सचिव समस्या: Difference between revisions

From Vigyanwiki
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 140: Line 140:
* लगातार गैर-उम्मीदवार नियम एसएनसीआर वाई गैर-उम्मीदवारों यानी संबंधित पद वाले आवेदक > 1 का अवलोकन करने के बाद सबसे पहले सामना करने वाले उम्मीदवार का चयन करें ।
* लगातार गैर-उम्मीदवार नियम एसएनसीआर वाई गैर-उम्मीदवारों यानी संबंधित पद वाले आवेदक > 1 का अवलोकन करने के बाद सबसे पहले सामना करने वाले उम्मीदवार का चयन करें ।


प प्र्रत्येक अनुमानी का एक एकल पैरामीटर y होता है आंकड़ा दाईं ओर दिखाया गया है n = 80 के साथ समस्याओं के लिए y के एक समारोह के रूप में प्रत्येक अनुमानी के लिए अपेक्षित सफलता की संभावनाएं प्रदर्शित करता है।
अनुमानी का एक एकल पैरामीटर y होता है आंकड़ा दाईं ओर दिखाया गया है n = 80 के साथ समस्याओं के लिए y के एक समारोह के रूप में प्रत्येक अनुमानी के लिए अपेक्षित सफलता की संभावनाएं प्रदर्शित करता है।


== कार्डिनल पेऑफ वेरिएंट ==
== कार्डिनल पेऑफ वेरिएंट ==
एकल सर्वश्रेष्ठ आवेदक ढूँढना एक सख्त उद्देश्य की तरह लग सकता है। कोई कल्पना कर सकता है कि साक्षात्कारकर्ता एक कम-मूल्यवान आवेदक की तुलना में एक उच्च-मूल्यवान आवेदक को नियुक्त करेगा, और न केवल सर्वश्रेष्ठ प्राप्त करने के लिए चिंतित होगा। अर्थात्, साक्षात्कारकर्ता एक आवेदक का चयन करने से कुछ मूल्य प्राप्त करेगा जो आवश्यक रूप से सर्वोत्तम नहीं है, और व्युत्पन्न मूल्य चयनित के मूल्य के साथ बढ़ता है।
एकल सर्वश्रेष्ठ आवेदक ढूँढना एक सख्त उद्देश्य की तरह लग सकता है कोई कल्पना कर सकता है कि साक्षात्कारकर्ता एक कम-मूल्यवान आवेदक की तुलना में एक उच्च-मूल्यवान आवेदक को नियुक्त करेगा और न केवल सर्वश्रेष्ठ प्राप्त करने के लिए चिंतित होगा अर्थात् साक्षात्कारकर्ता एक आवेदक का चयन करने से कुछ मूल्य प्राप्त करेगा जो आवश्यक रूप से सर्वोत्तम नहीं है और व्युत्पन्न मूल्य चयनित के मूल्य के साथ बढ़ता है।


इस समस्या को मॉडल करने के लिए, मान लीजिए कि <math>n</math> आवेदकों के पास वास्तविक मूल्य हैं जो यादृच्छिक चर एक्स तैयार i.i.d हैं। [0, 1] पर एक [[समान वितरण (निरंतर)]] से। ऊपर वर्णित शास्त्रीय समस्या के समान, साक्षात्कारकर्ता केवल यह देखता है कि क्या प्रत्येक आवेदक अब तक का सबसे अच्छा है (एक उम्मीदवार), प्रत्येक को मौके पर ही स्वीकार या अस्वीकार कर देना चाहिए, और यदि वह पहुंच जाता है तो अंतिम को स्वीकार करना चाहिए। (स्पष्ट होने के लिए, साक्षात्कारकर्ता प्रत्येक आवेदक की वास्तविक सापेक्ष रैंक नहीं सीखता है। वह केवल यह सीखता है कि आवेदक की सापेक्ष रैंक 1 है या नहीं।) हालांकि, इस संस्करण में भुगतान चयनित आवेदक के सही मूल्य द्वारा दिया गया है। उदाहरण के लिए, यदि वह एक आवेदक का चयन करता है जिसका सही मूल्य 0.8 है, तो वह 0.8 कमाएगा। साक्षात्कारकर्ता का उद्देश्य चयनित आवेदक के [[अपेक्षित मूल्य]] को अधिकतम करना है।
इस समस्या का प्रारूप बनाने के लिए मान लीजिए कि <math>n</math> आवेदकों के पास वास्तविक मूल्य हैं जो यादृच्छिक चर एक्स तैयार हैं 0, 1 पर एक [[समान वितरण (निरंतर)|समान वितरण निरंतर]] ऊपर वर्णित शास्त्रीय समस्या के समान साक्षात्कारकर्ता केवल यह देखता है कि क्या प्रत्येक आवेदक अब तक का सबसे अच्छा है एक उम्मीदवार प्रत्येक को मौके पर ही स्वीकार या अस्वीकार कर देना चाहिए और यदि वह पहुंच जाता है तो अंतिम को स्वीकार करना चाहिए साक्षात्कारकर्ता प्रत्येक आवेदक की वास्तविक सापेक्ष पद नहीं सीखता है वह केवल यह सीखता है कि आवेदक की सापेक्ष पद 1 है या नहीं जबकि इस संस्करण में भुगतान चयनित आवेदक के सही मूल्य द्वारा दिया गया है उदाहरण के लिए यदि वह एक आवेदक का चयन करता है जिसका सही मूल्य 0.8 है, तो वह 0.8 कमाएगा साक्षात्कारकर्ता का उद्देश्य चयनित आवेदक के [[अपेक्षित मूल्य]] को अधिकतम करना है।


चूंकि आवेदक के मान i.i.d. [0, 1] पर एक समान वितरण से प्राप्त करता है, दिए गए tवें आवेदक का अपेक्षित मूल्य <math>x_{t}=\max\left\{x_1, x_2, \ldots, x_t\right\}</math> द्वारा दिया गया है
चूंकि आवेदक के मान 0, 1 पर एक समान वितरण से प्राप्त करता है दिए गए tवें आवेदक का अपेक्षित मूल्य <math>x_{t}=\max\left\{x_1, x_2, \ldots, x_t\right\}</math> द्वारा दिया गया है


:<math>
:<math>
E_{t}=E\left(X_{t}|I_{t}=1\right)=\frac{t}{t+1}.
E_{t}=E\left(X_{t}|I_{t}=1\right)=\frac{t}{t+1}.
</math>
</math>
शास्त्रीय समस्या के रूप में, इष्टतम नीति एक दहलीज द्वारा दी गई है, जिसे इस समस्या के लिए हम निरूपित करेंगे <math>c</math>, जिस पर साक्षात्कारकर्ता को उम्मीदवारों को स्वीकार करना शुरू कर देना चाहिए। बेयरडेन ने दिखाया कि सी या तो है <math>\lfloor \sqrt n \rfloor</math> या <math>\lceil \sqrt n \rceil</math>.{{sfn|Bearden|2006}} (वास्तव में, जो भी सबसे करीब है <math> \sqrt n </math>।) यह इस तथ्य से अनुसरण करता है कि एक समस्या दी गई है <math>n</math> आवेदकों, कुछ मनमाने ढंग से सीमा के लिए अपेक्षित अदायगी <math>1 \le c \le n</math> है
शास्त्रीय समस्या के रूप में इष्टतम नीति एक दहलीज द्वारा दी गई है जिसे इस समस्या के लिए हम निरूपित करेंगे <math>c</math>, जिस पर साक्षात्कारकर्ता को उम्मीदवारों को स्वीकार करना शुरू कर देना चाहिए बेयरडेन ने दिखाया कि सी या तो है <math>\lfloor \sqrt n \rfloor</math> या <math>\lceil \sqrt n \rceil</math>.{{sfn|Bearden|2006}} वास्तव में जो भी सबसे करीब है <math> \sqrt n </math>। यह इस तथ्य से अनुसरण करता है कि एक समस्या दी गई है <math>n</math> आवेदकों को कुछ मनमाने ढंग से सीमा के लिए अपेक्षित अदायगी <math>1 \le c \le n</math> प्ादानन करता है


:<math>
:<math>
Line 158: Line 158:
+\left[\prod_{s=c}^{n-1}\left(\frac{s-1}{s}\right)\right]\frac{1}{2}={\frac {2cn-{c}^{2}+c-n}{2cn}}.
+\left[\prod_{s=c}^{n-1}\left(\frac{s-1}{s}\right)\right]\frac{1}{2}={\frac {2cn-{c}^{2}+c-n}{2cn}}.
</math>
</math>
फर्क <math> V_{n}(c)</math> सी के संबंध में, एक प्राप्त करता है
<math> V_{n}(c)</math> सी के संबंध में एक प्राप्त कर्ता है


: <math>\frac{\partial V}{\partial c} = \frac{ -{c}^{\,2}+n }{ 2{c}^{\,2}n }.</math>
: <math>\frac{\partial V}{\partial c} = \frac{ -{c}^{\,2}+n }{ 2{c}^{\,2}n }.</math>
फ़ाइल: RelativeRankLearning2.pdf|thumb|आंशिक-सूचना अनुक्रमिक खोज प्रतिमान में सीखना। संख्या खोज में विभिन्न बिंदुओं पर उनके सापेक्ष रैंक (अब तक देखे गए कुल आवेदकों में से) के आधार पर आवेदकों के अपेक्षित मूल्यों को प्रदर्शित करती है। उम्मीदों की गणना मामले के आधार पर की जाती है जब उनके मान समान रूप से 0 और 1 के बीच वितरित किए जाते हैं। सापेक्ष रैंक की जानकारी साक्षात्कारकर्ता को आवेदकों का अधिक बारीकी से मूल्यांकन करने की अनुमति देती है क्योंकि वे उनकी तुलना करने के लिए अधिक डेटा बिंदु जमा करते हैं।
आंशिक-सूचना अनुक्रमिक खोज प्रतिमान में सीखना संख्या खोज में विभिन्न बिंदुओं पर उनके सापेक्ष पद अब तक देखे गए कुल आवेदकों में से आवेदकों के अपेक्षित मूल्यों को प्रदर्शित करती है उम्मीदों की गणना जगहों के आधार पर की जाती है जब उनके मान समान रूप से 0 और 1 के बीच वितरित किए जाते हैं सापेक्ष पद की जानकारी साक्षात्कारकर्ता को आवेदकों का अधिक बारीकी से मूल्यांकन करने की अनुमति देती है क्योंकि वे उनकी तुलना करने के लिए अधिक डेटा बिंदु जमा करते हैं तब से <math>\partial^{\,2}V / \partial c^{\,2}<0</math> के सभी अनुमेय मूल्यों के लिए <math>c</math> तथा <math>V</math> का अधिकतम होता है <math>c=\sqrt n</math>. चूँकि V उत्तल है <math>c</math> इष्टतम पूर्णांक-मान होना चाहिए <math>\lfloor \sqrt n \rfloor</math> या <math>\lceil \sqrt n \rceil</math>. इस प्रकार के अधिकांश मूल्यों के लिए <math>n</math> साक्षात्कारकर्ता शास्त्रीय संस्करण की तुलना में प्रमुख प्रतिदान संस्करण में जल्द ही आवेदकों को स्वीकार करना शुरू कर देगा जहां उद्देश्य एकल सर्वश्रेष्ठ आवेदक का चयन करना है ध्यान दें कि यह एक स्पर्शोन्मुख परिणाम नहीं है यह सभी के लिए है <math>n</math>. जबकि ज्ञात वितरण से अपेक्षित मूल्य को अधिकतम करने के लिए यह इष्टतम नीति नहीं है ज्ञात वितरण के स्थान में गतिशील कार्यक्रम के माध्यम से इष्टतम खेल की गणना की जा सकती है।
तब से <math>\partial^{\,2}V / \partial c^{\,2}<0</math> के सभी अनुमेय मूल्यों के लिए <math>c</math>, हम पाते हैं <math>V</math> पर अधिकतम होता है <math>c=\sqrt n</math>. चूँकि V उत्तल है <math>c</math>, इष्टतम पूर्णांक-मान थ्रेशोल्ड या तो होना चाहिए <math>\lfloor \sqrt n \rfloor</math> या <math>\lceil \sqrt n \rceil</math>. इस प्रकार, के अधिकांश मूल्यों के लिए <math>n</math> साक्षात्कारकर्ता शास्त्रीय संस्करण की तुलना में कार्डिनल पेऑफ संस्करण में जल्द ही आवेदकों को स्वीकार करना शुरू कर देगा, जहां उद्देश्य एकल सर्वश्रेष्ठ आवेदक का चयन करना है। ध्यान दें कि यह एक स्पर्शोन्मुख परिणाम नहीं है: यह सभी के लिए है <math>n</math>. हालांकि, ज्ञात वितरण से अपेक्षित मूल्य को अधिकतम करने के लिए यह इष्टतम नीति नहीं है। ज्ञात वितरण के मामले में, गतिशील प्रोग्रामिंग के माध्यम से इष्टतम खेल की गणना की जा सकती है।


इस समस्या का एक अधिक सामान्य रूप पाले और क्रेमर (2014) द्वारा पेश किया गया<ref>{{Cite journal|last1=Palley|first1=Asa B.|last2=Kremer|first2=Mirko|date=2014-07-08|title=Sequential Search and Learning from Rank Feedback: Theory and Experimental Evidence|url=https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2014.1902|journal=Management Science|volume=60|issue=10|pages=2525–2542|doi=10.1287/mnsc.2014.1902|issn=0025-1909}}</ref> मानता है कि प्रत्येक नए आवेदक के आने पर, साक्षात्कारकर्ता उन सभी आवेदकों के सापेक्ष उनकी रैंक देखता है जो पहले देखे जा चुके हैं। यह मॉडल एक साक्षात्कारकर्ता सीखने की धारणा के अनुरूप है क्योंकि वे पिछले डेटा बिंदुओं के एक सेट को जमा करके खोज प्रक्रिया जारी रखते हैं जिसका उपयोग वे नए उम्मीदवारों के आने पर उनका मूल्यांकन करने के लिए कर सकते हैं। इस तथाकथित आंशिक-सूचना मॉडल का एक लाभ यह है कि यदि साक्षात्कारकर्ता को प्रत्येक आवेदक के मूल्य के बारे में पूरी जानकारी दी गई थी, तो सापेक्ष रैंक की जानकारी के साथ प्राप्त किए गए निर्णयों और परिणामों की सीधे संबंधित इष्टतम निर्णयों और परिणामों से तुलना की जा सकती है। यह पूर्ण-सूचना समस्या, जिसमें आवेदकों को एक ज्ञात वितरण से स्वतंत्र रूप से लिया जाता है और साक्षात्कारकर्ता चयनित आवेदक के अपेक्षित मूल्य को अधिकतम करना चाहता है, मूल रूप से मोजर (1956) द्वारा हल किया गया था,<ref>{{Cite journal|last=Moser|first=Leo|date=1956|title=केली की समस्या पर|journal=Scripta Math|volume=22|pages=289–292}}</ref> सकागुची (1961),<ref>{{Cite journal|date=1961-06-01|title=कुछ अनुक्रमिक नमूनाकरण डिजाइन की गतिशील प्रोग्रामिंग|journal=Journal of Mathematical Analysis and Applications|language=en|volume=2|issue=3|pages=446–466|doi=10.1016/0022-247X(61)90023-3|issn=0022-247X|last1=Sakaguchi|first1=Minoru|doi-access=free}}</ref> और कार्लिन (1962)।
इस समस्या का एक अधिक सामान्य रूप पाले और क्रेमर (2014) द्वारा पेश किया गया<ref>{{Cite journal|last1=Palley|first1=Asa B.|last2=Kremer|first2=Mirko|date=2014-07-08|title=Sequential Search and Learning from Rank Feedback: Theory and Experimental Evidence|url=https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2014.1902|journal=Management Science|volume=60|issue=10|pages=2525–2542|doi=10.1287/mnsc.2014.1902|issn=0025-1909}}</ref> मानना है कि प्रत्येक नए आवेदक के आने पर साक्षात्कारकर्ता उन सभी आवेदकों के सापेक्ष उनका पद देखता है जो पहले देखे जा चुके हैं यह प्रतिरूप एक साक्षात्कारकर्ता सीखने की धारणा के अनुरूप है क्योंकि वे पिछले डेटा बिंदुओं के एक समूह को जमा करके खोज प्रक्रिया जारी रखते हैं जिसका उपयोग वे नए उम्मीदवारों के आने पर उनका मूल्यांकन करने के लिए कर सकते हैं इस तथाकथित आंशिक-सूचना प्रतिरूप का एक लाभ यह है कि यदि साक्षात्कारकर्ता को प्रत्येक आवेदक के मूल्य के बारे में पूरी जानकारी दी गई थी तो सापेक्ष पद की जानकारी के साथ प्राप्त किए गए निर्णयों और परिणामों की सीधे संबंधित इष्टतम निर्णयों और परिणामों से तुलना की जा सकती है यह पूर्ण-सूचना समस्या जिसमें आवेदकों को एक ज्ञात वितरण से स्वतंत्र रूप से लिया जाता है और साक्षात्कारकर्ता चयनित आवेदक के अपेक्षित मूल्य को अधिकतम करना चाहता है यह मूल रूप से मोजर द्वारा 1956 में सकागुची 1961 में और कॉर्लिन 1962 में हल किया गया था। <ref>{{Cite journal|last=Moser|first=Leo|date=1956|title=केली की समस्या पर|journal=Scripta Math|volume=22|pages=289–292}}</ref>


== अन्य संशोधन ==
== अन्य संशोधन ==
सचिव समस्या के कई रूप हैं जिनका सरल और सुरुचिपूर्ण समाधान भी है।
सचिव समस्या के कई रूप हैं जिनका सरल और सुरुचिपूर्ण समाधान भी है।


एक संस्करण दूसरे सर्वश्रेष्ठ को चुनने की इच्छा के साथ सर्वश्रेष्ठ चुनने की इच्छा को प्रतिस्थापित करता है।<ref name=NonExtRose>{{cite journal |last1=Rose |first1=John S. |year=1982 |title=एक यादृच्छिक अनुक्रम से गैर-अत्यधिक उम्मीदवारों का चयन|journal=J. Optim. Theory Appl.|doi=10.1007/BF00934083 |pages=207–219|volume=38|issue=2 |s2cid=121339045 |issn=0022-3239}}</ref><ref name=AthSza>{{cite journal |last1=Szajowski |first1=Krzysztof |year=1982 |title=एथ रैंक के साथ किसी वस्तु का इष्टतम विकल्प|journal=Matematyka Stosowana|series=Annales Societatis Mathematicae Polonae, Series III|doi=10.14708/ma.v10i19.1533 |pages=51–65|volume=10|number=19|issn=0137-2890}}</ref><ref name=postdoc>{{cite journal |last1=Vanderbei |first1=Robert J. |author-link=Robert J. Vanderbei |year=2021 |title=सचिव समस्या का पोस्टडॉक संस्करण|journal=Mathematica Applicanda|series=Annales Societatis Mathematicae Polonae, Series III|url=https://wydawnictwa.ptm.org.pl/index.php/matematyka-stosowana/article/view/7076 |pages=3–13|volume=49|number=1|issn=2299-4009|date=2021-06-21 |doi=10.14708/ma.v49i1.7076 }}</ref> रॉबर्ट जे। वेंडरबी ने इसे पोस्टडॉक समस्या कहते हुए तर्क दिया कि सबसे अच्छा हार्वर्ड जाएगा। इस समस्या के लिए, समान संख्या में आवेदकों के लिए सफलता की संभावना ठीक है <math> \frac{0.25n^2}{n(n-1)} </math>. यह प्रायिकता 1/4 हो जाती है क्योंकि n अनंत की ओर जाता है जो इस तथ्य को दर्शाता है कि दूसरे-सर्वश्रेष्ठ की तुलना में सर्वश्रेष्ठ को चुनना आसान है।
एक संस्करण दूसरे सर्वश्रेष्ठ को चुनने की इच्छा के साथ सर्वश्रेष्ठ चुनने की इच्छा को प्रतिस्थापित करता है <ref name=NonExtRose>{{cite journal |last1=Rose |first1=John S. |year=1982 |title=एक यादृच्छिक अनुक्रम से गैर-अत्यधिक उम्मीदवारों का चयन|journal=J. Optim. Theory Appl.|doi=10.1007/BF00934083 |pages=207–219|volume=38|issue=2 |s2cid=121339045 |issn=0022-3239}}</ref><ref name=AthSza>{{cite journal |last1=Szajowski |first1=Krzysztof |year=1982 |title=एथ रैंक के साथ किसी वस्तु का इष्टतम विकल्प|journal=Matematyka Stosowana|series=Annales Societatis Mathematicae Polonae, Series III|doi=10.14708/ma.v10i19.1533 |pages=51–65|volume=10|number=19|issn=0137-2890}}</ref><ref name=postdoc>{{cite journal |last1=Vanderbei |first1=Robert J. |author-link=Robert J. Vanderbei |year=2021 |title=सचिव समस्या का पोस्टडॉक संस्करण|journal=Mathematica Applicanda|series=Annales Societatis Mathematicae Polonae, Series III|url=https://wydawnictwa.ptm.org.pl/index.php/matematyka-stosowana/article/view/7076 |pages=3–13|volume=49|number=1|issn=2299-4009|date=2021-06-21 |doi=10.14708/ma.v49i1.7076 }}</ref> रॉबर्ट जे वेंडरबी ने इसे पोस्ट डॉक समस्या कहते हुए तर्क दिया कि सबसे अच्छा समस्या के लिए समान संख्या में आवेदकों के लिए सफलता की संभावना ठीक है <math> \frac{0.25n^2}{n(n-1)} </math>. यह प्रायिकता 1/4 हो जाती है क्योंकि n अनंत की ओर जाता है जो इस तथ्य को दर्शाता है कि दूसरे-सर्वश्रेष्ठ की तुलना में सर्वश्रेष्ठ को चुनना आसान है।


दूसरे संस्करण के लिए, चयनों की संख्या एक से अधिक होने के लिए निर्दिष्ट है। दूसरे शब्दों में, साक्षात्कारकर्ता सिर्फ एक सचिव को नहीं बल्कि भर्ती कर रहा है
दूसरे संस्करण के लिए चयनों की संख्या एक से अधिक होने के लिए निर्दिष्ट है दूसरे शब्दों में साक्षात्कारकर्ता सिर्फ एक सचिव को नहीं बल्कि भर्ती कर रहा है जबकि कहते हैं एक आवेदक पूल से छात्रों की एक कक्षा को स्वीकार करता है इस धारणा के तहत सभी चयनित उम्मीदवारों को अगर सफलता मिलती है तो सभी गैर-चयनित उम्मीदवारों से बेहतर हैं यह फिर से एक समस्या है जिसे हल किया जा सकता है में दिखाया गया था {{harvnb}} कि जब n सम है और ठीक आधे उम्मीदवारों का चयन करने की इच्छा है तो इष्टतम रणनीति की सफलता की संभावना पैदा होती है <math>\frac{1}{n/2+1}</math>.
बल्कि, कहते हैं, एक आवेदक पूल से छात्रों की एक कक्षा को स्वीकार करना। इस धारणा के तहत कि सभी चयनित उम्मीदवारों को अगर और केवल तभी सफलता मिलती है
सभी गैर-चयनित उम्मीदवारों से बेहतर हैं, यह फिर से एक समस्या है जिसे हल किया जा सकता है। में दिखाया गया था {{harvnb|Vanderbei|1980}} कि जब n सम है और ठीक आधे उम्मीदवारों का चयन करने की इच्छा है, तो इष्टतम रणनीति की सफलता की संभावना पैदा होती है <math>\frac{1}{n/2+1}</math>.


एक अन्य संस्करण सर्वश्रेष्ठ का चयन करने का है <math>k</math> सचिव पूल से बाहर <math>n</math>, फिर से एक ऑनलाइन एल्गोरिथम में। यह क्लासिक एक और कटऑफ दहलीज से संबंधित रणनीति की ओर जाता है<math> \frac{0.25n^2}{n(n-1)} </math> जिसके लिए शास्त्रीय समस्या एक विशेष मामला है।{{sfn|Girdhar|Dudek|2009}}
एक अन्य संस्करण सर्वश्रेष्ठ का चयन करने का है <math>k</math> सचिव पूल से बाहर <math>n</math>, फिर से एक ऑनलाइन प्रारूप में यह क्लासिक एक और कटऑफ दहलीज से संबंधित रणनीति की ओर जाता है<math> \frac{0.25n^2}{n(n-1)} </math> जिसके लिए शास्त्रीय समस्या एक विशेष स्थान है।{{sfn|Girdhar|Dudek|2009}}


=== बहुविकल्पी समस्या ===
=== बहुविकल्पी समस्या ===
एक खिलाड़ी की अनुमति है <math>r</math> विकल्प, और वह जीतता है यदि कोई विकल्प सबसे अच्छा है।
एक खिलाड़ी की अनुमति है <math>r</math> विकल्प और वह जीतता है यदि कोई विकल्प सबसे अच्छा है {{harvnb}} गिलबर्ट और मोस्टेलर ने 1966 में दिखाया कि एक इष्टतम रणनीति एक दहलीज रणनीति कटऑफ रणनीति द्वारा दी गई है एक इष्टतम रणनीति संख्याओं के समूह द्वारा परिभाषित रणनीतियों की श्रेणी से संबंधित है <math> (a_1, a_2, ... , a_r)</math>, जहॉं <math> a_1<a_2< \cdots <a_r </math>. पहली पसंद के साथ शुरू होने वाले पहले उम्मीदवारों पर प्रयोग किया जाना है <math>a_1</math>वें आवेदक और एक बार पहली पसंद का उपयोग करने के बाद दूसरी पसंद का उपयोग पहले उम्मीदवार पर किया जाना है <math>a_2</math>वें आवेदक  
{{harvnb|Gilbert|Mosteller|1966}} ने दिखाया कि एक इष्टतम रणनीति एक दहलीज रणनीति (कटऑफ रणनीति) द्वारा दी गई है। एक इष्टतम रणनीति थ्रेसहोल्ड संख्याओं के सेट द्वारा परिभाषित रणनीतियों की श्रेणी से संबंधित है <math> (a_1, a_2, ... , a_r)</math>, कहाँ <math> a_1<a_2< \cdots <a_r </math>. पहली पसंद के साथ शुरू होने वाले पहले उम्मीदवारों पर इस्तेमाल किया जाना है <math>a_1</math>वें आवेदक, और एक बार पहली पसंद का उपयोग करने के बाद, दूसरी पसंद का उपयोग पहले उम्मीदवार पर किया जाना है <math>a_2</math>वें आवेदक, और इसी तरह।


गिल्बर्ट और मोस्टेलर ने दिखाया <math>\left( \frac{a_1}{n}, \frac{a_2}{n}, \frac{a_3}{n}, \frac{a_4}{n} \right)\rightarrow \left( e^{-1}, e^{-\frac{3}{2}}, e^{-\frac{47}{24}}, e^{-\frac{2761}{1152}} \right)  (n \rightarrow \infty)</math>.
गिल्बर्ट और मोस्टेलर ने दिखाया <math>\left( \frac{a_1}{n}, \frac{a_2}{n}, \frac{a_3}{n}, \frac{a_4}{n} \right)\rightarrow \left( e^{-1}, e^{-\frac{3}{2}}, e^{-\frac{47}{24}}, e^{-\frac{2761}{1152}} \right)  (n \rightarrow \infty)</math>आगे के स्थानों के लिए कि <math>r=5,6,...,10</math> देखना {{harvnb}} उदाहरण के लिए <math> \frac{a_5}{n} \rightarrow e^{-\frac{4162637}{1474560}}</math>
आगे के मामलों के लिए कि <math>r=5,6,...,10</math>, देखना {{harvnb|Matsui|Ano|2016}} (उदाहरण के लिए <math> \frac{a_5}{n} \rightarrow e^{-\frac{4162637}{1474560}}</math>).


कब <math>r=2 </math>, जीत की संभावना अभिसरित होती है <math>  e^{-1}+ e^{-\frac{3}{2}}  (n \rightarrow \infty) </math>.{{sfn|Gilbert|Mosteller|1966}}
कब <math>r=2 </math> जीत की संभावना अभिसरित होती है <math>  e^{-1}+ e^{-\frac{3}{2}}  (n \rightarrow \infty) </math>.{{sfn|Gilbert|Mosteller|1966}}{{harvnb}} ने दिखाया कि किसी भी सकारात्मक पूर्णांक के लिए <math>r</math>जीत की संभावना का <math>r</math> सचिव समस्या में परिवर्तित हो जाता है <math>p_1+p_2+\cdots +p_r</math> कहाँ <math> p_i=\lim_{n \rightarrow \infty} \frac{a_i}{n}</math>. इस प्रकार जीत की संभावना परिवर्तित हो जाती है। <math> e^{-1}+ e^{-\frac{3}{2}}+e^{-\frac{47}{24}} </math> और <math> e^{-1}+e^{-\frac{3}{2}}+e^{-\frac{47}{24}}+e^{-\frac{2761}{1152}} </math> कब <math> r=3, 4 </math>  
{{harvnb|Matsui|Ano|2016}} ने दिखाया कि किसी भी सकारात्मक पूर्णांक के लिए <math>r</math>, जीत की संभावना (का <math>r</math> चॉइस सेक्रेटरी प्रॉब्लम) में परिवर्तित हो जाता है <math>p_1+p_2+\cdots +p_r</math> कहाँ <math> p_i=\lim_{n \rightarrow \infty} \frac{a_i}{n}</math>. इस प्रकार, जीत की संभावना परिवर्तित हो जाती है <math> e^{-1}+ e^{-\frac{3}{2}}+e^{-\frac{47}{24}} </math> और <math> e^{-1}+e^{-\frac{3}{2}}+e^{-\frac{47}{24}}+e^{-\frac{2761}{1152}} </math> कब <math> r=3, 4 </math> क्रमश।


== प्रायोगिक अध्ययन ==
== प्रायोगिक अध्ययन ==
प्रायोगिक [[प्रायोगिक मनोविज्ञान]] और प्रायोगिक अर्थशास्त्र ने सचिव समस्या स्थितियों में वास्तविक लोगों के निर्णय लेने का अध्ययन किया है।<ref>Bearden, Murphy, and Rapoport, 2006; Bearden, Rapoport, and Murphy, 2006; Seale and Rapoport, 1997; [https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2014.1902 Palley and Kremer, 2014]</ref> बड़े हिस्से में, इस काम ने दिखाया है कि लोग बहुत जल्दी खोज करना बंद कर देते हैं। उम्मीदवारों के मूल्यांकन की लागत से इसे कम से कम आंशिक रूप से समझाया जा सकता है। वास्तविक दुनिया की सेटिंग में, यह सुझाव दे सकता है कि लोग पर्याप्त खोज नहीं करते हैं जब भी उन्हें समस्याओं का सामना करना पड़ता है जहां निर्णय विकल्प क्रमिक रूप से सामने आते हैं। उदाहरण के लिए, जब यह तय करने की कोशिश की जा रही है कि हाइवे के किनारे कौन से गैस स्टेशन पर गैस के लिए रुकना है, तो हो सकता है कि लोग रुकने से पहले पर्याप्त खोज न करें। यदि यह सच है, तो वे गैस के लिए अधिक भुगतान करने की प्रवृत्ति रखते हैं, यदि उन्होंने अधिक समय तक खोज की होती। जब लोग एयरलाइन टिकट के लिए ऑनलाइन खोज करते हैं तो भी ऐसा ही हो सकता है। सचिव समस्या जैसी समस्याओं पर प्रायोगिक शोध को कभी-कभी [[व्यवहार संचालन अनुसंधान]] के रूप में संदर्भित किया जाता है।
प्रायोगिक [[प्रायोगिक मनोविज्ञान]] और प्रायोगिक अर्थशास्त्र ने सचिव समस्या स्थितियों में वास्तविक लोगों के निर्णय लेने का अध्ययन किया है।<ref>Bearden, Murphy, and Rapoport, 2006; Bearden, Rapoport, and Murphy, 2006; Seale and Rapoport, 1997; [https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2014.1902 Palley and Kremer, 2014]</ref> बड़े हिस्से में इस काम ने दिखाया है कि लोग बहुत जल्दी खोज करना बंद कर देते हैं उम्मीदवारों के मूल्यांकन की लागत से इसे कम से कम आंशिक रूप से समझाया जा सकता है वास्तविक दुनिया की लगाव में यह सुझाव दे सकता है कि लोग पर्याप्त खोज नहीं करते हैं जब भी उन्हें समस्याओं का सामना करना पड़ता है जहां निर्णय विकल्प क्रमिक रूप से सामने आते हैं उदाहरण के लिए जब यह तय करने की कोशिश की जा रही है कि हाइवे के किनारे कौन से गैस स्टेशन पर गैस के लिए रुकना है तो हो सकता है कि लोग रुकने से पहले पर्याप्त खोज न करें। यदि यह सच है, तो वे गैस के लिए अधिक भुगतान करने की प्रवृत्ति रखते हैं यदि उन्होंने अधिक समय तक खोज की होती जब लोग हवा की पंक्ति के लिए ऑनलाइन खोज करते हैं तो भी ऐसा ही हो सकता है कि सचिव समस्या जैसी समस्याओं पर प्रायोगिक शोध को कभी-कभी [[व्यवहार संचालन अनुसंधान]] के रूप में संदर्भित किया जाता है।


== तंत्रिका संबंध ==
== तंत्रिका संबंध ==
जबकि दोनों जानवरों का उपयोग करके अवधारणात्मक निर्णय लेने के कार्यों में सूचना एकीकरण, या विश्वास का प्रतिनिधित्व पर [[तंत्रिका विज्ञान]] अनुसंधान का एक बड़ा हिस्सा है।<ref>{{cite journal |last1=Shadlen |first1=M. N. |last2=Newsome |first2=W. T. |title=Motion perception: seeing and deciding. |journal=Proceedings of the National Academy of Sciences |date=23 January 1996 |volume=93 |issue=2 |pages=628–633 |doi=10.1073/pnas.93.2.628 |pmid=8570606 |pmc=40102 |bibcode=1996PNAS...93..628S |doi-access=free }}</ref><ref>{{cite journal |last1=Roitman |first1=Jamie D. |last2=Shadlen |first2=Michael N. |title=एक संयुक्त दृश्य भेदभाव रिएक्शन टाइम टास्क के दौरान लेटरल इंट्रापैरिएटल एरिया में न्यूरॉन्स की प्रतिक्रिया|journal=The Journal of Neuroscience |date=1 November 2002 |volume=22 |issue=21 |pages=9475–9489 |doi=10.1523/JNEUROSCI.22-21-09475.2002 |pmid=12417672 |pmc=6758024 }}</ref> और मानव विषय,<ref>{{cite journal |last1=Heekeren |first1=Hauke R. |last2=Marrett |first2=Sean |last3=Ungerleider |first3=Leslie G. |title=तंत्रिका तंत्र जो मानव अवधारणात्मक निर्णय लेने में मध्यस्थता करता है|journal=Nature Reviews Neuroscience |date=9 May 2008 |volume=9 |issue=6 |pages=467–479 |doi=10.1038/nrn2374 |pmid=18464792 |s2cid=7416645 }}</ref> इस बारे में अपेक्षाकृत कम जानकारी है कि सूचना एकत्र करना बंद करने का निर्णय किस प्रकार लिया जाता है।
जबकि दोनों जानवरों का उपयोग करके अवधारणात्मक निर्णय लेने के कार्यों में सूचना एकीकरण या विश्वास के प्रतिनिधित्व पर [[तंत्रिका विज्ञान]] अनुसंधान का एक बड़ा हिस्सा है <ref>{{cite journal |last1=Shadlen |first1=M. N. |last2=Newsome |first2=W. T. |title=Motion perception: seeing and deciding. |journal=Proceedings of the National Academy of Sciences |date=23 January 1996 |volume=93 |issue=2 |pages=628–633 |doi=10.1073/pnas.93.2.628 |pmid=8570606 |pmc=40102 |bibcode=1996PNAS...93..628S |doi-access=free }}</ref><ref>{{cite journal |last1=Roitman |first1=Jamie D. |last2=Shadlen |first2=Michael N. |title=एक संयुक्त दृश्य भेदभाव रिएक्शन टाइम टास्क के दौरान लेटरल इंट्रापैरिएटल एरिया में न्यूरॉन्स की प्रतिक्रिया|journal=The Journal of Neuroscience |date=1 November 2002 |volume=22 |issue=21 |pages=9475–9489 |doi=10.1523/JNEUROSCI.22-21-09475.2002 |pmid=12417672 |pmc=6758024 }}</ref> और मानव विषय के <ref>{{cite journal |last1=Heekeren |first1=Hauke R. |last2=Marrett |first2=Sean |last3=Ungerleider |first3=Leslie G. |title=तंत्रिका तंत्र जो मानव अवधारणात्मक निर्णय लेने में मध्यस्थता करता है|journal=Nature Reviews Neuroscience |date=9 May 2008 |volume=9 |issue=6 |pages=467–479 |doi=10.1038/nrn2374 |pmid=18464792 |s2cid=7416645 }}</ref> इस बारे में अपेक्षाकृत कम जानकारी है कि सूचना एकत्र करना बंद करने का निर्णय किस प्रकार लिया जाता है।


शोधकर्ताओं ने [[कार्यात्मक एमआरआई]] का उपयोग करके स्वस्थ स्वयंसेवकों में सचिव समस्या को हल करने के तंत्रिका आधारों का अध्ययन किया है।<ref>{{cite journal |last1=Costa |first1=V. D. |last2=Averbeck |first2=B. B. |title=ललाट-पार्श्विका और लिम्बिक-स्ट्राइटल गतिविधि सर्वश्रेष्ठ विकल्प समस्या में सूचना नमूनाकरण को रेखांकित करती है|journal=Cerebral Cortex |date=18 October 2013 |volume=25 |issue=4 |pages=972–982 |doi=10.1093/cercor/bht286 |pmid=24142842 |pmc=4366612 }}</ref> एक [[मार्कोव निर्णय प्रक्रिया]] (एमडीपी) का उपयोग वर्तमान विकल्प के लिए खोज बनाम कमिटमेंट जारी रखने के मूल्य की मात्रा निर्धारित करने के लिए किया गया था। एक विकल्प लगे [[ पार्श्विका प्रांतस्था ]] और [[पृष्ठीय प्रीफ्रंटल कॉर्टेक्स]] कॉर्टिस के साथ-साथ [[वेंट्रल स्ट्रिएटम]], [[द्वीपीय प्रांतस्था]] और [[ पूर्वकाल सिंगुलेट ]] लेने बनाम अस्वीकार करने के निर्णय। इसलिए, मस्तिष्क क्षेत्रों को पहले साक्ष्य एकीकरण और इनाम प्रणाली प्रतिनिधित्व में फंसाया गया था, जो थ्रेशोल्ड क्रॉसिंग को सांकेतिक शब्दों में बदलना है जो एक विकल्प के लिए निर्णय लेने के लिए ट्रिगर करता है।
शोधकर्ताओं ने [[कार्यात्मक एमआरआई]] का उपयोग करके स्वस्थ स्वयंसेवकों में सचिव समस्या को हल करने के तंत्रिका आधारों का अध्ययन किया है <ref>{{cite journal |last1=Costa |first1=V. D. |last2=Averbeck |first2=B. B. |title=ललाट-पार्श्विका और लिम्बिक-स्ट्राइटल गतिविधि सर्वश्रेष्ठ विकल्प समस्या में सूचना नमूनाकरण को रेखांकित करती है|journal=Cerebral Cortex |date=18 October 2013 |volume=25 |issue=4 |pages=972–982 |doi=10.1093/cercor/bht286 |pmid=24142842 |pmc=4366612 }}</ref> एक [[मार्कोव निर्णय प्रक्रिया]] एमडीपी का उपयोग वर्तमान विकल्प के लिए खोज बनाम जारी रखने के मूल्य की मात्रा निर्धारित करने के लिए किया गया था एक विकल्प पर लगे [[ पार्श्विका प्रांतस्था ]]और [[पृष्ठीय प्रीफ्रंटल कॉर्टेक्स]] के साथ-साथ [[वेंट्रल स्ट्रिएटम]], [[द्वीपीय प्रांतस्था]] और [[ पूर्वकाल सिंगुलेट ]]लेने बनाम अस्वीकार करने के निर्णय में इसलिए मस्तिष्क क्षेत्रों को पहले साक्ष्य एकीकरण और इनाम प्रणाली प्रतिनिधित्व में फंसाया गया था जो आर-पार को सांकेतिक शब्दों में बदलना है जो एक विकल्प के लिए निर्णय लेने के लिए प्रेरित करता है।


== इतिहास ==
== इतिहास ==
सेक्रेटरी प्रॉब्लम स्पष्ट रूप से 1949 में मेरिल एम. फ्लड द्वारा पेश की गई थी, जिन्होंने उस वर्ष अपने एक व्याख्यान में इसे मंगेतर समस्या कहा था। 1950 के दशक के दौरान उन्होंने कई बार इसका उल्लेख किया, उदाहरण के लिए, 9 मई 1958 को [[पर्ड्यू विश्वविद्यालय]] में एक सम्मेलन वार्ता में, और यह अंततः लोककथाओं में व्यापक रूप से जाना जाने लगा, हालांकि उस समय कुछ भी प्रकाशित नहीं हुआ था। 1958 में उन्होंने [[लियोनार्ड गिलमैन]] को एक पत्र भेजा, जिसकी प्रतियां [[सैमुअल कार्लिन]] और जे. रॉबिंस सहित एक दर्जन दोस्तों को भेजी गईं, जिसमें आर. पलेर्मो द्वारा एक परिशिष्ट के साथ इष्टतम रणनीति के प्रमाण की रूपरेखा दी गई, जिसने साबित किया कि सभी रणनीतियों में एक रणनीति का प्रभुत्व है। फॉर्म पहले पी को बिना शर्त खारिज कर देता है, फिर अगले उम्मीदवार को स्वीकार करता है जो बेहतर है।{{sfn|Flood|1958}}
सचिव समस्या स्पष्ट रूप से 1949 में मेरिल एम. फ्लड द्वारा पेश की गई थी जिन्होंने उस वर्ष अपने एक व्याख्यान में इसे मंगेतर समस्या कहा था 1950 के दशक के दौरान उन्होंने कई बार इसका उल्लेख किया उदाहरण के लिए 9 मई 1958 को [[पर्ड्यू विश्वविद्यालय]] में एक सम्मेलन वार्ता में और यह अंततः लोककथाओं में व्यापक रूप से जाना जाने लगा जबकि उस समय कुछ भी प्रकाशित नहीं हुआ था 1958 में उन्होंने [[लियोनार्ड गिलमैन]] को एक पत्र भेजा जिसकी प्रतियां [[सैमुअल कार्लिन]] और जे. रॉबिंस सहित एक दर्जन दोस्तों को भेजी गईं जिसमें आर. पलेर्मो द्वारा एक परिशिष्ट के साथ इष्टतम रणनीति के प्रमाण की रूपरेखा दी गई जिसने बताया कि सभी रणनीतियों में एक रणनीति का प्रभुत्व है फॉर्म पहले पी को बिना शर्त खारिज कर देता है फिर अगले उम्मीदवार को स्वीकार करता है जो बेहतर है।{{sfn|Flood|1958}}


पहला प्रकाशन स्पष्ट रूप से फरवरी 1960 में साइंटिफिक अमेरिकन में मार्टिन गार्डनर द्वारा किया गया था। उन्होंने इसके बारे में जॉन एच. फॉक्स जूनियर और एल. गेराल्ड मार्नी से सुना था, जो स्वतंत्र रूप से 1958 में एक समान समस्या लेकर आए थे; उन्होंने इसे गूगोल का खेल कहा। फॉक्स और मार्नी इष्टतम समाधान नहीं जानते थे; गार्डनर ने [[लियो मोजर]] से सलाह मांगी, जिन्होंने (जे.आर. पाउंडर के साथ मिलकर) पत्रिका में प्रकाशन के लिए एक सही विश्लेषण प्रदान किया। इसके तुरंत बाद, कई गणितज्ञों ने गार्डनर को लिखा कि वे उसी समतुल्य समस्या के बारे में बताएं जो उन्होंने अंगूर की बेल के माध्यम से सुनी थी, जिनमें से सभी को संभवतः फ्लड के मूल कार्य में खोजा जा सकता है।{{sfn|Gardner|1966|loc=Problem 3}}
पहला प्रकाशन स्पष्ट रूप से फरवरी 1960 में साइंटिफिक अमेरिकन में मार्टिन गार्डनर द्वारा किया गया था उन्होंने इसके बारे में जॉन एच. फॉक्स जूनियर और एल. गेराल्ड मार्नी से सुना था जो स्वतंत्र रूप से 1958 में एक समान समस्या लेकर आए थे उन्होंने इसे गूगोल का खेल कहा लोमड़ी और मार्नी इष्टतम समाधान नहीं जानते थे गार्डनर ने [[लियो मोजर]] से सलाह मांगी जिन्होंने जे.आर. पाउंडर के साथ मिलकर पत्रिका में प्रकाशन के लिए एक सही विश्लेषण प्रदान किया इसके तुरंत बाद कई गणितज्ञों ने गार्डनर को लिखा कि वे उसी समतुल्य समस्या के बारे में बताएं जो उन्होंने अंगूर की बेल के माध्यम से सुनी थी जिनमें से सभी को संभवतः मूल कार्य में खोजा जा सकता है।{{sfn|Gardner|1966|loc=Problem 3}}


सर्वोत्तम पसंद का 1/ई-कानून एफ. थॉमस ब्रस के कारण है।{{sfn|Bruss|1984}}
सर्वोत्तम पसंद का 1/ई-कानून एफ. थॉमस ब्रस के कारण है।{{sfn|Bruss|1984}}


फर्ग्यूसन की एक व्यापक ग्रंथ सूची है और बताते हैं कि एक समान (लेकिन अलग) समस्या पर 1875 में [[आर्थर केली]] और यहां तक ​​​​कि जोहान्स केपलर # दूसरी शादी से बहुत पहले विचार किया गया था।{{sfn|Ferguson|1989}}
फर्ग्यूसन की एक व्यापक ग्रंथ सूची है और बताते हैं कि एक समान समस्या पर 1875 में [[आर्थर केली]] और यहां तक ​​​​कि जोहान्स केपलर दूसरी शादी से बहुत पहले विचार किया गया था।{{sfn|Ferguson|1989}}


== मिश्रित सामान्यीकरण ==
== मिश्रित सामान्यीकरण ==
सचिव समस्या को उस मामले में सामान्यीकृत किया जा सकता है जहां कई अलग-अलग नौकरियां हैं। फिर से, वहाँ हैं <math>n</math> आवेदक यादृच्छिक क्रम में आ रहे हैं। जब कोई उम्मीदवार आता है, तो वह गैर-नकारात्मक संख्याओं का एक सेट प्रकट करती है। प्रत्येक मान किसी एक कार्य के लिए उसकी योग्यता निर्दिष्ट करता है। प्रशासक को न केवल यह तय करना है कि आवेदक को लेना है या नहीं, बल्कि यदि ऐसा है, तो उसे स्थायी रूप से किसी एक नौकरी पर नियुक्त करना होगा। उद्देश्य एक ऐसा असाइनमेंट ढूंढना है जहां योग्यता का योग जितना संभव हो उतना बड़ा हो। यह समस्या किनारे-भारित [[द्विपक्षीय ग्राफ]] में अधिकतम-वजन मिलान खोजने के समान है जहां <math>n</math> एक तरफ के नोड यादृच्छिक क्रम में ऑनलाइन आते हैं। इस प्रकार, यह मिलान (ग्राफ़ सिद्धांत) #ऑनलाइन द्विदलीय मिलान समस्या का एक विशेष मामला है।
सचिव समस्या को उस जगह में साक्षात्कार किया जा सकता है जहां कई अलग-अलग नौकरियां हैं तथा फिर से <math>n</math> आवेदक यादृच्छिक क्रम में आ रहे हैं जब कोई उम्मीदवार आता है तो वह गैर-नकारात्मक संख्याओं का एक समूह प्रकट करता है प्रत्येक मान किसी एक कार्य के लिए उसकी योग्यता निर्दिष्ट करता है प्रशासक को न केवल यह तय करना है कि आवेदक को नौकरी लेना है या नहीं बल्कि यदि ऐसा है तो उसे स्थायी रूप से किसी एक नौकरी पर नियुक्त करना होगा उद्देश्य एक ऐसा कार्यभार ढूंढना है जहां योग्यता का योग जितना संभव हो उतना बड़ा हो यह समस्या किनारे-भारित [[द्विपक्षीय ग्राफ]] में अधिकतम-वजन मिलान खोजने के समान है जहां <math>n</math> एक तरफ के नोड यादृच्छिक क्रम में ऑनलाइन आते हैं इस प्रकार यह मिलान ग्राफ़ सिद्धांत ऑनलाइन द्विदलीय मिलान समस्या का एक विशेष स्थान है।


सेक्रेटरी प्रॉब्लम के लिए क्लासिक एल्गोरिद्म के सामान्यीकरण से, एक असाइनमेंट प्राप्त करना संभव है जहां योग्यता का अपेक्षित योग केवल एक कारक है <math>e</math> एक इष्टतम (ऑफ़लाइन) असाइनमेंट से कम।<ref>{{cite book |doi=10.1007/978-3-642-40450-4_50 |chapter=An Optimal Online Algorithm for Weighted Bipartite Matching and Extensions to Combinatorial Auctions |title=Algorithms – ESA 2013 |volume=8125 |pages=589–600 |series=Lecture Notes in Computer Science |year=2013 |last1=Kesselheim |first1=Thomas |last2=Radke |first2=Klaus |last3=Tönnis |first3=Andreas |last4=Vöcking |first4=Berthold |isbn=978-3-642-40449-8 }}</ref>
सचिव समस्या के लिए अति उत्कृष्ट प्रारूप के सामान्यीकरण से एक कार्यभार प्राप्त करना संभव है जहां योग्यता का अपेक्षित योग केवल एक कारक है <math>e</math> एक इष्टतम डॉकपोस्ट कार्यभार से कम है।<ref>{{cite book |doi=10.1007/978-3-642-40450-4_50 |chapter=An Optimal Online Algorithm for Weighted Bipartite Matching and Extensions to Combinatorial Auctions |title=Algorithms – ESA 2013 |volume=8125 |pages=589–600 |series=Lecture Notes in Computer Science |year=2013 |last1=Kesselheim |first1=Thomas |last2=Radke |first2=Klaus |last3=Tönnis |first3=Andreas |last4=Vöcking |first4=Berthold |isbn=978-3-642-40449-8 }}</ref>




== यह भी देखें ==
== यह भी देखें ==
{{Portal|Economics|Mathematics}}
{{Portal|Economics|Mathematics}}
* [[असाइनमेंट की समस्या]]
* [[असाइनमेंट की समस्या|कार्यभार की समस्या।]]
* ऑड्स एल्गोरिथम
* ऑड्स प्रारूप।
* इष्टतम रोक
* इष्टतम रोक।
* रॉबिन्स की समस्या
* रॉबिन्स की समस्या।
* [[खोज सिद्धांत]]
* [[खोज सिद्धांत|खोज सिद्धांत।]]
* [[स्थिर विवाह की समस्या]]
* [[स्थिर विवाह की समस्या|स्थिर विवाह की समस्या।]]


==टिप्पणियाँ==
==टिप्पणियाँ==
Line 257: Line 251:
{{Authority control}}
{{Authority control}}


{{DEFAULTSORT:Secretary Problem}}[[Category: निर्णय सिद्धांत]] [[Category: अनुक्रमिक तरीके]] [[Category: मिलान (ग्राफ सिद्धांत)]] [[Category: इष्टतम निर्णय]] [[Category: संभाव्यता समस्याएं]] [[Category: व्यापार में गणितीय अनुकूलन]]
{{DEFAULTSORT:Secretary Problem}}


 
[[Category:All articles with unsourced statements|Secretary Problem]]
 
[[Category:Articles with unsourced statements from May 2022|Secretary Problem]]
[[Category: Machine Translated Page]]
[[Category:CS1 errors|Secretary Problem]]
[[Category:Created On 21/05/2023]]
[[Category:CS1 maint]]
[[Category:Created On 21/05/2023|Secretary Problem]]
[[Category:Lua-based templates|Secretary Problem]]
[[Category:Machine Translated Page|Secretary Problem]]
[[Category:Pages with empty portal template|Secretary Problem]]
[[Category:Pages with script errors|Secretary Problem]]
[[Category:Portal templates with redlinked portals|Secretary Problem]]
[[Category:Templates Vigyan Ready|Secretary Problem]]
[[Category:Templates that add a tracking category|Secretary Problem]]
[[Category:Templates that generate short descriptions|Secretary Problem]]
[[Category:Templates using TemplateData|Secretary Problem]]
[[Category:Use dmy dates from March 2020|Secretary Problem]]
[[Category:अनुक्रमिक तरीके|Secretary Problem]]
[[Category:इष्टतम निर्णय|Secretary Problem]]
[[Category:निर्णय सिद्धांत|Secretary Problem]]
[[Category:मिलान (ग्राफ सिद्धांत)|Secretary Problem]]
[[Category:व्यापार में गणितीय अनुकूलन|Secretary Problem]]
[[Category:संभाव्यता समस्याएं|Secretary Problem]]

Latest revision as of 10:54, 29 May 2023

n अनुप्रयोगों से सर्वश्रेष्ठ उम्मीदवार (लाल वृत्त) प्राप्त करने की संभावनाओं का ग्राफ, और k/n (नीला क्रॉस) जहां k नमूना आकार है

सचिव समस्या इष्टतम रोक परिभाषा से जुड़े एक परिदृश्य को प्रदर्शित करती है[1][2] जिसका व्यवहार संभाव्यता, सांख्यिकी और निर्णय सिद्धांत के क्षेत्र में बड़े पैमाने पर अध्ययन किया जाता है इसे शादी की समस्या, सुल्तान की दहेज समस्या, उधम मचाने वाली समस्या, गूगल खेल और अच्छी पसंद समस्या के रूप में भी जानी जाती है

समस्या का मूल रूप निम्नलिखित है यह एक ऐसे प्रशासक की कल्पना करता है जो सबसे अच्छे सचिव को नियुक्त करना चाहता है एक पद के लिए पद करने योग्य आवेदक या आवेदकों का यादृच्छिक क्रम में एक-एक करके साक्षात्कार लिया जाता है साक्षात्कार के तुरंत बाद प्रत्येक विशेष आवेदक के बारे में निर्णय लिया जाना है एक बार निर्णय कर दिए जाने के बाद एक आवेदक को वापस नहीं बुलाया जा सकता है साक्षात्कार के दौरान प्रशासक आवेदक को अब तक साक्षात्कार किए गए सभी आवेदकों के बीच पद प्राप्त करने के लिए पर्याप्त जानकारी प्राप्त करता है लेकिन अभी तक अनदेखे आवेदकों की गुणवत्ता से अनभिज्ञ है प्रश्न सर्वश्रेष्ठ आवेदक के चयन की संभावना को अधिकतम करने के लिए इष्टतम रणनीति नियम को रोकने के बारे में है यदि निर्णय को अंत तक टाला जाये तो इससे चल रहे अधिकतम चयन प्रारूप द्वारा हल किया जा सकता है और अंत में समग्र अधिकतम का चयन किया जा सकता है कठिनाई यह है कि निर्णय तुरंत किया जाना चाहिए।

अब तक ज्ञात सबसे छोटा कठोर प्रमाण बाधाओं प्रारूप द्वारा प्रदान किया गया है इसका तात्पर्य है कि इष्टतम जीत की संभावना हमेशा कम से कम होती है जहाँ e गणितीय स्थिरांक प्राकृतिक लघुगणक का आधार है और यह बाद वाला बहुत अधिक सामान्यता भी धारण करता है इष्टतम रोक नियम हमेशा पहले को अस्वीकार करने की सलाह देता है जिन आवेदकों का साक्षात्कार लिया जाता है वे पहले आवेदक पर रुकते हैं जो अब तक के साक्षात्कार वाले प्रत्येक आवेदक से बेहतर है या यदि ऐसा कभी नहीं होता है तो अंतिम आवेदक को जारी रखें कभी-कभी इस रणनीति को रोक नियम कहा जाता है क्योंकि इस रणनीति के साथ सबसे अच्छे आवेदक को रोकने की संभावना लगभग है से पहले ही मध्यम मूल्यों के लिए . सचिव समस्या पर इतना अधिक ध्यान देने का एक कारण यह है कि समस्या के लिए इष्टतम नीति रोकने का नियम सरल है और 100 या 100 मिलियन आवेदक होने के बाद भी लगभग 37 प्रतिशत समय में सबसे अच्छे उम्मीदवार का चयन करता है।

सूत्रीकरण

जबकि इसमें कई विविधताएँ हैं मूल समस्या को निम्नानुसार कहा जा सकता है जो इस प्रकार हैं-

  • भरने के लिए एक ही पद है।
  • पद के लिए n आवेदक हैं और n का मान ज्ञात है।
  • आवेदकों को यदि सभी को एक साथ देखा जाए तो उन्हें स्पष्ट रूप से सर्वश्रेष्ठ या सबसे खराब क्रम में रखा जा सकता है।
  • आवेदकों का यादृच्छिक क्रम में क्रमिक रूप से साक्षात्कार किया जाता है जिसमें प्रत्येक आदेश समान रूप से होने की संभावना होती है।
  • एक साक्षात्कार के तुरंत बाद साक्षात्कार के आवेदक को स्वीकार या अस्वीकार कर दिया जाता है और निर्णय अपरिवर्तनीय है।
  • किसी आवेदक को स्वीकार या अस्वीकार करने का निर्णय अब तक साक्षात्कार किए गए आवेदकों के सापेक्ष पद पर ही आधारित हो सकता है।
  • सामान्य समाधान का उद्देश्य पूरे समूह के सर्वश्रेष्ठ आवेदक के चयन की उच्चतम संभावना है यह अपेक्षित अदायगी को अधिकतम करने के समान है जिसमें अदायगी को सर्वश्रेष्ठ आवेदक के लिए एक और अन्यथा शून्य के रूप में परिभाषित किया गया है।

एक उम्मीदवार को एक आवेदक के रूप में परिभाषित किया जाता है जिसका साक्षात्कार होने पर पहले साक्षात्कार किए गए सभी आवेदकों से बेहतर होता है इसका मतलब साक्षात्कार के तुरंत बाद हटाना होता है जिससे समस्या का उद्देश्य एकल सर्वश्रेष्ठ आवेदक का चयन करना है इसलिए स्वीकृति के लिए केवल उम्मीदवारों पर विचार किया जाएगा इस संदर्भ में उम्मीदवार क्रम परिवर्तन में रिकॉर्ड की अवधारणा से मेल खाता है।

इष्टतम नीति प्राप्त करना

समस्या के लिए इष्टतम नीति एक रोक नियम है इसके तहत साक्षात्कारकर्ता पहले r − 1 आवेदकों अस्वीकार करता है और आवेदक M को इन r − 1 आवेदकों में से सबसे अच्छा आवेदक होने दें और फिर बाद में पहले आवेदक का चयन करसे जो आवेदक M से बेहतर होता है इसमें यह दिखाया जाता है कि इष्टतम रणनीतियों के इस वर्ग में निहित है आवेदक का चयन नहीं करना चाहिए जो अब तक हमने देखा है कि सबसे अच्छा आवेदक नहीं है क्योंकि वे समग्र रूप से सर्वश्रेष्ठ आवेदक नहीं हो सकते हैं एक मनमाना कटऑफ आर के लिए सबसे अच्छा आवेदक चुने जाने की संभावना है

राशि r = 1 के लिए परिभाषित नहीं है लेकिन ऐसे स्थानों में एकमात्र व्यवहार्य नीति पहले आवेदक का चयन करना है और P(1) = 1/n यह राशि इस बात को ध्यान में रखते हुए प्राप्त की जाती है कि यदि आवेदक i सबसे अच्छा आवेदक है तो इसे चुना जाता है और यदि अगर पहले i − 1 आवेदकों में से सबसे अच्छा आवेदक उन पहले r − 1 आवेदकों में से है जिन्हें अस्वीकार कर दिया गया था तो एन को अनंत की ओर ले जाने या लिखने के लिए (r−1)/n की सीमा के रूप में (i−1)/n के लिए t और 1/n के लिए dt का उपयोग करके योग को समाकल द्वारा अनुमानित किया जा सकता है।

के संबंध में P(x) का अवकलन लेना इसे 0 पर एकत्र करके और x के लिए हल करके हम पाते हैं कि इष्टतम x 1/e के बराबर है या नहीं इस प्रकार इष्टतम कटऑफ एन / ई के रूप में बढ़ता है और सबसे अच्छा आवेदक 1 / ई संभावना के साथ चुना जाता है।

n के छोटे मानों के लिए मानक गतिशील कार्यक्रमिक विधियों द्वारा इष्टतम r भी प्राप्त किया जा सकता है इष्टतम आर और एन के कई मूल्यों के लिए सबसे अच्छा विकल्प पी चुनने की संभावना निम्न तालिका में दिखायी गयी है।

1 2 3 4 5 6 7 8 9
1 1 2 2 3 3 3 4 4
1.000 0.500 0.500 0.458 0.433 0.428 0.414 0.410 0.406

शास्त्रीय सचिव समस्या में सर्वश्रेष्ठ आवेदक के चयन की संभावना की ओर अभिसरण होता है। .

वैकल्पिक समाधान

इस समस्या और कई संशोधनों को कठिनाई प्रारूप द्वारा सीधे तरीके से इष्टतमता के प्रमाण सहित हल किया जा सकता है जिसमें अन्य अनुप्रयोग भी हैं इस प्रारूप द्वारा हल की जा सकने वाली सचिव समस्या के लिए संशोधनों में आवेदकों की यादृच्छिक उपलब्धता आवेदकों के लिए अधिक सामाशा परिकल्पनाएं सम्मिलित हैं जो निर्णयकर्ता के लिए रुचिकर हों आवेदकों के लिए समूह साक्षात्कार साथ ही आवेदकों की यादृच्छिक संख्या के लिए कुछ प्रयुक्त आवेदक हैं।[citation needed]

सीमाएं

सचिव समस्या का समाधान केवल तभी सार्थक है जब आवेदकों को नियोजित निर्णय रणनीति का कोई ज्ञान न हो क्योंकि शुरुआती आवेदकों के पास कोई मौका नहीं है और यह दिखाई भी नहीं दे सकता है।

शास्त्रीय सचिव समस्या के समाधान के अनुप्रयोगों के लिए एक महत्वपूर्ण दोष आवेदकों की संख्या है जो इस समस्या को दूर करने का तरीका यह मान लेता है कि आवेदकों की संख्या एक यादृच्छिक चर है के ज्ञात वितरण के साथ प्रेसमैन और सोनिन 1972 में इस प्रारूप के लिए इष्टतम समाधान सामान्य रूप से अधिक कठिन है इसके सफलता की संभावना अब 1/e के आसपास नहीं है लेकिन आमतौर पर कम है इसे आवेदकों की संख्या न जानने की कीमत चुकाने के संदर्भ में समझा जा सकता है जबकि इस प्रारूप में कीमत ज्यादा है यह इसके वितरण की पसंद पर निर्भर करता है इष्टतम जीत संभावना शून्य तक पहुंच सकती है इस नई समस्या से निपटने के तरीकों की तलाश में एक नए प्रारूप का नेतृत्व किया गया जो तथाकथित 1/ई-कानून को सर्वोत्तम विकल्प प्रदान करता है।

1/सर्वश्रेष्ठ विकल्प का ई-कानून

प्रारूप का सार इस विचार पर आधारित है कि जीवन अनुक्रमिक है और वास्तविक दुनिया की समस्याएं वास्तविक समय में उत्पन्न होती हैं इसके अलावा ऐसे समय का अनुमान लगाना आसान होता है जिसमें विशिष्ट घटनाओं आवेदकों के आगमन को अधिक बार होना चाहिए यदि वे ऐसा करते हैं तो होने वाली विशिष्ट घटनाओं की संख्या के वितरण का अनुमान लगाने के जगह इस विचार ने निम्नलिखित दृष्टिकोण को जन्म दिया तथाकथित एकीकृत दृष्टिकोण 1984 में लागू हुआ।

प्रारूप को इस प्रकार परिभाषित किया गया है कि एक आवेदक को कुछ समय अंतराल पर चुना जाना चाहिए किसी अनजान नंबर से पद करने योग्य आवेदकों का लक्ष्य इस परिकल्पना के तहत केवल सर्वश्रेष्ठ का चयन करने की संभावना को अधिकतम करना है किसी विभिन्न पदों के सभी आगमन आदेशित समान रूप से होने की संभावना है मान लीजिए कि सभी आवेदकों का आगमन समय घनत्व समान है लेकिन एक-दूसरे से स्वतंत्र है पर और जाने इसी आगमन समय वितरण कार्यक्रम को निरूपित करें अर्थात्

, .

ऐसा हो कि सभी आवेदक समय-समय पर प्रतीक्षा करने और निरीक्षण करने की रणनीति पर विचार करें यदि संभव हो तो समय के बाद पहले उम्मीदवार का चयन करना जो पिछले सभी से बेहतर है फिर इस रणनीति को जिसे 1/ई-रणनीति कहा जाता है इसमें निम्नलिखित गुण हैं

1/ई-रणनीति

(i) सभी के लिए पैदावार कम से कम 1/e की सफलता की संभावना।
(ii) चयनकर्ता के लिए एक न्यूनतम-इष्टतम रणनीति है जो को नहीं जानता है।
(iii) चयन करता है यदि कम से कम एक आवेदक हो जो 1/e संभावना के साथ कोई न हो।

एफ. थॉमस ब्रस द्वारा 1984 में सिद्ध किया गया पहला/ई-कानून एक आश्चर्य के रूप में सामने आया कारण यह था कि अज्ञात के लिए एक प्रारूप में पहुंच से बाहर होने से पहले लगभग 1/e के मान पर विचार किया गया था जबकि यह मान 1/e अब सफलता की संभावना के लिए एक निचली सीमा के रूप में प्राप्त किया गया था और यह यकीनन बहुत कमजोर परिकल्पनाओं वाले प्रारूप में है उदाहरण के लिए समीक्षाएं 85: मिनट

जबकि कई अन्य रणनीतियाँ हैं जो (i) और (ii) प्राप्त करती हैं और इसके अलावा 1/ई-रणनीति की तुलना में सख्ती से बेहतर प्रदर्शन करती हैं एक साथ सभी के लिए > 2। एक सरल उदाहरण वह रणनीति है जो समय के बाद या पहले अपेक्षाकृत सर्वश्रेष्ठ उम्मीद का चयन करती है यदि संभव हो जबकि कम से कम एक आवेदक इस समय से पहले पहुंचे और समय के बाद दूसरे अपेक्षाकृत सर्वश्रेष्ठ उम्मीदवार का चयन करें [3]

संख्या 1/ई की समान भूमिका के कारण 1/ई-कानून कभी-कभी ऊपर वर्णित शास्त्रीय सचिव समस्या के समाधान के साथ भ्रमित हो जाता है जबकि 1/ई-कानून में यह भूमिका अधिक सामान्य है परिणाम भी मजबूत है क्योंकि यह अज्ञात संख्या में आवेदकों के लिए है और चूंकि आगमन समय वितरण एफ पर आधारित प्रारूप अनुप्रयोगों के लिए अधिक हैं।

गोगोल का खेल

थॉमस एस. फर्ग्यूसन के अनुसार सचिव समस्या पहली बार छपाई में दिखाई दी जब इसे मार्टिन गार्डनर ने अपने फरवरी 1960 में अमेरिकी वैज्ञानिक में गणितीय खेल स्तंभ में चित्रित किया [1] यहां बताया गया है कि गार्डनर ने इसे कैसे तैयार किया किसी को कागज की जितनी चाहें उतनी पर्चियां लेने के लिए कहें और प्रत्येक पर्ची पर एक अलग सकारात्मक संख्या लिखें संख्याएँ 1 के छोटे अंशों से लेकर एक गोगोल के आकार की संख्या 1 के बाद सौ शून्य या इससे भी बड़ी हो सकती हैं इन पर्चियों को उल्टा कर दिया जाता है और एक मेज के ऊपर से फेर दिया जाता है एक समय में आप फिसलकर उल्टा कर देते हैं लक्ष्य यह है कि जब आप उस संख्या तक पहुंचें जिसे आप श्रृंखला में सबसे बड़ा मानते हैं तो मुड़ना बंद कर दें आप वापस नहीं जा सकते हैं और पहले से मुड़ी हुई पर्ची नहीं उठा सकते हैं यदि आप सभी पर्चियों को पलट देते हैं तो निश्चित रूप से आपको अंतिम मुड़ी हुई पर्चियों को चुनना चाहिए।[4]

लेख में सचिव समस्या का समाधान किसने किया फर्ग्यूसन ने बताया कि सचिव की समस्या अनसुलझी रही जैसा कि एम. गार्डनर ने कहा था जो दो विरोधी खिलाड़ियों के साथ दो-व्यक्ति शून्य-राशि के खेल के रूप में है [1] इस खेल में ऐलिस, सूचित खिलाड़ी, गुप्त रूप से अलग-अलग नंबर लिखता है पत्ते बॉब, रोकने वाला खिलाड़ी, वास्तविक मूल्यों को देखता है और जब भी वह चाहता है तो कार्ड को बदलना बंद कर सकता है अगर आखिरी कार्ड बदल गया तो जीतना कुल अधिकतम संख्या है बुनियादी सचिव की समस्या से अंतर यह है कि बॉब कार्डों पर लिखे वास्तविक मूल्यों का अवलोकन करता है जिसका उपयोग वह अपनी निर्णय प्रक्रियाओं में कर सकता है सचिव समस्या के कुछ संस्करणों में कार्ड पर संख्या आवेदकों के संख्यात्मक गुणों के अनुरूप होती है संख्याओं का संयुक्त संभाव्यता वितरण ऐलिस के नियंत्रण में है।

बॉब उच्चतम संभव संभावना के साथ अधिकतम संख्या का अनुमान लगाना चाहता है जबकि ऐलिस का लक्ष्य इस संभावना को यथासंभव कम रखना है ऐलिस के लिए कुछ निश्चित वितरण से स्वतंत्र रूप से संख्याओं का नमूना लेना इष्टतम नहीं है और वह कुछ आश्रित तरीके से यादृच्छिक संख्याओं को चुनकर बेहतर खेल सकती है के लिए ऐलिस की कोई न्यूनतम रणनीति नहीं है जो थॉमस एम. कवर टी के विरोधाभास से निकटता से संबंधित है खेल में एक समाधान है ऐलिस यादृच्छिक संख्या जो आश्रित यादृच्छिक चर हैं यह इस तरह से चुन सकता है कि बॉब सापेक्ष पदों के आधार पर शास्त्रीय रोक रणनीति का उपयोग करने से बेहतर नहीं खेल सकता।[5]

अनुमानित प्रदर्शन

शेष लेख आवेदकों की ज्ञात संख्या के लिए फिर से सचिव समस्या से संबंधित है।

तीन अनुमानों के लिए अपेक्षित सफलता की संभावनाएं।

Stein, Seale & Rapoport 2003 ने कई मनोवैज्ञानिक रूप से प्रशंसनीय अनुमानों के लिए अपेक्षित सफलता की संभावनाएँ प्राप्त कीं जिन्हें सचिव समस्या में नियोजित किया जा सकता है उन्होंने ह्यूरिस्टिक्स की जांच की थी

  • कटऑफ नियम पहले y आवेदकों में से किसी को भी स्वीकार न करें इसके बाद पहले सामना करने वाले उम्मीदवार यानी सापेक्ष पद 1 वाला आवेदक का चयन करें इस नियम में एक विशेष स्थान के रूप में शास्त्रीय सचिव समस्या के लिए इष्टतम नीति है जिसके लिए y = r
  • उम्मीदवार गणना नियम सीसीआर वाई-वें सामना करने वाले उम्मीदवार का चयन करें ध्यान दें कि यह नियम आवश्यक रूप से किसी भी आवेदक को छोड़ नहीं देता है यह केवल इस बात पर विचार करता है कि कितने उम्मीदवारों का अवलोकन किया गया है यह नहीं कि आवेदक अनुक्रम में निर्णय निर्माता कितना गहरा है।
  • लगातार गैर-उम्मीदवार नियम एसएनसीआर वाई गैर-उम्मीदवारों यानी संबंधित पद वाले आवेदक > 1 का अवलोकन करने के बाद सबसे पहले सामना करने वाले उम्मीदवार का चयन करें ।

अनुमानी का एक एकल पैरामीटर y होता है आंकड़ा दाईं ओर दिखाया गया है n = 80 के साथ समस्याओं के लिए y के एक समारोह के रूप में प्रत्येक अनुमानी के लिए अपेक्षित सफलता की संभावनाएं प्रदर्शित करता है।

कार्डिनल पेऑफ वेरिएंट

एकल सर्वश्रेष्ठ आवेदक ढूँढना एक सख्त उद्देश्य की तरह लग सकता है कोई कल्पना कर सकता है कि साक्षात्कारकर्ता एक कम-मूल्यवान आवेदक की तुलना में एक उच्च-मूल्यवान आवेदक को नियुक्त करेगा और न केवल सर्वश्रेष्ठ प्राप्त करने के लिए चिंतित होगा अर्थात् साक्षात्कारकर्ता एक आवेदक का चयन करने से कुछ मूल्य प्राप्त करेगा जो आवश्यक रूप से सर्वोत्तम नहीं है और व्युत्पन्न मूल्य चयनित के मूल्य के साथ बढ़ता है।

इस समस्या का प्रारूप बनाने के लिए मान लीजिए कि आवेदकों के पास वास्तविक मूल्य हैं जो यादृच्छिक चर एक्स तैयार हैं 0, 1 पर एक समान वितरण निरंतर ऊपर वर्णित शास्त्रीय समस्या के समान साक्षात्कारकर्ता केवल यह देखता है कि क्या प्रत्येक आवेदक अब तक का सबसे अच्छा है एक उम्मीदवार प्रत्येक को मौके पर ही स्वीकार या अस्वीकार कर देना चाहिए और यदि वह पहुंच जाता है तो अंतिम को स्वीकार करना चाहिए साक्षात्कारकर्ता प्रत्येक आवेदक की वास्तविक सापेक्ष पद नहीं सीखता है वह केवल यह सीखता है कि आवेदक की सापेक्ष पद 1 है या नहीं जबकि इस संस्करण में भुगतान चयनित आवेदक के सही मूल्य द्वारा दिया गया है उदाहरण के लिए यदि वह एक आवेदक का चयन करता है जिसका सही मूल्य 0.8 है, तो वह 0.8 कमाएगा साक्षात्कारकर्ता का उद्देश्य चयनित आवेदक के अपेक्षित मूल्य को अधिकतम करना है।

चूंकि आवेदक के मान 0, 1 पर एक समान वितरण से प्राप्त करता है दिए गए tवें आवेदक का अपेक्षित मूल्य द्वारा दिया गया है

शास्त्रीय समस्या के रूप में इष्टतम नीति एक दहलीज द्वारा दी गई है जिसे इस समस्या के लिए हम निरूपित करेंगे , जिस पर साक्षात्कारकर्ता को उम्मीदवारों को स्वीकार करना शुरू कर देना चाहिए बेयरडेन ने दिखाया कि सी या तो है या .[6] वास्तव में जो भी सबसे करीब है । यह इस तथ्य से अनुसरण करता है कि एक समस्या दी गई है आवेदकों को कुछ मनमाने ढंग से सीमा के लिए अपेक्षित अदायगी प्ादानन करता है

सी के संबंध में एक प्राप्त कर्ता है

आंशिक-सूचना अनुक्रमिक खोज प्रतिमान में सीखना संख्या खोज में विभिन्न बिंदुओं पर उनके सापेक्ष पद अब तक देखे गए कुल आवेदकों में से आवेदकों के अपेक्षित मूल्यों को प्रदर्शित करती है उम्मीदों की गणना जगहों के आधार पर की जाती है जब उनके मान समान रूप से 0 और 1 के बीच वितरित किए जाते हैं सापेक्ष पद की जानकारी साक्षात्कारकर्ता को आवेदकों का अधिक बारीकी से मूल्यांकन करने की अनुमति देती है क्योंकि वे उनकी तुलना करने के लिए अधिक डेटा बिंदु जमा करते हैं तब से के सभी अनुमेय मूल्यों के लिए तथा का अधिकतम होता है . चूँकि V उत्तल है इष्टतम पूर्णांक-मान होना चाहिए या . इस प्रकार के अधिकांश मूल्यों के लिए साक्षात्कारकर्ता शास्त्रीय संस्करण की तुलना में प्रमुख प्रतिदान संस्करण में जल्द ही आवेदकों को स्वीकार करना शुरू कर देगा जहां उद्देश्य एकल सर्वश्रेष्ठ आवेदक का चयन करना है ध्यान दें कि यह एक स्पर्शोन्मुख परिणाम नहीं है यह सभी के लिए है . जबकि ज्ञात वितरण से अपेक्षित मूल्य को अधिकतम करने के लिए यह इष्टतम नीति नहीं है ज्ञात वितरण के स्थान में गतिशील कार्यक्रम के माध्यम से इष्टतम खेल की गणना की जा सकती है।

इस समस्या का एक अधिक सामान्य रूप पाले और क्रेमर (2014) द्वारा पेश किया गया[7] मानना है कि प्रत्येक नए आवेदक के आने पर साक्षात्कारकर्ता उन सभी आवेदकों के सापेक्ष उनका पद देखता है जो पहले देखे जा चुके हैं यह प्रतिरूप एक साक्षात्कारकर्ता सीखने की धारणा के अनुरूप है क्योंकि वे पिछले डेटा बिंदुओं के एक समूह को जमा करके खोज प्रक्रिया जारी रखते हैं जिसका उपयोग वे नए उम्मीदवारों के आने पर उनका मूल्यांकन करने के लिए कर सकते हैं इस तथाकथित आंशिक-सूचना प्रतिरूप का एक लाभ यह है कि यदि साक्षात्कारकर्ता को प्रत्येक आवेदक के मूल्य के बारे में पूरी जानकारी दी गई थी तो सापेक्ष पद की जानकारी के साथ प्राप्त किए गए निर्णयों और परिणामों की सीधे संबंधित इष्टतम निर्णयों और परिणामों से तुलना की जा सकती है यह पूर्ण-सूचना समस्या जिसमें आवेदकों को एक ज्ञात वितरण से स्वतंत्र रूप से लिया जाता है और साक्षात्कारकर्ता चयनित आवेदक के अपेक्षित मूल्य को अधिकतम करना चाहता है यह मूल रूप से मोजर द्वारा 1956 में सकागुची 1961 में और कॉर्लिन 1962 में हल किया गया था। [8]

अन्य संशोधन

सचिव समस्या के कई रूप हैं जिनका सरल और सुरुचिपूर्ण समाधान भी है।

एक संस्करण दूसरे सर्वश्रेष्ठ को चुनने की इच्छा के साथ सर्वश्रेष्ठ चुनने की इच्छा को प्रतिस्थापित करता है [9][10][11] रॉबर्ट जे वेंडरबी ने इसे पोस्ट डॉक समस्या कहते हुए तर्क दिया कि सबसे अच्छा समस्या के लिए समान संख्या में आवेदकों के लिए सफलता की संभावना ठीक है . यह प्रायिकता 1/4 हो जाती है क्योंकि n अनंत की ओर जाता है जो इस तथ्य को दर्शाता है कि दूसरे-सर्वश्रेष्ठ की तुलना में सर्वश्रेष्ठ को चुनना आसान है।

दूसरे संस्करण के लिए चयनों की संख्या एक से अधिक होने के लिए निर्दिष्ट है दूसरे शब्दों में साक्षात्कारकर्ता सिर्फ एक सचिव को नहीं बल्कि भर्ती कर रहा है जबकि कहते हैं एक आवेदक पूल से छात्रों की एक कक्षा को स्वीकार करता है इस धारणा के तहत सभी चयनित उम्मीदवारों को अगर सफलता मिलती है तो सभी गैर-चयनित उम्मीदवारों से बेहतर हैं यह फिर से एक समस्या है जिसे हल किया जा सकता है में दिखाया गया था [[#CITEREF|]] कि जब n सम है और ठीक आधे उम्मीदवारों का चयन करने की इच्छा है तो इष्टतम रणनीति की सफलता की संभावना पैदा होती है .

एक अन्य संस्करण सर्वश्रेष्ठ का चयन करने का है सचिव पूल से बाहर , फिर से एक ऑनलाइन प्रारूप में यह क्लासिक एक और कटऑफ दहलीज से संबंधित रणनीति की ओर जाता है जिसके लिए शास्त्रीय समस्या एक विशेष स्थान है।[12]

बहुविकल्पी समस्या

एक खिलाड़ी की अनुमति है विकल्प और वह जीतता है यदि कोई विकल्प सबसे अच्छा है [[#CITEREF|]] गिलबर्ट और मोस्टेलर ने 1966 में दिखाया कि एक इष्टतम रणनीति एक दहलीज रणनीति कटऑफ रणनीति द्वारा दी गई है एक इष्टतम रणनीति संख्याओं के समूह द्वारा परिभाषित रणनीतियों की श्रेणी से संबंधित है , जहॉं . पहली पसंद के साथ शुरू होने वाले पहले उम्मीदवारों पर प्रयोग किया जाना है वें आवेदक और एक बार पहली पसंद का उपयोग करने के बाद दूसरी पसंद का उपयोग पहले उम्मीदवार पर किया जाना है वें आवेदक

गिल्बर्ट और मोस्टेलर ने दिखाया आगे के स्थानों के लिए कि देखना [[#CITEREF|]] उदाहरण के लिए

कब जीत की संभावना अभिसरित होती है .[13][[#CITEREF|]] ने दिखाया कि किसी भी सकारात्मक पूर्णांक के लिए जीत की संभावना का सचिव समस्या में परिवर्तित हो जाता है कहाँ . इस प्रकार जीत की संभावना परिवर्तित हो जाती है। और कब

प्रायोगिक अध्ययन

प्रायोगिक प्रायोगिक मनोविज्ञान और प्रायोगिक अर्थशास्त्र ने सचिव समस्या स्थितियों में वास्तविक लोगों के निर्णय लेने का अध्ययन किया है।[14] बड़े हिस्से में इस काम ने दिखाया है कि लोग बहुत जल्दी खोज करना बंद कर देते हैं उम्मीदवारों के मूल्यांकन की लागत से इसे कम से कम आंशिक रूप से समझाया जा सकता है वास्तविक दुनिया की लगाव में यह सुझाव दे सकता है कि लोग पर्याप्त खोज नहीं करते हैं जब भी उन्हें समस्याओं का सामना करना पड़ता है जहां निर्णय विकल्प क्रमिक रूप से सामने आते हैं उदाहरण के लिए जब यह तय करने की कोशिश की जा रही है कि हाइवे के किनारे कौन से गैस स्टेशन पर गैस के लिए रुकना है तो हो सकता है कि लोग रुकने से पहले पर्याप्त खोज न करें। यदि यह सच है, तो वे गैस के लिए अधिक भुगतान करने की प्रवृत्ति रखते हैं यदि उन्होंने अधिक समय तक खोज की होती जब लोग हवा की पंक्ति के लिए ऑनलाइन खोज करते हैं तो भी ऐसा ही हो सकता है कि सचिव समस्या जैसी समस्याओं पर प्रायोगिक शोध को कभी-कभी व्यवहार संचालन अनुसंधान के रूप में संदर्भित किया जाता है।

तंत्रिका संबंध

जबकि दोनों जानवरों का उपयोग करके अवधारणात्मक निर्णय लेने के कार्यों में सूचना एकीकरण या विश्वास के प्रतिनिधित्व पर तंत्रिका विज्ञान अनुसंधान का एक बड़ा हिस्सा है [15][16] और मानव विषय के [17] इस बारे में अपेक्षाकृत कम जानकारी है कि सूचना एकत्र करना बंद करने का निर्णय किस प्रकार लिया जाता है।

शोधकर्ताओं ने कार्यात्मक एमआरआई का उपयोग करके स्वस्थ स्वयंसेवकों में सचिव समस्या को हल करने के तंत्रिका आधारों का अध्ययन किया है [18] एक मार्कोव निर्णय प्रक्रिया एमडीपी का उपयोग वर्तमान विकल्प के लिए खोज बनाम जारी रखने के मूल्य की मात्रा निर्धारित करने के लिए किया गया था एक विकल्प पर लगे पार्श्विका प्रांतस्था और पृष्ठीय प्रीफ्रंटल कॉर्टेक्स के साथ-साथ वेंट्रल स्ट्रिएटम, द्वीपीय प्रांतस्था और पूर्वकाल सिंगुलेट लेने बनाम अस्वीकार करने के निर्णय में इसलिए मस्तिष्क क्षेत्रों को पहले साक्ष्य एकीकरण और इनाम प्रणाली प्रतिनिधित्व में फंसाया गया था जो आर-पार को सांकेतिक शब्दों में बदलना है जो एक विकल्प के लिए निर्णय लेने के लिए प्रेरित करता है।

इतिहास

सचिव समस्या स्पष्ट रूप से 1949 में मेरिल एम. फ्लड द्वारा पेश की गई थी जिन्होंने उस वर्ष अपने एक व्याख्यान में इसे मंगेतर समस्या कहा था 1950 के दशक के दौरान उन्होंने कई बार इसका उल्लेख किया उदाहरण के लिए 9 मई 1958 को पर्ड्यू विश्वविद्यालय में एक सम्मेलन वार्ता में और यह अंततः लोककथाओं में व्यापक रूप से जाना जाने लगा जबकि उस समय कुछ भी प्रकाशित नहीं हुआ था 1958 में उन्होंने लियोनार्ड गिलमैन को एक पत्र भेजा जिसकी प्रतियां सैमुअल कार्लिन और जे. रॉबिंस सहित एक दर्जन दोस्तों को भेजी गईं जिसमें आर. पलेर्मो द्वारा एक परिशिष्ट के साथ इष्टतम रणनीति के प्रमाण की रूपरेखा दी गई जिसने बताया कि सभी रणनीतियों में एक रणनीति का प्रभुत्व है फॉर्म पहले पी को बिना शर्त खारिज कर देता है फिर अगले उम्मीदवार को स्वीकार करता है जो बेहतर है।[19]

पहला प्रकाशन स्पष्ट रूप से फरवरी 1960 में साइंटिफिक अमेरिकन में मार्टिन गार्डनर द्वारा किया गया था उन्होंने इसके बारे में जॉन एच. फॉक्स जूनियर और एल. गेराल्ड मार्नी से सुना था जो स्वतंत्र रूप से 1958 में एक समान समस्या लेकर आए थे उन्होंने इसे गूगोल का खेल कहा लोमड़ी और मार्नी इष्टतम समाधान नहीं जानते थे गार्डनर ने लियो मोजर से सलाह मांगी जिन्होंने जे.आर. पाउंडर के साथ मिलकर पत्रिका में प्रकाशन के लिए एक सही विश्लेषण प्रदान किया इसके तुरंत बाद कई गणितज्ञों ने गार्डनर को लिखा कि वे उसी समतुल्य समस्या के बारे में बताएं जो उन्होंने अंगूर की बेल के माध्यम से सुनी थी जिनमें से सभी को संभवतः मूल कार्य में खोजा जा सकता है।[20]

सर्वोत्तम पसंद का 1/ई-कानून एफ. थॉमस ब्रस के कारण है।[21]

फर्ग्यूसन की एक व्यापक ग्रंथ सूची है और बताते हैं कि एक समान समस्या पर 1875 में आर्थर केली और यहां तक ​​​​कि जोहान्स केपलर दूसरी शादी से बहुत पहले विचार किया गया था।[22]

मिश्रित सामान्यीकरण

सचिव समस्या को उस जगह में साक्षात्कार किया जा सकता है जहां कई अलग-अलग नौकरियां हैं तथा फिर से आवेदक यादृच्छिक क्रम में आ रहे हैं जब कोई उम्मीदवार आता है तो वह गैर-नकारात्मक संख्याओं का एक समूह प्रकट करता है प्रत्येक मान किसी एक कार्य के लिए उसकी योग्यता निर्दिष्ट करता है प्रशासक को न केवल यह तय करना है कि आवेदक को नौकरी लेना है या नहीं बल्कि यदि ऐसा है तो उसे स्थायी रूप से किसी एक नौकरी पर नियुक्त करना होगा उद्देश्य एक ऐसा कार्यभार ढूंढना है जहां योग्यता का योग जितना संभव हो उतना बड़ा हो यह समस्या किनारे-भारित द्विपक्षीय ग्राफ में अधिकतम-वजन मिलान खोजने के समान है जहां एक तरफ के नोड यादृच्छिक क्रम में ऑनलाइन आते हैं इस प्रकार यह मिलान ग्राफ़ सिद्धांत ऑनलाइन द्विदलीय मिलान समस्या का एक विशेष स्थान है।

सचिव समस्या के लिए अति उत्कृष्ट प्रारूप के सामान्यीकरण से एक कार्यभार प्राप्त करना संभव है जहां योग्यता का अपेक्षित योग केवल एक कारक है एक इष्टतम डॉकपोस्ट कार्यभार से कम है।[23]


यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 1.2 Ferguson, Thomas S. (August 1989). "Who Solved the Secretary Problem?". Statistical Science. 4 (3): 282–289. doi:10.1214/ss/1177012493.
  2. Hill, Theodore P. (2009). "कब रुकना है यह जानना". American Scientist. 97 (2): 126–133. doi:10.1511/2009.77.126. ISSN 1545-2786. S2CID 124798270. For French translation, see cover story in the July issue of Pour la Science (2009).
  3. Gnedin 2021.
  4. Gardner 1966.
  5. Gnedin 1994.
  6. Bearden 2006.
  7. Palley, Asa B.; Kremer, Mirko (8 July 2014). "Sequential Search and Learning from Rank Feedback: Theory and Experimental Evidence". Management Science. 60 (10): 2525–2542. doi:10.1287/mnsc.2014.1902. ISSN 0025-1909.
  8. Moser, Leo (1956). "केली की समस्या पर". Scripta Math. 22: 289–292.
  9. Rose, John S. (1982). "एक यादृच्छिक अनुक्रम से गैर-अत्यधिक उम्मीदवारों का चयन". J. Optim. Theory Appl. 38 (2): 207–219. doi:10.1007/BF00934083. ISSN 0022-3239. S2CID 121339045.
  10. Szajowski, Krzysztof (1982). "एथ रैंक के साथ किसी वस्तु का इष्टतम विकल्प". Matematyka Stosowana. Annales Societatis Mathematicae Polonae, Series III. 10 (19): 51–65. doi:10.14708/ma.v10i19.1533. ISSN 0137-2890.
  11. Vanderbei, Robert J. (21 June 2021). "सचिव समस्या का पोस्टडॉक संस्करण". Mathematica Applicanda. Annales Societatis Mathematicae Polonae, Series III. 49 (1): 3–13. doi:10.14708/ma.v49i1.7076. ISSN 2299-4009.{{cite journal}}: CS1 maint: date and year (link)
  12. Girdhar & Dudek 2009.
  13. Gilbert & Mosteller 1966.
  14. Bearden, Murphy, and Rapoport, 2006; Bearden, Rapoport, and Murphy, 2006; Seale and Rapoport, 1997; Palley and Kremer, 2014
  15. Shadlen, M. N.; Newsome, W. T. (23 January 1996). "Motion perception: seeing and deciding". Proceedings of the National Academy of Sciences. 93 (2): 628–633. Bibcode:1996PNAS...93..628S. doi:10.1073/pnas.93.2.628. PMC 40102. PMID 8570606.
  16. Roitman, Jamie D.; Shadlen, Michael N. (1 November 2002). "एक संयुक्त दृश्य भेदभाव रिएक्शन टाइम टास्क के दौरान लेटरल इंट्रापैरिएटल एरिया में न्यूरॉन्स की प्रतिक्रिया". The Journal of Neuroscience. 22 (21): 9475–9489. doi:10.1523/JNEUROSCI.22-21-09475.2002. PMC 6758024. PMID 12417672.
  17. Heekeren, Hauke R.; Marrett, Sean; Ungerleider, Leslie G. (9 May 2008). "तंत्रिका तंत्र जो मानव अवधारणात्मक निर्णय लेने में मध्यस्थता करता है". Nature Reviews Neuroscience. 9 (6): 467–479. doi:10.1038/nrn2374. PMID 18464792. S2CID 7416645.
  18. Costa, V. D.; Averbeck, B. B. (18 October 2013). "ललाट-पार्श्विका और लिम्बिक-स्ट्राइटल गतिविधि सर्वश्रेष्ठ विकल्प समस्या में सूचना नमूनाकरण को रेखांकित करती है". Cerebral Cortex. 25 (4): 972–982. doi:10.1093/cercor/bht286. PMC 4366612. PMID 24142842.
  19. Flood 1958.
  20. Gardner 1966, Problem 3.
  21. Bruss 1984.
  22. Ferguson 1989.
  23. Kesselheim, Thomas; Radke, Klaus; Tönnis, Andreas; Vöcking, Berthold (2013). "An Optimal Online Algorithm for Weighted Bipartite Matching and Extensions to Combinatorial Auctions". Algorithms – ESA 2013. Lecture Notes in Computer Science. Vol. 8125. pp. 589–600. doi:10.1007/978-3-642-40450-4_50. ISBN 978-3-642-40449-8.


संदर्भ


बाहरी संबंध