस्था को स्तर चर द्वारा धीरे-धीरे कम या बढ़ते हुए संपर्क किया जाता हैं। जब तक कि वे अपने स्थिर स्तर मूल्य तक नहीं पहुंच जाते है। अधिक जटिल प्रणालियों में स्तर चर सैद्धांतिक स्थिर अवस्था के आसपास उतार-चढ़ाव कर सकते हैं या तो सदैव के लिए (एक [[सीमा चक्र]]) या धीरे-धीरे निकट और निकट आ रहे हैं। यह सैद्धांतिक रूप से स्थिर अवस्था तक पहुँचने में अनंत समय लेता हैं। ठीक उसी तरह जैसे रासायनिक संतुलन तक पहुँचने में अनंत समय लगता है। | ||
चूँकि, दोनों अवधारणाएँ अधिकांशतः उपयोग किए जाने वाले सन्निकटन हैं क्योंकि ये अवधारणाएँ पर्याप्त गणितीय सरलीकरण प्रदान करती हैं। इन अवधारणाओं का उपयोग किया जा सकता है या नहीं, यह अंतर्निहित धारणाओं की त्रुटि पर निर्भर करता है। इसलिए, सैद्धांतिक दृष्टिकोण से स्थिर स्थिति के अतिरिक्त, निरंतर चालकों की आवश्यकता होती हैं।(उदाहरण के लिए निरंतर प्रवाह दर और प्रवाह में निरंतर सांद्रता), गैर-निरंतर चालकों के साथ प्रणाली के लिए स्थिर स्थिति मानकर प्रस्तुत की गई त्रुटि नगण्य हो सकती हैं। यदि स्थिर अवस्था में अधिक तेजी से संपर्क किया जाता है (अपेक्षाकृत बोलना)। | |||
== रासायनिक गतिज में स्थिर अवस्था सन्निकटन == | == रासायनिक गतिज में स्थिर अवस्था सन्निकटन == | ||
स्थिर स्थिति सन्निकटन,<ref>[http://goldbook.iupac.org/S05962.html IUPAC Gold Book definition of steady state]</ref> कभी-कभी स्थिर-स्तर सन्निकटन या [[मैक्स बोडेंस्टीन]] के अर्ध-स्थिर स्तर सन्निकटन कहा जाता | स्थिर स्थिति सन्निकटन,<ref>[http://goldbook.iupac.org/S05962.html IUPAC Gold Book definition of steady state]</ref> कभी-कभी स्थिर-स्तर सन्निकटन या [[मैक्स बोडेंस्टीन]] के अर्ध-स्थिर स्तर सन्निकटन कहा जाता हैं। इसमें [[प्रतिक्रिया तंत्र]] में प्रतिक्रिया के परिवर्तन की दर को शून्य के समान समुच्चय करना सम्मिलित होता हैं। जिससे गतिज समीकरणों को मध्यवर्ती के गठन की दर निर्धारित करके सरल बनाया जा सकता है। इसके क्षय की दर समान है। | ||
व्यवहार में यह पर्याप्त है कि गठन और क्षय की दर लगभग समान | व्यवहार में यह पर्याप्त है कि गठन और क्षय की दर लगभग समान हैं। जिसका अर्थ है कि मध्यवर्ती की सांद्रता की भिन्नता की शुद्ध दर गठन और क्षय की तुलना में छोटी है, और मध्यवर्ती की सांद्रता केवल धीरे-धीरे बदलती हैं। समान अभिकारकों और उत्पादों के लिए (नीचे दिए गए आंकड़ों में समीकरण और हरे निशान देखें)। | ||
इसका उपयोग [[दर समीकरण]] से उत्पन्न होने वाले [[अंतर समीकरण]] के समाधान की सुविधा प्रदान करता | इसका उपयोग [[दर समीकरण]] से उत्पन्न होने वाले [[अंतर समीकरण]] के समाधान की सुविधा प्रदान करता हैं। जिसमें सरलतम से परे अधिकांश तंत्रों के लिए बंद-रूप अभिव्यक्ति की कमी होती है। उदाहरण के लिए, [[माइकलिस-मेंटेन कैनेटीक्स|माइकलिस-मेंटेन गतिज]] में स्थिर अवस्था सन्निकटन प्रयुक्त किया जाता है। | ||
उदाहरण के रूप में, स्थिर स्थिति सन्निकटन एक बंद प्रणाली में दो निरंतर, अपरिवर्तनीय, सजातीय प्रथम क्रम प्रतिक्रियाओं पर प्रयुक्त किया जाएगा। (विषम प्रतिक्रियाओं के लिए, सतहों पर प्रतिक्रियाएं देखें।) यह मॉडल, उदाहरण के लिए, [[रेडियोधर्मी क्षय]] की | उदाहरण के रूप में, स्थिर स्थिति सन्निकटन एक बंद प्रणाली में दो निरंतर, अपरिवर्तनीय, सजातीय प्रथम क्रम प्रतिक्रियाओं पर प्रयुक्त किया जाएगा। (विषम प्रतिक्रियाओं के लिए, सतहों पर प्रतिक्रियाएं देखें।) यह मॉडल, उदाहरण के लिए, [[रेडियोधर्मी क्षय]] की श्रृंखला {{chem2| ^{239}U -> ^{239}Np -> ^{239}Pu}} के अनुरूप हैं। | ||
यदि निम्नलिखित प्रतिक्रिया के लिए दर स्थिरांक हैं {{math|''k''{{sub|1}}}} और {{math|''k''{{sub|2}}}} | यदि निम्नलिखित प्रतिक्रिया के लिए दर स्थिरांक हैं {{math|''k''{{sub|1}}}} और {{math|''k''{{sub|2}}}} हैं। {{chem2|A -> B -> C}}, प्रणाली के लिए द्रव्यमान संतुलन के साथ दर समीकरणों के संयोजन से तीन युग्मित अंतर समीकरण प्राप्त होते हैं | | ||
=== प्रतिक्रिया दर === | === प्रतिक्रिया दर === | ||
Line 34: | Line 31: | ||
वर्ग c के लिए: <math chem=""> \frac{d[\ce C]}{dt} = k_2 [\ce B]</math> | वर्ग c के लिए: <math chem=""> \frac{d[\ce C]}{dt} = k_2 [\ce B]</math> | ||
=== विश्लेषणात्मक समाधान === | === विश्लेषणात्मक समाधान === | ||
Line 49: | Line 43: | ||
\left[ \ce A \right]_{0}\left( 1-e^{-k_{1}t}-k_{1}te^{-k_{1}t} \right);&k_{1} = k_{2} \\ | \left[ \ce A \right]_{0}\left( 1-e^{-k_{1}t}-k_{1}te^{-k_{1}t} \right);&k_{1} = k_{2} \\ | ||
\end{cases}</math> | \end{cases}</math> | ||
=== स्थिर अवस्था === | === स्थिर अवस्था === | ||
यदि स्थिर अवस्था सन्निकटन प्रयुक्त किया जाता है, तो मध्यवर्ती की सांद्रता का व्युत्पन्न शून्य पर समुच्चय हो जाता है। यह द्वितीय अवकल समीकरण को | यदि स्थिर अवस्था सन्निकटन प्रयुक्त किया जाता है, तो मध्यवर्ती की सांद्रता का व्युत्पन्न शून्य पर समुच्चय हो जाता है। यह द्वितीय अवकल समीकरण को बीजगणितीय समीकरण में बदल देता हैं। जिसे हल करना बहुत सरल है। | ||
:<math chem> \frac{d[\ce B]}{dt} = 0 = k_1 [\ce A] - k_2 [\ce B] \Rightarrow \; [\ce B] = \frac{k_1}{k_2} [\ce A].</math> | :<math chem> \frac{d[\ce B]}{dt} = 0 = k_1 [\ce A] - k_2 [\ce B] \Rightarrow \; [\ce B] = \frac{k_1}{k_2} [\ce A].</math> | ||
इसलिए, <math chem> \tfrac{d[\ce C]}{dt} = k_1 [\ce A],</math> जिससे | इसलिए, <math chem> \tfrac{d[\ce C]}{dt} = k_1 [\ce A],</math> जिससे <math chem>[\ce C]=[\ce A]_0 \left (1- e^{-k_1 t} \right ).</math> | ||
तब से <math chem=""> [\ce B] = \tfrac{k_1}{k_2} [\ce A] = \tfrac{k_1}{k_2}[\ce A]_0 e^{-k_1 t} ,</math> प्रतिक्रिया मध्यवर्ती B की सांद्रता उसी समय के साथ बदलती | तब से <math chem=""> [\ce B] = \tfrac{k_1}{k_2} [\ce A] = \tfrac{k_1}{k_2}[\ce A]_0 e^{-k_1 t} ,</math> प्रतिक्रिया मध्यवर्ती B की सांद्रता उसी समय के साथ बदलती हैं। जैसे [A] और उस अर्थ में स्थिर स्थिति में नहीं है। | ||
=== वैधता === | === वैधता === | ||
Line 68: | Line 60: | ||
{{legend-line|ठोस लाल|सब्सट्रेट की सांद्रता}} | {{legend-line|ठोस लाल|सब्सट्रेट की सांद्रता}} | ||
विश्लेषणात्मक और अनुमानित समाधानों की अब तुलना की जानी चाहिए | जिससे यह तय किया जा सके कि यह स्थिर स्थिति सन्निकटन का उपयोग करने के लिए कब मान्य है। विश्लेषणात्मक समाधान अनुमानित एक <math> k_2 \gg k_1 ,</math> में बदल जाता | विश्लेषणात्मक और अनुमानित समाधानों की अब तुलना की जानी चाहिए | जिससे यह तय किया जा सके कि यह स्थिर स्थिति सन्निकटन का उपयोग करने के लिए कब मान्य है। विश्लेषणात्मक समाधान अनुमानित एक <math> k_2 \gg k_1 ,</math> में बदल जाता हैं। क्योंकि तब <math>e^{-k_2t} \ll e^{-k_1t}</math> और <math>k_2-k_1 \approx \; k_2.</math> इसलिए, यह स्थिर अवस्था सन्निकटन को तभी प्रयुक्त करने के लिए मान्य हैं। जब दूसरी प्रतिक्रिया पहले की तुलना में बहुत तेज हो ({{math|''k''{{sub|2}}/''k''{{sub|1}} > 10}} सामान्य मानदंड है) | क्योंकि इसका कारण है कि मध्यवर्ती धीरे-धीरे बनता है और सरलता से प्रतिक्रिया करता हैं। इसलिए इसकी सांद्रता कम रहती है। | ||
ग्राफ विश्लेषणात्मक समाधान से गणना की गई दो स्थितियों में A (लाल), B (हरा) और c (नीला) की सांद्रता दिखाते हैं। | ग्राफ विश्लेषणात्मक समाधान से गणना की गई दो स्थितियों में A (लाल), B (हरा) और c (नीला) की सांद्रता दिखाते हैं। | ||
जब पहली प्रतिक्रिया तेज होती है तो यह मानना मान्य नहीं है कि [B] की भिन्नता बहुत छोटी | जब पहली प्रतिक्रिया तेज होती है तो यह मानना मान्य नहीं है कि [B] की भिन्नता बहुत छोटी हैं। क्योंकि [B] न तो कम है और न ही स्थिर के निकट हैं। पहले A तेजी से B में बदल जाता है और B जमा हो जाता हैं। क्योंकि यह धीरे-धीरे विलुप्त हो जाता है। जैसे-जैसे A की सांद्रता घटती है, इसके रूपांतरण की दर घटती जाती हैं। उसी समय B से C की प्रतिक्रिया की दर बढ़ती जाती है क्योंकि अधिक B बनता हैं।इसलिएअधिकतमतक पहुँच जाता हैं। | ||
जब <math>t=\begin{cases} | जब <math>t=\begin{cases} | ||
Line 81: | Line 73: | ||
तब से B की सांद्रता कम हो जाती है। | तब से B की सांद्रता कम हो जाती है। | ||
जब दूसरी प्रतिक्रिया तेज होती | जब दूसरी प्रतिक्रिया तेज होती हैं। छोटी प्रेरण अवधि के बाद, जिसके समय स्थिर अवस्था सन्निकटन प्रयुक्त नहीं होता है, B की सांद्रता कम रहती हैं। (और पूर्ण अर्थ में कम या ज्यादा स्थिर) क्योंकि इसके गठन और विलुप्त होने की दर लगभग समान होती है और स्थिर अवस्था सन्निकटन का उपयोग किया जा सकता है। | ||
स्थिर स्थिति सन्निकटन के समान परिणाम प्राप्त करने के लिए संतुलन सन्निकटन का उपयोग कभी-कभी रासायनिक गतिज में किया जा सकता है। इसमें यह मान लेना सम्मिलित है कि मध्यवर्ती अभिकारकों के साथ रासायनिक संतुलन में तेजी से पहुंचता है। उदाहरण के लिए, माइकलिस-मेंटेन गतिज को स्थिर अवस्था के अतिरिक्त संतुलन मानकर प्राप्त किया जा सकता है। सामान्य रूप से स्थिर अवस्था सन्निकटन को प्रयुक्त करने की आवश्यकताएँ अशक्त होती हैं | मध्यवर्ती की सांद्रता केवल कम और अधिक या कम स्थिर होने की आवश्यकता होती है (जैसा कि देखा गया है, यह केवल उन दरों के साथ करना है जिस पर यह प्रकट होता है और विलुप्त हो जाता है) किन्तु यह है संतुलन में होना आवश्यक नहीं है। | स्थिर स्थिति सन्निकटन के समान परिणाम प्राप्त करने के लिए संतुलन सन्निकटन का उपयोग कभी-कभी रासायनिक गतिज में किया जा सकता है। इसमें यह मान लेना सम्मिलित है कि मध्यवर्ती अभिकारकों के साथ रासायनिक संतुलन में तेजी से पहुंचता है। उदाहरण के लिए, माइकलिस-मेंटेन गतिज को स्थिर अवस्था के अतिरिक्त संतुलन मानकर प्राप्त किया जा सकता है। सामान्य रूप से स्थिर अवस्था सन्निकटन को प्रयुक्त करने की आवश्यकताएँ अशक्त होती हैं | मध्यवर्ती की सांद्रता केवल कम और अधिक या कम स्थिर होने की आवश्यकता होती है (जैसा कि देखा गया है, यह केवल उन दरों के साथ करना है जिस पर यह प्रकट होता है और विलुप्त हो जाता है) किन्तु यह है संतुलन में होना आवश्यक नहीं है। | ||
== उदाहरण == | == उदाहरण == | ||
प्रतिक्रिया {{chem2|H2 + Br2 -> 2 HBr}} निम्नलिखित तंत्र | प्रतिक्रिया {{chem2|H2 + Br2 -> 2 HBr}} निम्नलिखित तंत्र हैं। | ||
{| class="wikitable" | {| class="wikitable" | ||
|{{chem2|Br2 → 2'''Br'''}} | |{{chem2|Br2 → 2'''Br'''}} | ||
|{{math|''k''{{sub|1}}}} | |{{math|''k''{{sub|1}}}} | ||
| | |प्रारंभ | ||
|- | |- | ||
|{{chem2|'''Br''' + H2 → HBr + '''H'''}} | |{{chem2|'''Br''' + H2 → HBr + '''H'''}} | ||
|{{math|''k''{{sub|2}}}} | |{{math|''k''{{sub|2}}}} | ||
| | |प्रसारण | ||
|- | |- | ||
|{{chem2|'''H''' + Br2 → HBr + '''Br'''}} | |{{chem2|'''H''' + Br2 → HBr + '''Br'''}} | ||
|{{math|''k''{{sub|3}}}} | |{{math|''k''{{sub|3}}}} | ||
| | |प्रसारण | ||
|- | |- | ||
|{{chem2|'''H''' + HBr → H2 + '''Br'''}} | |{{chem2|'''H''' + HBr → H2 + '''Br'''}} | ||
|{{math|''k''{{sub|4}}}} | |{{math|''k''{{sub|4}}}} | ||
| | |अवरोध | ||
|- | |- | ||
|{{chem2|2'''Br''' → Br2}} | |{{chem2|2'''Br''' → Br2}} | ||
|{{math|''k''{{sub|5}}}} | |{{math|''k''{{sub|5}}}} | ||
| | |ब्रेकिंग | ||
|} | |} | ||
प्रत्येक वर्ग की दर हैं | | प्रत्येक वर्ग की दर हैं | | ||
Line 120: | Line 112: | ||
<math chem> \frac{d[\ce H_2]}{dt} = -k_2 [\ce Br] [\ce H_2] +k_4 [\ce H] [\ce HBr]</math> | <math chem> \frac{d[\ce H_2]}{dt} = -k_2 [\ce Br] [\ce H_2] +k_4 [\ce H] [\ce HBr]</math> | ||
इन समीकरणों को हल नहीं किया जा सकता | इन समीकरणों को हल नहीं किया जा सकता हैं। क्योंकि प्रत्येक के मान समय के साथ बदलते हैं। उदाहरण के लिए, पहले समीकरण में [Br] की सांद्रता हैं। जो समय {{chem2|[H2]}} और {{chem2|[Br2]}}, पर निर्भर करता हैं। जैसा कि उनके संबंधित समीकरणों में देखा जा सकता है। | ||
दर समीकरणों को हल करने के लिए स्थिर अवस्था सन्निकटन का उपयोग किया जा सकता है। इस अभिक्रिया के अभिकारक | दर समीकरणों को हल करने के लिए स्थिर अवस्था सन्निकटन का उपयोग किया जा सकता है। इस अभिक्रिया के अभिकारक {{chem2|H2}} और {{chem2|Br2}}, मध्यवर्ती H और Br हैं, और उत्पाद एचबीआर है। | ||
समीकरणों को हल करने के लिए, मध्यवर्ती की दरों को स्थिर अवस्था सन्निकटन में 0 पर समुच्चय किया गया | समीकरणों को हल करने के लिए, मध्यवर्ती की दरों को स्थिर अवस्था सन्निकटन में 0 पर समुच्चय किया गया हैं। | ||
<math chem="">\begin{align} | <math chem="">\begin{align} | ||
Line 133: | Line 125: | ||
<math chem=""> \frac{d[\ce Br]}{dt} = 2 k_1 [\ce Br_2] - k_2 [\ce Br] [\ce H_2] + k_3 [\ce H] [\ce Br_2] + k_4 [\ce H] [\ce HBr] - 2 k_5 [\ce Br]^2</math> | <math chem=""> \frac{d[\ce Br]}{dt} = 2 k_1 [\ce Br_2] - k_2 [\ce Br] [\ce H_2] + k_3 [\ce H] [\ce Br_2] + k_4 [\ce H] [\ce HBr] - 2 k_5 [\ce Br]^2</math> | ||
H की प्रतिक्रिया दर से, {{chem2|''k''2[Br][H2] \s ''k''3[H][Br2] \s ''k''4[H][HBr] \d 0}}, इसलिए Br की प्रतिक्रिया दर को सरल बनाया जा सकता | H की प्रतिक्रिया दर से, {{chem2|''k''2[Br][H2] \s ''k''3[H][Br2] \s ''k''4[H][HBr] \d 0}}, इसलिए Br की प्रतिक्रिया दर को सरल बनाया जा सकता हैं। | ||
<math chem="">\begin{align} | <math chem="">\begin{align} | ||
Line 147: | Line 139: | ||
\end{align}</math> | \end{align}</math> | ||
एचबीआर की प्रतिक्रिया दर | एचबीआर की प्रतिक्रिया दर {{chem2|''k''2[Br][H2] \s ''k''4[H][Br]}} को {{chem2|''k''3[H][Br2]}}, में बदलते हुए भी सरल बनाया जा सकता हैं। क्योंकि दोनों मान समान हैं। | ||
समीकरण 1 से H की सांद्रता को पृथक किया जा सकता | समीकरण 1 से H की सांद्रता को पृथक किया जा सकता हैं। | ||
<math chem=""> [\ce H]} = \frac{k_2 [\ce Br] [\ce H_2]}{k_3 [\ce Br_2]+k_4 [\ce H] [\ce HBr]} | <math chem=""> [\ce H]} = \frac{k_2 [\ce Br] [\ce H_2]}{k_3 [\ce Br_2]+k_4 [\ce H] [\ce HBr]} | ||
=\frac{k_2 \left( \frac{k_1}{k_5} \right) ^ \frac{1}{2} [\ce Br_2] ^\frac{1}{2} [\ce H_2]} {{k_3 [\ce Br_2]+k_4 [\ce HBr]} </math> | =\frac{k_2 \left( \frac{k_1}{k_5} \right) ^ \frac{1}{2} [\ce Br_2] ^\frac{1}{2} [\ce H_2]} {{k_3 [\ce Br_2]+k_4 [\ce HBr]} </math> | ||
इस मध्यवर्ती की सांद्रता कम होती है और समय के साथ अभिकारकों और उत्पाद की सांद्रता की तरह बदलती है। इसे देने के लिए अंतिम अंतर समीकरण में डाला गया | इस मध्यवर्ती की सांद्रता कम होती है और समय के साथ अभिकारकों और उत्पाद की सांद्रता की तरह बदलती है। इसे देने के लिए अंतिम अंतर समीकरण में डाला गया हैं। | ||
<math chem=""> \frac{d[\ce HBr]}{dt}=2k_3 [\ce H] [\ce Br_2]= 2k_3\left \lfloor \frac{k_2 \left( \frac{k_1}{k_5} \right) ^ \frac{1}{2}[\ce Br_2]^ \frac{1}{2} [\ce H_2]}{k_3 [\ce Br_2]+k_4 [\ce HBr]} \right \rfloor [\ce Br_2] .</math> | <math chem=""> \frac{d[\ce HBr]}{dt}=2k_3 [\ce H] [\ce Br_2]= 2k_3\left \lfloor \frac{k_2 \left( \frac{k_1}{k_5} \right) ^ \frac{1}{2}[\ce Br_2]^ \frac{1}{2} [\ce H_2]}{k_3 [\ce Br_2]+k_4 [\ce HBr]} \right \rfloor [\ce Br_2] .</math> | ||
समीकरण को सरल करने से होता | समीकरण को सरल करने से होता हैं। | ||
<math chem=""> \frac{d[\ce HBr]}{dt} =\frac{2k_3 k_2 \left( \frac{k_1}{k_5} \right) ^ \frac{1}{2} [\ce Br_2] ^\frac{1}{2} [\ce H_2]} {{ k_3+\frac{k_4 [\ce HBr]}{[\ce Br_2]}}} .</math> | <math chem=""> \frac{d[\ce HBr]}{dt} =\frac{2k_3 k_2 \left( \frac{k_1}{k_5} \right) ^ \frac{1}{2} [\ce Br_2] ^\frac{1}{2} [\ce H_2]} {{ k_3+\frac{k_4 [\ce HBr]}{[\ce Br_2]}}} .</math> | ||
प्रयोगात्मक रूप से देखी गई दर | प्रयोगात्मक रूप से देखी गई दर हैं। | ||
<math chem=""> v=\frac{k'[\ce H_2][\ce Br_2]^\tfrac{1}{2}}{1+k''\frac{[\ce HBr]}{ [\ce Br_2]}} .</math> | <math chem=""> v=\frac{k'[\ce H_2][\ce Br_2]^\tfrac{1}{2}}{1+k''\frac{[\ce HBr]}{ [\ce Br_2]}} .</math> | ||
प्रयोगात्मक दर नियम स्थिर स्तर सन्निकटन के साथ प्राप्त दर के समान है, यदि {{tmath|k'}}<math display="inline">2k_3 k_2 \sqrt{\frac{k_1}{k_5}}</math> और {{tmath|1 + k''}} {{tmath|k_3 + k_4}}. | प्रयोगात्मक दर नियम स्थिर स्तर सन्निकटन के साथ प्राप्त दर के समान है, यदि {{tmath|k'}}<math display="inline">2k_3 k_2 \sqrt{\frac{k_1}{k_5}}</math> और {{tmath|1 + k''}} {{tmath|k_3 + k_4}}.हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 177: | Line 169: | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* https://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Kinetics/Reaction_Mechanisms/Steady-State_Approximation | * https://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Kinetics/Reaction_Mechanisms/Steady-State_Approximation | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Created On 18/05/2023]] | [[Category:Created On 18/05/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages that use a deprecated format of the chem tags]] | |||
[[Category:Pages with broken file links]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:भौतिक रसायन]] | |||
[[Category:रासायनिक गतिकी]] |
Latest revision as of 16:26, 30 May 2023
रसायन विज्ञान में, स्थिर अवस्था एक ऐसी स्थिति हैं। जिसमें सभी थर्मोडायनामिक चर चल रहे रासायनिक प्रक्रिया के अतिरिक्त स्थिर होते हैं | जो उन्हें बदलने का प्रयास करते हैं। संपूर्ण प्रणाली के स्थिर अवस्था में होने के लिए, अर्थात प्रणाली के सभी स्तर चर स्थिर होने के लिए, प्रणाली के माध्यम से एक प्रवाह होना चाहिए (द्रव्यमान संतुलन की तुलना करें)। इस तरह की प्रणाली का सरल उदाहरण एक बाथटब की स्थिति हैं। जिसमें नल चल रहा है किन्तु नाली अनप्लग हैं। एक निश्चित समय के बाद, पानी एक ही दर से अंदर और बाहर बहता है, इसलिए जल स्तर (स्तर चर आयतन) स्थिर हो जाता है और प्रणाली स्थिर स्थिति में है।
स्थिर अवस्था अवधारणा रासायनिक संतुलन से भिन्न है। यद्यपि दोनों ऐसी स्थिति बना सकते हैं | जहां रासायनिक संतुलन में एक प्रणाली में सांद्रता नहीं बदलती हैं। शुद्ध प्रतिक्रिया दर शून्य है (उत्पाद (रसायन विज्ञान) अभिकारक में उसी दर पर परिवर्तित होता है जैसे अभिकारक उत्पादों में परिवर्तित होते हैं), जबकि ऐसी कोई सीमा उपस्थित नहीं है स्थिर अवस्था की अवधारणा में वास्तव में, स्थिर अवस्था के विकास के लिए रासायनिक प्रतिक्रिया का होना पूर्ण रूप से आवश्यक नहीं है।
स्थिर स्थिति शब्द का उपयोग ऐसी स्थिति का वर्णन करने के लिए भी किया जाता हैं। जहां प्रणाली के कुछ, किन्तु सभी स्तर चर स्थिर नहीं होते हैं। ऐसी स्थिर अवस्था के विकास के लिए, प्रणाली को प्रवाह प्रणाली नहीं होना चाहिए। इसलिए, ऐसी स्थिर स्थिति बंद प्रणाली में विकसित हो सकती हैं। जहां रासायनिक प्रतिक्रियाओं की श्रृंखला होती है। रासायनिक गतिज में साहित्य सामान्यतः इस स्थिति को संदर्भित करता हैं। इसे 'स्थिर स्तर सन्निकटन' कहते हैं।
सरल प्रणालियों में स्थिर अवस्था को स्तर चर द्वारा धीरे-धीरे कम या बढ़ते हुए संपर्क किया जाता हैं। जब तक कि वे अपने स्थिर स्तर मूल्य तक नहीं पहुंच जाते है। अधिक जटिल प्रणालियों में स्तर चर सैद्धांतिक स्थिर अवस्था के आसपास उतार-चढ़ाव कर सकते हैं या तो सदैव के लिए (एक सीमा चक्र) या धीरे-धीरे निकट और निकट आ रहे हैं। यह सैद्धांतिक रूप से स्थिर अवस्था तक पहुँचने में अनंत समय लेता हैं। ठीक उसी तरह जैसे रासायनिक संतुलन तक पहुँचने में अनंत समय लगता है।
चूँकि, दोनों अवधारणाएँ अधिकांशतः उपयोग किए जाने वाले सन्निकटन हैं क्योंकि ये अवधारणाएँ पर्याप्त गणितीय सरलीकरण प्रदान करती हैं। इन अवधारणाओं का उपयोग किया जा सकता है या नहीं, यह अंतर्निहित धारणाओं की त्रुटि पर निर्भर करता है। इसलिए, सैद्धांतिक दृष्टिकोण से स्थिर स्थिति के अतिरिक्त, निरंतर चालकों की आवश्यकता होती हैं।(उदाहरण के लिए निरंतर प्रवाह दर और प्रवाह में निरंतर सांद्रता), गैर-निरंतर चालकों के साथ प्रणाली के लिए स्थिर स्थिति मानकर प्रस्तुत की गई त्रुटि नगण्य हो सकती हैं। यदि स्थिर अवस्था में अधिक तेजी से संपर्क किया जाता है (अपेक्षाकृत बोलना)।
रासायनिक गतिज में स्थिर अवस्था सन्निकटन
स्थिर स्थिति सन्निकटन,[1] कभी-कभी स्थिर-स्तर सन्निकटन या मैक्स बोडेंस्टीन के अर्ध-स्थिर स्तर सन्निकटन कहा जाता हैं। इसमें प्रतिक्रिया तंत्र में प्रतिक्रिया के परिवर्तन की दर को शून्य के समान समुच्चय करना सम्मिलित होता हैं। जिससे गतिज समीकरणों को मध्यवर्ती के गठन की दर निर्धारित करके सरल बनाया जा सकता है। इसके क्षय की दर समान है।
व्यवहार में यह पर्याप्त है कि गठन और क्षय की दर लगभग समान हैं। जिसका अर्थ है कि मध्यवर्ती की सांद्रता की भिन्नता की शुद्ध दर गठन और क्षय की तुलना में छोटी है, और मध्यवर्ती की सांद्रता केवल धीरे-धीरे बदलती हैं। समान अभिकारकों और उत्पादों के लिए (नीचे दिए गए आंकड़ों में समीकरण और हरे निशान देखें)।
इसका उपयोग दर समीकरण से उत्पन्न होने वाले अंतर समीकरण के समाधान की सुविधा प्रदान करता हैं। जिसमें सरलतम से परे अधिकांश तंत्रों के लिए बंद-रूप अभिव्यक्ति की कमी होती है। उदाहरण के लिए, माइकलिस-मेंटेन गतिज में स्थिर अवस्था सन्निकटन प्रयुक्त किया जाता है।
उदाहरण के रूप में, स्थिर स्थिति सन्निकटन एक बंद प्रणाली में दो निरंतर, अपरिवर्तनीय, सजातीय प्रथम क्रम प्रतिक्रियाओं पर प्रयुक्त किया जाएगा। (विषम प्रतिक्रियाओं के लिए, सतहों पर प्रतिक्रियाएं देखें।) यह मॉडल, उदाहरण के लिए, रेडियोधर्मी क्षय की श्रृंखला 239U → 239Np → 239Pu के अनुरूप हैं।
यदि निम्नलिखित प्रतिक्रिया के लिए दर स्थिरांक हैं k1 और k2 हैं। A → B → C, प्रणाली के लिए द्रव्यमान संतुलन के साथ दर समीकरणों के संयोजन से तीन युग्मित अंतर समीकरण प्राप्त होते हैं |
प्रतिक्रिया दर
वर्ग A के लिए:
वर्ग B के लिए:
- यहाँ पहला (सकारात्मक) शब्द पहले चरण A → B द्वारा B के गठन का प्रतिनिधित्व करता है जिसकी दर प्रारंभिक अभिकारक A पर निर्भर करती है। दूसरा (नकारात्मक) शब्द दूसरे चरण B → C द्वारा B की खपत का प्रतिनिधित्व करता है जिसकी दर उस चरण में अभिकारक के रूप में B पर निर्भर करती है।
वर्ग c के लिए:
विश्लेषणात्मक समाधान
इन समीकरणों के लिए विश्लेषणात्मक समाधान (यह मानते हुए कि A को छोड़कर प्रत्येक पदार्थ की प्रारंभिक सांद्रता शून्य है) हैं | [2]
स्थिर अवस्था
यदि स्थिर अवस्था सन्निकटन प्रयुक्त किया जाता है, तो मध्यवर्ती की सांद्रता का व्युत्पन्न शून्य पर समुच्चय हो जाता है। यह द्वितीय अवकल समीकरण को बीजगणितीय समीकरण में बदल देता हैं। जिसे हल करना बहुत सरल है।
इसलिए, जिससे
तब से प्रतिक्रिया मध्यवर्ती B की सांद्रता उसी समय के साथ बदलती हैं। जैसे [A] और उस अर्थ में स्थिर स्थिति में नहीं है।
वैधता
[[Image:Consecutive reactions rate constants 1-10.JPG|thumb|एकाग्रता बनाम समय के लिए {{math|1=k2/k1 = 10}
विश्लेषणात्मक और अनुमानित समाधानों की अब तुलना की जानी चाहिए | जिससे यह तय किया जा सके कि यह स्थिर स्थिति सन्निकटन का उपयोग करने के लिए कब मान्य है। विश्लेषणात्मक समाधान अनुमानित एक में बदल जाता हैं। क्योंकि तब और इसलिए, यह स्थिर अवस्था सन्निकटन को तभी प्रयुक्त करने के लिए मान्य हैं। जब दूसरी प्रतिक्रिया पहले की तुलना में बहुत तेज हो (k2/k1 > 10 सामान्य मानदंड है) | क्योंकि इसका कारण है कि मध्यवर्ती धीरे-धीरे बनता है और सरलता से प्रतिक्रिया करता हैं। इसलिए इसकी सांद्रता कम रहती है।
ग्राफ विश्लेषणात्मक समाधान से गणना की गई दो स्थितियों में A (लाल), B (हरा) और c (नीला) की सांद्रता दिखाते हैं।
जब पहली प्रतिक्रिया तेज होती है तो यह मानना मान्य नहीं है कि [B] की भिन्नता बहुत छोटी हैं। क्योंकि [B] न तो कम है और न ही स्थिर के निकट हैं। पहले A तेजी से B में बदल जाता है और B जमा हो जाता हैं। क्योंकि यह धीरे-धीरे विलुप्त हो जाता है। जैसे-जैसे A की सांद्रता घटती है, इसके रूपांतरण की दर घटती जाती हैं। उसी समय B से C की प्रतिक्रिया की दर बढ़ती जाती है क्योंकि अधिक B बनता हैं।इसलिएअधिकतमतक पहुँच जाता हैं।
जब
तब से B की सांद्रता कम हो जाती है।
जब दूसरी प्रतिक्रिया तेज होती हैं। छोटी प्रेरण अवधि के बाद, जिसके समय स्थिर अवस्था सन्निकटन प्रयुक्त नहीं होता है, B की सांद्रता कम रहती हैं। (और पूर्ण अर्थ में कम या ज्यादा स्थिर) क्योंकि इसके गठन और विलुप्त होने की दर लगभग समान होती है और स्थिर अवस्था सन्निकटन का उपयोग किया जा सकता है।
स्थिर स्थिति सन्निकटन के समान परिणाम प्राप्त करने के लिए संतुलन सन्निकटन का उपयोग कभी-कभी रासायनिक गतिज में किया जा सकता है। इसमें यह मान लेना सम्मिलित है कि मध्यवर्ती अभिकारकों के साथ रासायनिक संतुलन में तेजी से पहुंचता है। उदाहरण के लिए, माइकलिस-मेंटेन गतिज को स्थिर अवस्था के अतिरिक्त संतुलन मानकर प्राप्त किया जा सकता है। सामान्य रूप से स्थिर अवस्था सन्निकटन को प्रयुक्त करने की आवश्यकताएँ अशक्त होती हैं | मध्यवर्ती की सांद्रता केवल कम और अधिक या कम स्थिर होने की आवश्यकता होती है (जैसा कि देखा गया है, यह केवल उन दरों के साथ करना है जिस पर यह प्रकट होता है और विलुप्त हो जाता है) किन्तु यह है संतुलन में होना आवश्यक नहीं है।
उदाहरण
प्रतिक्रिया H2 + Br2 → 2 HBr निम्नलिखित तंत्र हैं।
Br2 → 2Br | k1 | प्रारंभ |
Br + H2 → HBr + H | k2 | प्रसारण |
H + Br2 → HBr + Br | k3 | प्रसारण |
H + HBr → H2 + Br | k4 | अवरोध |
2Br → Br2 | k5 | ब्रेकिंग |
प्रत्येक वर्ग की दर हैं |
इन समीकरणों को हल नहीं किया जा सकता हैं। क्योंकि प्रत्येक के मान समय के साथ बदलते हैं। उदाहरण के लिए, पहले समीकरण में [Br] की सांद्रता हैं। जो समय [H2] और [Br2], पर निर्भर करता हैं। जैसा कि उनके संबंधित समीकरणों में देखा जा सकता है।
दर समीकरणों को हल करने के लिए स्थिर अवस्था सन्निकटन का उपयोग किया जा सकता है। इस अभिक्रिया के अभिकारक H2 और Br2, मध्यवर्ती H और Br हैं, और उत्पाद एचबीआर है।
समीकरणों को हल करने के लिए, मध्यवर्ती की दरों को स्थिर अवस्था सन्निकटन में 0 पर समुच्चय किया गया हैं।
H की प्रतिक्रिया दर से, k2[Br][H2] − k3[H][Br2] − k4[H][HBr] = 0, इसलिए Br की प्रतिक्रिया दर को सरल बनाया जा सकता हैं।
एचबीआर की प्रतिक्रिया दर k2[Br][H2] − k4[H][Br] को k3[H][Br2], में बदलते हुए भी सरल बनाया जा सकता हैं। क्योंकि दोनों मान समान हैं।
समीकरण 1 से H की सांद्रता को पृथक किया जा सकता हैं।
इस मध्यवर्ती की सांद्रता कम होती है और समय के साथ अभिकारकों और उत्पाद की सांद्रता की तरह बदलती है। इसे देने के लिए अंतिम अंतर समीकरण में डाला गया हैं।
समीकरण को सरल करने से होता हैं।
प्रयोगात्मक रूप से देखी गई दर हैं।
प्रयोगात्मक दर नियम स्थिर स्तर सन्निकटन के साथ प्राप्त दर के समान है, यदि और .हैं।
यह भी देखें
नोट्स और संदर्भ
- ↑ IUPAC Gold Book definition of steady state
- ↑ P. W. Atkins and J. de Paula, Physical Chemistry (8th edition, W.H.Freeman 2006), p.811 ISBN 0-7167-8759-8