ग्रुपॉयड: Difference between revisions
No edit summary |
No edit summary |
||
(84 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{About|श्रेणी सिद्धांत में समूह|एकल द्विचर प्रचालन के साथ बीजगणितीय संरचना|मैग्मा (बीजगणित)}} | {{About|श्रेणी सिद्धांत में समूह|एकल द्विचर प्रचालन के साथ बीजगणितीय संरचना|मैग्मा (बीजगणित)}} | ||
गणित में, विशेष रूप से [[श्रेणी सिद्धांत]] और [[होमोटॉपी सिद्धांत]] में, एक | गणित में, विशेष रूप से [[श्रेणी सिद्धांत]] और [[होमोटॉपी सिद्धांत|समस्थेयता सिद्धांत]] में, एक '''ग्रुपॉयड''' (प्रायः कम ब्रांट ग्रुपॉयड या आभासी समूह) कई समान तरीकों से [[समूह (गणित)|समूह]] की धारणा को सामान्यीकृत करता है। ग्रुपॉयड को एक रूप में देखा जा सकता है, | ||
* | *[[एकात्मक ऑपरेशन|द्विचर प्रचालन]] की जगह एक [[आंशिक फलन]] वाला [[समूह]], | ||
*'श्रेणी | *'[[श्रेणी]]' जिसमें प्रत्येक [[आकारिकी]] व्युत्क्रमणीय होती है। इस प्रकार की श्रेणी को आकारिकी पर [[एकल संक्रिया]] के साथ संवर्धित के रूप में देखा जा सकता है, जिसे [[समूह सिद्धांत]] के अनुरूप प्रतिलोम कहा जाता है।<ref name="dicks-ventura-96">{{cite book|author=Dicks & Ventura|year=1996|title=एक नि: शुल्क समूह के इंजेक्शन एंडोमोर्फिज्म के एक परिवार द्वारा तय किया गया समूह|url={{Google books|plainurl=y|id=3sWSRRfNFKgC|page=6|text=G has the structure of a graph}}|page=6}}</ref> ग्रुपॉयड जहां केवल एक वस्तु होती है वह सामान्य समूह होता है। | ||
[[आश्रित प्रकार]] की उपस्थिति में, सामान्य रूप से एक श्रेणी को | [[आश्रित प्रकार]] की उपस्थिति में, सामान्य रूप से एक श्रेणी को वर्गीकृत किए गए [[एकाभ|मोनोइड]] के रूप में देखा जा सकता है, और इसी तरह, एक ग्रुपॉयड को केवल वर्गीकृत किए गए समूह के रूप में देखा जा सकता है। आकारिकी एक वस्तु से दूसरी वस्तु पर ले जाता है, और प्रकारों के एक आश्रित परिवार का निर्माण करता हैं, इस प्रकार आकारिकी को <math>g:A \rightarrow B</math>, <math>h:B \rightarrow C</math>, में वर्गीकृत किया जा सकता है। संरचना तब कुल फलन है, <math>\circ : (B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C </math>, ताकि <math>h \circ g : A \rightarrow C </math> हो। | ||
विशेष स्थितियों में सम्मिलित हैं, | |||
* [[सेटोइड्स]], [[सेट (गणित)|समुच्चय]] जो एक [[समतुल्य संबंध|तुल्यता संबंध]] के साथ आता है, | |||
*[[जी-सेट|जी-समुच्चय]], समूह <math>G</math> की [[क्रिया]] से सुसज्जित समुच्चय। | |||
ग्रुपॉयड का उपयोग प्रायः [[ज्यामितीय]] वस्तुओं जैसे [[ कई गुना |विविध]] के बारे में विश्लेषण करने के लिए किया जाता है। {{harvs|txt|first=हेनरिक |last=ब्रांट|authorlink=हेनरिक ब्रांट|year=1927}} ने [[ब्रांट सेमीग्रुप|ब्रांट अर्धसमूह]] के माध्यम से ग्रुपॉयड को स्पष्ट रूप से पेश किया।<ref>{{SpringerEOM|title=Brandt semi-group|ISBN=1-4020-0609-8}}</ref> | |||
== परिभाषाएँ == | == परिभाषाएँ == | ||
ग्रुपॉयड एक बीजगणितीय संरचना | ग्रुपॉयड एक बीजगणितीय संरचना <math>(G,\ast)</math> है जिसमें एक अरिक्त समुच्च्य <math>G</math> और एक द्विआधारी [[आंशिक फलन]] '<math>\ast</math>' सम्मिलित है जो <math>G</math> पर परिभाषित है। | ||
=== | === बीजगणितीय === | ||
एक ग्रुपॉयड एक | एक ग्रुपॉयड एक समुच्चय <math>G</math> है जिसमें एक [[एकात्मक संक्रिया]] <math>{}^{-1}:G\to G,</math> और [[आंशिक फलन]] <math>*:G\times G \rightharpoonup G</math> है। यहाँ * एक [[द्विआधारी संक्रिया]] नहीं है क्योंकि यह आवश्यक रूप से <math>G</math> के सभी तत्वों के जोड़े के लिए परिभाषित नहीं है। सटीक शर्तें जिसके तहत <math>*</math> को परिभाषित किया गया है, वे यहाँ व्यक्त नहीं की गई हैं और स्थिति के अनुसार बदलती हैं। | ||
संक्रियाएँ <math>\ast</math> और <sup>−1</sup> में निम्नलिखित स्वयंसिद्ध गुण हैं, <math>G</math> में सभी <math>a</math>, <math>b</math>, और <math>c</math> के लिए , | |||
# साहचर्य | # साहचर्य, यदि <math>a*b</math> और <math>b*c</math> परिभाषित हैं, तो <math>(a * b) * c</math> और <math>a * (b * c)</math> परिभाषित हैं और बराबर हैं। इसके विपरीत यदि एक <math>(a * b) * c</math> और <math>a * (b * c)</math> परिभाषित है, तब वे दोनों परिभाषित हैं (और वे एक दूसरे के बराबर हैं), तथा <math>a*b</math> और <math>b*c</math> भी परिभाषित हैं। | ||
# [[गुणात्मक प्रतिलोम]] | # [[गुणात्मक प्रतिलोम]], <math>a^{-1} * a</math> और <math>a*{a^{-1}}</math> हमेशा परिभाषित होते हैं। | ||
# [[पहचान तत्व]] | # [[पहचान तत्व|पहचान,]] यदि <math>a*b</math> परिभाषित किया गया है, तो <math>a*b*{b^{-1}} = a</math>, और <math>{a^{-1}} * a * b = b</math>। (पिछले दो स्वयंसिद्ध पहले से ही दिखाते हैं कि ये अभिव्यक्तिया परिभाषित और स्पष्ट हैं।) | ||
इन स्वयंसिद्धों से दो आसान और | इन स्वयंसिद्धों से दो आसान और उपयुक्त गुण निकलते हैं, | ||
* <math>(a^{-1})^{-1} = a</math>, | * <math>(a^{-1})^{-1} = a</math>, | ||
* अगर <math>a*b</math> परिभाषित किया गया है, तो <math>(a*b)^{-1} = b^{-1} * a^{-1}</math> | * अगर <math>a*b</math> परिभाषित किया गया है, तो <math>(a*b)^{-1} = b^{-1} * a^{-1}</math>।<ref> | ||
Proof of first property: from 2. and 3. we obtain ''a''<sup>−1</sup> = ''a''<sup>−1</sup> * ''a'' * ''a''<sup>−1</sup> and (''a''<sup>−1</sup>)<sup>−1</sup> = (''a''<sup>−1</sup>)<sup>−1</sup> * ''a''<sup>−1</sup> * (''a''<sup>−1</sup>)<sup>−1</sup>. Substituting the first into the second and applying 3. two more times yields (''a''<sup>−1</sup>)<sup>−1</sup> = (''a''<sup>−1</sup>)<sup>−1</sup> * ''a''<sup>−1</sup> * ''a'' * ''a''<sup>−1</sup> * (''a''<sup>−1</sup>)<sup>−1</sup> = (''a''<sup>−1</sup>)<sup>−1</sup> * ''a''<sup>−1</sup> * ''a'' = ''a''. ✓ <br /> | Proof of first property: from 2. and 3. we obtain ''a''<sup>−1</sup> = ''a''<sup>−1</sup> * ''a'' * ''a''<sup>−1</sup> and (''a''<sup>−1</sup>)<sup>−1</sup> = (''a''<sup>−1</sup>)<sup>−1</sup> * ''a''<sup>−1</sup> * (''a''<sup>−1</sup>)<sup>−1</sup>. Substituting the first into the second and applying 3. two more times yields (''a''<sup>−1</sup>)<sup>−1</sup> = (''a''<sup>−1</sup>)<sup>−1</sup> * ''a''<sup>−1</sup> * ''a'' * ''a''<sup>−1</sup> * (''a''<sup>−1</sup>)<sup>−1</sup> = (''a''<sup>−1</sup>)<sup>−1</sup> * ''a''<sup>−1</sup> * ''a'' = ''a''. ✓ <br /> | ||
Proof of second property: since ''a'' * ''b'' is defined, so is (''a'' * ''b'')<sup>−1</sup> * ''a'' * ''b''. Therefore (''a'' * ''b'')<sup>−1</sup> * ''a'' * ''b'' * ''b''<sup>−1</sup> = (''a'' * ''b'')<sup>−1</sup> * ''a'' is also defined. Moreover since ''a'' * ''b'' is defined, so is ''a'' * ''b'' * ''b''<sup>−1</sup> = ''a''. Therefore ''a'' * ''b'' * ''b''<sup>−1</sup> * ''a''<sup>−1</sup> is also defined. From 3. we obtain (''a'' * ''b'')<sup>−1</sup> = (''a'' * ''b'')<sup>−1</sup> * ''a'' * ''a''<sup>−1</sup> = (''a'' * ''b'')<sup>−1</sup> * ''a'' * ''b'' * ''b''<sup>−1</sup> * ''a''<sup>−1</sup> = ''b''<sup>−1</sup> * ''a''<sup>−1</sup>. ✓</ref> | Proof of second property: since ''a'' * ''b'' is defined, so is (''a'' * ''b'')<sup>−1</sup> * ''a'' * ''b''. Therefore (''a'' * ''b'')<sup>−1</sup> * ''a'' * ''b'' * ''b''<sup>−1</sup> = (''a'' * ''b'')<sup>−1</sup> * ''a'' is also defined. Moreover since ''a'' * ''b'' is defined, so is ''a'' * ''b'' * ''b''<sup>−1</sup> = ''a''. Therefore ''a'' * ''b'' * ''b''<sup>−1</sup> * ''a''<sup>−1</sup> is also defined. From 3. we obtain (''a'' * ''b'')<sup>−1</sup> = (''a'' * ''b'')<sup>−1</sup> * ''a'' * ''a''<sup>−1</sup> = (''a'' * ''b'')<sup>−1</sup> * ''a'' * ''b'' * ''b''<sup>−1</sup> * ''a''<sup>−1</sup> = ''b''<sup>−1</sup> * ''a''<sup>−1</sup>. ✓</ref> | ||
=== श्रेणी सिद्धांत === | === श्रेणी सिद्धांत === | ||
समूह एक [[छोटी]] [[श्रेणी (गणित)|श्रेणी]] है जिसमें प्रत्येक [[आकृतिवाद]] एक [[समरूपता]] है, अर्थात, उलटा।<ref name="dicks-ventura-96"/> अधिक स्पष्ट रूप से, एक समूह G है, | |||
* एक | * वस्तुओं का एक समुच्चय G<sub>0</sub> | ||
* | * G<sub>0</sub> में वस्तुओं x और y की प्रत्येक जोड़ी के लिए, x से y तक आकारिकी (या तीर) का एक (संभवतः खाली) समुच्चय G(x,y) मौजूद है। हम f : x → y लिखते हैं, यह दर्शाने के लिए कि f, G(x,y) का एक तत्व है। | ||
* प्रत्येक वस्तु x के लिए, एक निर्दिष्ट तत्व <math>\mathrm{id}_x</math> | * प्रत्येक वस्तु x के लिए, G(x,x) का एक निर्दिष्ट तत्व <math>\mathrm{id}_x</math>, | ||
* | * वस्तुओं x, y, और z के प्रत्येक त्रिगुण के लिए, एक फलन <math>\mathrm{comp}_{x,y,z} : G(y, z)\times G(x, y) \rightarrow G(x, z): (g, f) \mapsto gf</math>, | ||
* वस्तुओं के प्रत्येक | * वस्तुओं के प्रत्येक जोड़ी के लिए x, y एक फलन है <math>\mathrm{inv}: G(x, y) \rightarrow G(y, x): f \mapsto f^{-1}</math>, | ||
संतोषजनक, किसी भी f : x → y, g : y → z, और h : z → w के लिए | संतोषजनक, किसी भी f : x → y, g : y → z, और h : z → w के लिए, | ||
* <math>f\ \mathrm{id}_x = f</math> और <math>\mathrm{id}_y\ f = f</math>; | * <math>f\ \mathrm{id}_x = f</math> और <math>\mathrm{id}_y\ f = f</math>; | ||
* <math>(h g) f = h (g f)</math>; | * <math>(h g) f = h (g f)</math>; | ||
* <math>f f^{-1} = \mathrm{id}_y</math> और <math>f^{-1} f = \mathrm{id}_x</math> | * <math>f f^{-1} = \mathrm{id}_y</math> और <math>f^{-1} f = \mathrm{id}_x</math>। | ||
यदि f, G(x, y) का एक | यदि f, G(x, y) का एक तत्व है तो x को f का 'स्रोत' कहा जाता है, जिसे s(f) लिखा जाता है, और y को f का 'लक्ष्य' कहा जाता है, जिसे t(f) लिखा जाता है। एक समूह G को कभी-कभी <math>G_1 \rightrightarrows G_0</math> के रूप में दर्शाया जाता है, जहां <math>G_1</math> सभी रूपों का समुच्चय है, और दो तीर <math>G_1 \to G_0</math> स्रोत और लक्ष्य का प्रतिनिधित्व करते हैं। | ||
अधिक | आमतौर पर अधिक , परिमित फाइबर उत्पादों को स्वीकार करने वाली याट्टीच्छक श्रेणी में एक [[समूहबद्ध वस्तु]] पर विचार किया जा सकता है। | ||
=== परिभाषाओं की तुलना === | === परिभाषाओं की तुलना करना === | ||
बीजगणितीय और श्रेणी-सैद्धांतिक परिभाषाएँ समतुल्य हैं, जैसा कि अब हम दिखाते हैं। श्रेणी-सैद्धांतिक अर्थों में एक समूह को देखते हुए, G को सभी | बीजगणितीय और श्रेणी-सैद्धांतिक परिभाषाएँ समतुल्य हैं, जैसा कि अब हम दिखाते हैं। श्रेणी-सैद्धांतिक अर्थों में एक समूह को देखते हुए, G को सभी समुच्चय G (x, y) (यानी x से y तक आकारिकी के समुच्चय) का [[असंयुक्त सम्मिलन]] होने दें। जब <math>\mathrm{comp}</math> और <math>\mathrm{inv}</math> G पर आंशिक संचालन बन जाते हैं, तब <math>\mathrm{inv}</math> वास्तव में हर जगह परिभाषित किया जाएगा। हम ∗ को <math>\mathrm{comp}</math> और <sup>−1</sup> को <math>\mathrm{inv}</math> के रूप में परिभाषित करते हैं, जो बीजगणितीय अर्थ में एक ग्रुपॉयड देता है। G<sub>0</sub> (और इसलिए <math>\mathrm{id}</math>) के स्पष्ट संदर्भ को छोड़ा जा सकता है। | ||
इसके विपरीत, बीजगणितीय अर्थ में एक | इसके विपरीत, बीजगणितीय अर्थ में एक ग्रुपॉयड G दिया गया है, एक तुल्यता संबंध <math>\sim</math> को इसके तत्वों पर <math>a \sim b</math> द्वारा परिभाषित करें , यदि ∗a a<sup>−1</sup> = b∗ b<sup>-1</sup>। मान लीजिए कि G<sub>0</sub> <math>\sim</math>, अर्थात <math>G_0:=G/\!\!\sim</math> के तुल्यता वर्गों का समुच्चय है। a* a<sup>−1</sup> को <math>1_x</math> से निरूपित करें यदि <math>a\in G</math> साथ <math>x\in G_0</math> हो । | ||
<math>a \sim b</math> | |||
अब | अब <math>G(x, y)</math> को सभी तत्वों f के समुच्चय के रूप में परिभाषित करें जिससे कि <math>1_x*f*1_y</math> का अस्तित्व हो। <math>f \in G(x,y)</math> और <math>g \in G(y, z),</math> दिया हुआ है, उनके योग को <math>gf:=f*g \in G(x,z)</math> के रूप में परिभाषित किया गया है। यह देखने के लिए कि यह अच्छी तरह से परिभाषित है, निरीक्षण करें कि <math>(1_x*f)*1_y</math> और <math>1_y*(g*1_z)</math> का अस्तित्व है, इसलिए <math>(1_x*f*1_y)*(g*1_z)=f*g</math> का भी अस्तित्व है। x पर तत्समक आकारिकी तब <math>1_x</math>है, और f का श्रेणी-सैद्धांतिक व्युत्क्रम f<sup>-1</sup> है। | ||
ऊपर दी गई परिभाषाओं में समुच्चय को [[वर्ग (सेट सिद्धांत)|कक्षाओं]] से बदला जा सकता है, जैसा कि आमतौर पर श्रेणी सिद्धांत में होता है। | |||
=== शीर्ष समूह और कक्षाएँ === | === शीर्ष समूह और कक्षाएँ === | ||
ग्रुपॉयड G को देखते हुए, शीर्ष समूह या 'समदैशिकता समूह' या G में 'वस्तु समूह' विधि G (x,x) के उपसमुच्चय हैं, जहां x G की कोई वस्तु है। ऊपर दिए गए स्वयंसिद्धों से यह आसानी से पता चलता है कि ये वास्तव में समूह हैं, क्योंकि तत्वों की प्रत्येक जोड़ी रचना योग्य है और व्युत्क्रम एक ही शीर्ष समूह में हैं। | |||
एक बिंदु | एक बिंदु <math>x \in X</math> पर ग्रुपॉयड G की 'कक्षा' समुच्चय <math>s(t^{-1}(x)) \subset X</math> द्वारा दी गई है जिसमें प्रत्येक बिंदु सम्मिलित है जो G में एक आकारिकी द्वारा x से जोड़ा जा सकता है। यदि दो बिंदु <math>x</math> और <math>y</math> समान कक्षाओं में हैं, तो उनके शीर्ष समूह <math>G(x)</math> और <math>G(y)</math> [[समूह समरूपता|तुल्याकारी]] हैं, यदि <math>f</math> <math>x</math> से <math>y</math> तक कोई आकारिकी है, तो तुल्याकारिता मानचित्रण <math>g\to fgf^{-1}</math>द्वारा दी जाती है। | ||
कक्षाएँ | कक्षाएँ समुच्चय X का एक विभाजन बनाती हैं, यदि इसकी केवल एक कक्षा होती है तो एक समूह को संक्रामी कहा जाता है (समकक्ष रूप से, यदि यह एक श्रेणी के रूप में [[जुड़ा]] हुआ है)। उस स्थिति में, सभी शीर्ष समूह समरूपी होते हैं (दूसरी ओर, यह संक्रामकता के लिए पर्याप्त स्थिति नहीं है, प्रतिउदाहरणों के लिए नीचे दिया गया अनुभाग [[देखें]])। | ||
=== उपसमूह और आकारिकी === | === उपसमूह और आकारिकी === | ||
<math>G \rightrightarrows X</math> का एक उपसमूह एक [[उपश्रेणी]] <math>H \rightrightarrows Y</math> है जो स्वयं एक समूह है। इसे विस्तृत या पूर्ण कहा जाता है यदि यह एक उपश्रेणी के रूप में [[विस्तृत उपश्रेणी|विस्तृत]] या [[पूर्ण उपश्रेणी|पूर्ण]] है, क्रमशः, यदि प्रत्येक <math>x,y \in Y</math> के लिए <math>X = Y</math> या <math>G(x,y)=H(x,y)</math> है। | |||
एक | एक ग्रुपॉयड आकारिकी केवल दो (श्रेणी-सैद्धांतिक) ग्रुपॉयड के बीच एक प्रकार्यक है। | ||
ग्रुपॉयड की विशेष प्रकार की आकारिकी संबद्ध हैं। ग्रुपॉयड के एक आकारिकी <math>p: E \to B</math> को एक [[ कंपन |कंपन]] कहा जाता है यदि प्रत्येक वस्तु के लिए <math>x</math> <math>E</math> का और प्रत्येक आकारिकी <math>b</math> का <math>B</math> <math>p(x)</math> से शुरू होता है, <math>x</math> से शुरू होने वाले <math>E</math> का एक आकारिकी <math>e</math> ऐसा होता है जैसे कि <math>p(e)=b</math>। एक स्पंदन को [[मोर्फिज्म को कवर करना|समुपयोग आकारिकी]] या [[समूह बद्ध का समुपयोग|ग्रुपॉयड का समुपयोग]] कहा जाता है यदि आगे ऐसा <math>e</math> अद्वितीय हो। ग्रुपॉयड के [[समुपयोग आकारिता|समुपयोग आकारिकी]] विशेष रूप से उपयोगी होते हैं क्योंकि उनका उपयोग समष्टि के [[मानचित्रों को समुपयोग]] करने के लिए किया जा सकता है।<ref>J.P. May, ''A Concise Course in Algebraic Topology'', 1999, The University of Chicago Press {{ISBN|0-226-51183-9}} (''see chapter 2'')</ref> | |||
यह भी सच है कि किसी दिए गए ग्रुपॉयड के आकारिकी को | |||
यह भी सच है कि किसी दिए गए ग्रुपॉयड <math>B</math> के आकारिकी को समुपयोग करने की श्रेणी समुच्चय पर ग्रुपॉयड <math>B</math> की क्रियाओं की श्रेणी के बराबर है। | |||
== उदाहरण == | == उदाहरण == | ||
=== | === सांस्थिति === | ||
{{Main| | {{Main|मौलिक समूह}} | ||
[[टोपोलॉजिकल स्पेस|सांस्थितिक समष्टि]] <math>X</math> दिया गया है, मान लीजिए <math>G_0</math> ,<math>X</math> का समुच्चय है। बिंदु <math>p</math> से बिंदु <math>q</math> तक के आकारिकी <math>p</math> से <math>q</math> तक [[निरंतर कार्य (टोपोलॉजी)|निरंतर पथों]] के [[समतुल्य वर्ग]] हैं, दो पथ समतुल्य हैं यदि वे [[होमोटोपिक|समस्थानी]] हैं। इस तरह के दो रूपों की रचना पहले मार्ग का अनुसरण करके की जाती है, फिर दूसरे की समरूपता तुल्यता प्रत्याभुति देती है कि यह रचना [[साहचर्य]] है। इस ग्रुपॉयड को <math>X</math>[[ मौलिक समूह | का मौलिक समूह]] कहा जाता है , जिसे <math>\pi_1(X)</math> (या कभी-कभी, <math>\Pi_1(X)</math>) द्वारा निरूपित किया जाता है।<ref>{{Cite web|url=https://ncatlab.org/nlab/show/fundamental+groupoid|title=nLab में मौलिक Groupoid|website=ncatlab.org|access-date=2017-09-17}}</ref> सामान्य मौलिक समूह <math>\pi_1(X,x)</math> तो बिंदु <math>x</math> के लिए शीर्ष समूह है। | |||
इस विचार का एक महत्वपूर्ण विस्तार मौलिक समूह | मौलिक समूह <math>\pi_1(X)</math> की कक्षाएँ <math>X</math> के पथ से जुड़े घटक हैं। इसलिए, [[पथ से जुड़े स्थान]] का मूलभूत समूह सकर्मक है, और हम ज्ञात तथ्य को पुनर्प्राप्त करते हैं , किसी भी आधार बिंदु पर मूलभूत समूह समरूप हैं। इसके अलावा, इस स्थिति में, मौलिक समूह और मौलिक समूह श्रेणियों के [[बराबर]] हैं, (सामान्य सिद्धांत के लिए [[नीचे]] अनुभाग देखें)। | ||
इस विचार का एक महत्वपूर्ण विस्तार मौलिक समूह <math>\pi_1(X,A)</math> पर विचार करना है जहां <math>A\subset X</math> आधार बिंदुओं का एक चुना हुआ समूह है। यहाँ <math>\pi_1(X,A)</math> <math>\pi_1(X)</math> का एक (विस्तृत) उपसमूह है ,जहाँ कोई केवल उन रास्तों पर विचार करता है जिनके अंत बिंदु <math>A</math> से संबंधित हैं। समुच्चय <math>A</math> को वर्तमान स्थिति की ज्यामिति के अनुसार चुना जा सकता है। | |||
=== तुल्यता संबंध === | === तुल्यता संबंध === | ||
अगर <math>X</math> एक | अगर <math>X</math> एक [[सेटॉइड]] है, अर्थात एक [[समतुल्य संबंध]] वाला समुच्चय <math>\sim</math>, तो इस तुल्यता संबंध का प्रतिनिधित्व करने वाला एक समूह निम्नानुसार बनाया जा सकता है: | ||
* ग्रुपॉयड की वस्तुएं | * ग्रुपॉयड की वस्तुएं <math>X</math> के तत्व हैं , | ||
* | * <math>X</math> में किन्हीं दो तत्वों <math>x</math> और <math>y</math> के लिए , <math>x</math> से <math>y</math> तक एकल आकारिकी है (<math>(y,x)</math> से निरूपित करें) यदि केवल <math>x\sim y</math>, | ||
* | * <math>(z,y)</math> और <math>(y,x)</math> है <math>(z,x)</math> की रचना। | ||
इस समूह के शीर्ष समूह हमेशा तुच्छ होते हैं | इस समूह के शीर्ष समूह हमेशा तुच्छ होते हैं, इसके अलावा, यह समूह आम तौर पर सकर्मक नहीं है और इसकी कक्षाएँ बिल्कुल तुल्यता वर्ग हैं। दो अधिकतम उदाहरण हैं, | ||
* यदि | * यदि <math>X</math> का प्रत्येक तत्व <math>X</math> के प्रत्येक अन्य तत्व के साथ संबंध रखता है, तो हमें <math>X</math> की जोड़ी का ग्रुपॉयड प्राप्त करते हैं, जिसमें संपूर्ण <math>X \times X</math> तीरों के समूह के रूप में होता है, और जो सकर्मक होता है। | ||
* यदि | * यदि <math>X</math> का प्रत्येक तत्व केवल स्वयं के साथ संबंध में है, तो इकाई ग्रुपॉयड प्राप्त करता है, जिसमें तीरों के समुच्चय के रूप में <math>X</math> है, <math>s = t = id_X</math> और जो पूरी तरह से अकर्मक है (प्रत्येक सिंगलटन <math>\{x\}</math> एक कक्षा है)। | ||
==== उदाहरण ==== | ==== उदाहरण ==== | ||
*अगर <math>f: X_0 \to Y</math> | *अगर <math>f: X_0 \to Y</math> [[स्मूथ बहुविध का स्मूथ विशेषण निमज्जन]] है, तो <math>X_0\times_YX_0 \subset X_0\times X_0</math> एक तुल्यता संबंध है<ref name=":0" /> क्योंकि <math>Y</math> में सांस्थितिक समष्टि के विशेषण मानचित्र के तहत <math>X_0</math> के भागफल सांस्थितिक के लिए एक सांस्थितिक तुल्य कारी है। अगर हम लिखते हैं, <math>X_1 = X_0\times_YX_0</math> तो हमें ग्रुपॉयड <math>X_1 \rightrightarrows X_0</math> मिलता है जिसे कभी-कभी [[स्मूथ बहुविध का स्मूथ विशेषण निमज्जन|स्मूथ बहुविध]] के विशेषण निमज्जन का साधारण समूह कहा जाता है। | ||
=== चेक | *यदि हम स्वतुल्यता की आवश्यकता को शिथिल करते हैं और 'आंशिक तुल्यता संबंधों' पर विचार करते हैं, तो सेट के लिए तर्कसंगत यथार्थपरक पर तुल्यता की अर्ध-निर्णायक धारणाओं पर विचार करना संभव हो जाता है। यह ग्रुपॉयड को समुच्चय सिद्धांत के लिए एक संगणनीय सन्निकटन के रूप में उपयोग करने की अनुमति देता है, जिसे पीईआर प्रारूप कहा जाता है। जिसे एक श्रेणी के रूप में माना जाता है, प्रति प्रारूप एक कार्तीय बंद श्रेणी है जिसमें प्राकृतिक संख्या वस्तु और उप वस्तु वर्गीकारक हैं, जो [[मार्टिन हाइलैंड]] द्वारा पेश किए गए [[प्रभावी टोपोस]] को जन्म देते हैं। | ||
{{See also| | |||
=== चेक ग्रुपॉयड === | |||
{{See also|प्रसमुच्चयी बहुविध|एक आवरण की तंत्रिका}} | |||
और | |||
एक चेक ग्रुपॉयड <ref name=":0">{{cite arXiv|last1=Block|first1=Jonathan|last2=Daenzer|first2=Calder|date=2009-01-09|title=कनेक्शन के साथ गेर्ब्स के लिए मुकाई द्वैत|class=math.QA|eprint=0803.1529}}</ref><sup>p. 5</sup> एक विशेष प्रकार का ग्रुपॉयड है जो कुछ कई गुना <math>X</math> के खुले आवरण <math>\mathcal{U} = \{U_i\}_{i\in I}</math> द्वारा दिए गए तुल्यता संबंध से जुड़ा है। इसकी वस्तुएं असंयुक्त सम्मिलन | |||
स्रोत और लक्ष्य मानचित्र तब प्रेरित मानचित्र | |||
<math>\mathcal{G}_0 = \coprod U_i</math> द्वारा दी गई हैं, | |||
और इसके तीर चौराहे | |||
<math>\mathcal{G}_1 = \coprod U_{ij}</math> हैं। | |||
स्रोत और लक्ष्य मानचित्र तब प्रेरित मानचित्र | |||
<math>\begin{align} | |||
s = \phi_j: U_{ij} \to U_j\\ | s = \phi_j: U_{ij} \to U_j\\ | ||
t = \phi_i: U_{ij} \to U_i | t = \phi_i: U_{ij} \to U_i | ||
\end{align}</math | \end{align}</math>और समावेशन मानचित्र<blockquote><math>\varepsilon: U_i \to U_{ii}</math></blockquote>द्वारा दिए गए हैं जो एक समूह की संरचना देते हैं। वास्तव में, | ||
<math>\mathcal{G}_n = \mathcal{G}_1\times_{\mathcal{G}_0} \cdots \times_{\mathcal{G}_0}\mathcal{G}_1</math> | |||
को <math>n</math>-पुनरावृत्त फाइबर उत्पाद के रूप में समायोजन करके इसे और बढ़ाया जा सकता है, जहां <math>\mathcal{G}_n</math> संयोजन योग्य तीरों के <math>n</math> टुपल्स का प्रतिनिधित्व करता है। <blockquote> फाइबर उत्पाद का संरचना मानचित्र स्पष्ट रूप से लक्ष्य मानचित्र है, क्योंकि <math>\begin{matrix} | |||
U_{ijk} & \to & U_{ij} \\ | U_{ijk} & \to & U_{ij} \\ | ||
\downarrow & & \downarrow \\ | \downarrow & & \downarrow \\ | ||
U_{ik} & \to & U_{i} | U_{ik} & \to & U_{i} | ||
\end{matrix}</math></blockquote>एक कार्तीय आरेख है जहाँ | \end{matrix}</math></blockquote>एक कार्तीय आरेख है जहाँ <math>U_i</math> के मानचित्र लक्ष्य मानचित्रित हैं। इस निर्माण को कुछ [[∞-समूह बद्ध|∞-ग्रुपॉयड]] के लिए एक प्रारूप के रूप में देखा जा सकता है। इसके अलावा, इस निर्माण का एक और आर्टिफैक्ट है [[k- कोसायकल]] <blockquote><math>[\sigma] \in \check{H}^k(\mathcal{U},\underline{A})</math></blockquote> [[एबेलियन समूहों]] के कुछ निरंतर [[शेफ]] के लिए एक फलन <math>\sigma:\coprod U_{i_1\cdots i_k} \to A</math> के रूप में प्रदर्शित किया जा सकता है जो कोहोलॉजी कक्षाओं का एक स्पष्ट प्रतिनिधित्व देता है। | ||
=== समूह क्रिया === | === समूह क्रिया === | ||
यदि समूह | यदि समूह <math>G</math> समुच्चय <math>X</math> पर कार्य करता है , तो हम इस समूह क्रिया का प्रतिनिधित्व करने वाले [[क्रिया समूह बद्ध|क्रिया ग्रुपॉयड]] (या परिवर्तन ग्रुपॉयड ) को निम्नानुसार बना सकते हैं, | ||
* वस्तुएँ | * वस्तुएँ <math>X</math> के तत्व हैं, | ||
* | * <math>X</math> में किन्हीं दो तत्वों <math>x</math> और <math>y</math> के लिए, <math>x</math> से <math>y</math> तक की [[आकृतियाँ]] <math>G</math> के <math>g</math> तत्वों के अनुरूप हैं जैसे कि <math>gx = y</math>, | ||
* आकारिकी | * आकारिकी की [[संरचना]] <math>G</math> के [[द्विआधारी संक्रिया]] की व्याख्या करती है। | ||
अधिक स्पष्ट रूप से, | अधिक स्पष्ट रूप से, क्रिया ग्रुपॉयड <math>\mathrm{ob}(C)=X</math> और <math>\mathrm{hom}(C)=G\times X</math> के साथ और स्रोत और लक्ष्य मानचित्र <math>s(g,x) = x</math> और <math>t(g,x) = gx</math> के साथ एक छोटी श्रेणी है। इसे प्रायः <math>G \ltimes X</math> (या <math>X\rtimes G</math> उचित कार्य के लिए) निरूपित किया जाता है। ग्रुपॉयड में गुणन (या संघटन) तब <math>(h,y)(g,x) = (hg,x)</math> होता है जब इसे <math>y=gx</math> प्रदान करके परिभाषित किया जाता है। | ||
<math>X</math> में <math>x</math> के लिए, शीर्ष समूह में <math>gx=x</math> के साथ वे<math>(g,x)</math> होते हैं, जो दी गई क्रिया के लिए <math>x</math> पर [[आइसोट्रॉपी उपसमूह|समस्थानिक उपसमूह]] है दी गई क्रिया के लिए (यही कारण है कि शीर्ष समूहों को समदैशिक समूह भी कहा जाता है)। इसी तरह, क्रिया ग्रुपॉयड की कक्षाएँ समूह क्रिया की [[कक्षा (समूह सिद्धांत)|कक्षा]] हैं, और ग्रुपॉयड सकर्मक है यदि केवल समूह क्रिया [[सकर्मक समूह क्रिया|सकर्मक]] है। | |||
<math>G</math> -समुच्चयो का वर्णन करने का एक अन्य तरीका [[क्रियात्मक श्रेणी]] <math>[\mathrm{Gr},\mathrm{Set}]</math> है, जहाँ <math>\mathrm{Gr}</math> एक तत्व के साथ ग्रुपॉयड (श्रेणी) है और समूह <math>G</math> के लिए [[समरूपी]] है। वास्तव में, इस श्रेणी का प्रत्येक प्रकार्यक <math>F</math> एक समुच्चय <math>X=F(\mathrm{Gr})</math> को परिभाषित करता है और <math>G</math> में प्रत्येक <math>g</math> के लिए में (अर्थात <math>\mathrm{Gr}</math> में प्रत्येक आकारिकी के लिए) एक [[आक्षेप]] <math>F_g</math> : <math>X\to X</math> उत्पन्न करता है। प्रकार्यक <math>F</math> की स्पष्ट संरचना हमें आश्वस्त करती है कि <math>F</math> समुच्चय<math>G</math> पर <math>G</math>-क्रिया को परिभाषित करता है। (अद्वितीय) प्रतिनिधित्व करने योग्य प्रकार्यक <math>F</math> : <math>\mathrm{Gr} \to \mathrm{Set}</math> <math>G</math> का [[केली प्रतिनिधित्व]] है। वास्तव में, यह प्रकार्यक <math>\mathrm{Hom}(\mathrm{Gr},-)</math> के लिए समरूपी है और इसलिए <math>\mathrm{ob}(\mathrm{Gr})</math> को समुच्चय <math>\mathrm{Hom}(\mathrm{Gr},\mathrm{Gr})</math> में भेजता है जो परिभाषा के अनुसार समुच्चय <math>G</math> और आकारिकी <math>g</math> का <math>\mathrm{Gr}</math> (अर्थात <math>G</math> का तत्व <math>g</math> ) समुच्चय <math>G</math> के क्रमचय <math>F_g</math> में है। हम [[योनेडा अंत: स्थापन]] से यह निष्कर्ष निकालते हैं कि <math>G</math> के [[क्रमपरिवर्तन समूह|क्रमपरिवर्तन]] के समूह का एक [[उपसमूह]] ,समूह <math>G</math> समूह <math>\{F_g\mid g\in G\}</math> के लिए समरूपी है । | |||
==== परिमित | ==== परिमित समुच्चय ==== | ||
परिमित समुच्चय <math>X = \{-2, -1, 0, 1, 2\}</math>पर <math>\mathbb{Z}/2</math> की समूह क्रिया पर विचार करें जो प्रत्येक संख्या को उसके ऋणात्मक में ले जाता है, जिसके लिए <math>-2 \mapsto 2</math> और <math>1 \mapsto -1</math> दिए गए है। भागफल समूह <math>[X/G]</math> इस समूह क्रिया <math>\{[0],[1],[2]\}</math> से तुल्यता वर्गों का समुच्चय है , और <math>[0]</math> पर <math>\mathbb{Z}/2</math> की समूह क्रिया है। | |||
==== | ==== गुणक विविधता ==== | ||
कोई परिमित समूह <math> | कोई भी परिमित समूह <math> | ||
G | G | ||
</math> जो | </math> जो <math> | ||
GL(n) | GL(n) | ||
</math> [[affine अंतरिक्ष]] | </math> को मानचित्रित करता है, [[affine अंतरिक्ष|सजातीयउपसमष्टि]] <math> | ||
\mathbb{A}^n | \mathbb{A}^n | ||
</math> (चूंकि यह | </math> पर एक समूह क्रिया देता है (चूंकि यह स्वसमाकृतिकता का समूह है)। तब, भागफल समूह<math> | ||
[\mathbb{A}^n/G] | [\mathbb{A}^n/G] | ||
</math> | </math> के रूप का हो सकता है, जिसके मूल में स्थिरक <math> | ||
G | G | ||
</math> | </math> के साथ एक बिंदु होता है। इस तरह के उदाहरण [[ orbifold | ऑर्बिफोल्ड्स]] के सिद्धांत का आधार बनाते हैं। ऑर्बिफोल्ड्स का एक और सामान्य रूप से अध्ययन किया गया परिवार [[भारित प्रक्षेपी समष्टि]] <math>\mathbb{P}(n_1,\ldots, n_k)</math> और उनमें से उप-स्थान हैं, जैसे [[कैलाबी-यॉ ऑर्बिफोल्ड्स]]। | ||
=== | === ग्रुपॉयड का फाइबर उत्पाद === | ||
ग्रुपॉयड | ग्रुपॉयड आकारिकी के साथ ग्रुपॉयड का आरेख दिया गया है | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Line 153: | Line 161: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
जहाँ <math> | |||
f:X\to Z | f:X\to Z | ||
</math> और <math> | </math> और <math> | ||
g:Y\to Z | g:Y\to Z | ||
</math>, हम | </math>, जिसे हम ग्रुपॉयड <math> | ||
X\times_ZY | X\times_ZY | ||
</math> जिनकी वस्तुएँ त्रिगुण | </math> बना सकते हैं जिनकी वस्तुएँ त्रिगुण <math> | ||
(x,\phi,y) | (x,\phi,y) | ||
</math>, | </math> हैं , जहाँ <math> | ||
x \in \text{Ob}(X) | x \in \text{Ob}(X) | ||
</math>, <math> | </math>, <math> | ||
Line 169: | Line 177: | ||
</math> में <math> | </math> में <math> | ||
Z | Z | ||
</math> | </math> हैं। आकारिकी को आकारिकी की एक जोड़ी <math> | ||
(\alpha,\beta) | (\alpha,\beta) | ||
</math> | </math> के रूप में परिभाषित किया जा सकता है जहां <math> | ||
\alpha: x \to x' | \alpha: x \to x' | ||
</math> और <math> | </math> और <math> | ||
\beta: y \to y' | \beta: y \to y' | ||
</math> | </math> ऐसे हैं कि त्रिगुण <math> | ||
(x,\phi,y), (x',\phi',y') | (x,\phi,y), (x',\phi',y') | ||
</math>, | </math> के लिए, <math> | ||
Z | Z | ||
</math> | </math> , <math> | ||
f(\alpha):f(x) \to f(x') | f(\alpha):f(x) \to f(x') | ||
</math>, <math> | </math>, <math> | ||
g(\beta):g(y) \to g(y') | g(\beta):g(y) \to g(y') | ||
</math> और | </math> और <math> | ||
\phi,\phi' | \phi,\phi' | ||
</math> | </math>में क्रमविनिमेय आरेख है।<ref>{{Cite web|url=https://www.math.ubc.ca/~behrend/cet.pdf|title=स्थानीयकरण और ग्रोमोव-विटन इनवेरिएंट्स|page=9|url-status=live|archive-url=https://web.archive.org/web/20200212202830/https://www.math.ubc.ca/~behrend/cet.pdf|archive-date=February 12, 2020}}</ref> | ||
=== समरूप बीजगणित === | === समरूप बीजगणित === | ||
एक दो टर्म | एक [[ठोस]] [[एबेलियन श्रेणी]] में वस्तुओं के एक दो टर्म सम्मिश्र | ||
:<math> | :<math> | ||
C_1 \overset{d}{\rightarrow}C_0 | C_1 \overset{d}{\rightarrow}C_0 | ||
</math> | </math> | ||
का उपयोग ग्रुपॉयड बनाने के लिए किया जा सकता है। इसमें वस्तुओं के रूप में समुच्चय <math>C_0</math> और तीर के रूप में समुच्चय <math>C_1\oplus C_0</math> है, स्रोत आकारिकी केवल <math>C_0</math> पर प्रक्षेपण है, जबकि लक्ष्य आकारिकी <math>d</math> से बना <math>C_1</math>पर प्रक्षेपण और <math>C_0</math>पर प्रक्षेपण का जोड़ है। अर्थात् <math>c_1 + c_0 \in C_1\oplus C_0</math> दिया है, और हमारे पास | |||
:<math> | :<math> | ||
t(c_1 + c_0) = d(c_1) + c_0 | t(c_1 + c_0) = d(c_1) + c_0 | ||
</math> | </math> है। | ||
बेशक, अगर एबेलियन श्रेणी एक योजना पर [[सुसंगत ढेर]] | बेशक, अगर एबेलियन श्रेणी एक योजना पर [[सुसंगत ढेर|सुसंगत ढेरों]] की श्रेणी है, तो इस निर्माण का उपयोग ग्रुपॉयड के [[presheaf|प्रीशेफ]] बनाने के लिए किया जा सकता है। | ||
=== पहेलियाँ === | === पहेलियाँ === | ||
जबकि रूबिक क्यूब जैसी पहेलियों को समूह सिद्धांत (रुबिक क्यूब समूह देखें) का उपयोग करके तैयार किया जा सकता है, कुछ पहेलियों को | जबकि [[रूबिक क्यूब]] जैसी पहेलियों को समूह सिद्धांत ([[रुबिक क्यूब समूह]] देखें) का उपयोग करके तैयार किया जा सकता है, कुछ पहेलियों को ग्रुपॉयड के रूप में बेहतर रूप से तैयार किया जाता है।<ref>[https://www.crcpress.com/An-Introduction-to-Groups-Groupoids-and-Their-Representations/Ibort-Rodriguez/p/book/9781138035867 An Introduction to Groups, Groupoids and Their Representations: An Introduction]; Alberto Ibort, Miguel A. Rodriguez; CRC Press, 2019.</ref> | ||
पन्द्रह पहेली के परिवर्तन एक | |||
[[पन्द्रह पहेली]] के परिवर्तन एक ग्रुपॉयड बनाते हैं (एक समूह नहीं, क्योंकि सभी चालों की रचना नहीं की जा सकती)।<ref>Jim Belk (2008) [https://cornellmath.wordpress.com/2008/01/27/puzzles-groups-and-groupoids/ Puzzles, Groups, and Groupoids], The Everything Seminar</ref><ref>[http://www.neverendingbooks.org/the-15-puzzle-groupoid-1 The 15-puzzle groupoid (1)] {{Webarchive|url=https://web.archive.org/web/20151225220110/http://www.neverendingbooks.org/the-15-puzzle-groupoid-1 |date=2015-12-25 }}, Never Ending Books</ref><ref>[http://www.neverendingbooks.org/the-15-puzzle-groupoid-2 The 15-puzzle groupoid (2)] {{Webarchive|url=https://web.archive.org/web/20151225210035/http://www.neverendingbooks.org/the-15-puzzle-groupoid-2 |date=2015-12-25 }}, Never Ending Books</ref> यह [[समूह बद्ध|ग्रुपॉयड]] संरूपण पर [[कार्य]] करता है। | |||
=== मैथ्यू | === मैथ्यू ग्रुपॉयड === | ||
[[मैथ्यू ग्रुपॉयड]] [[जॉन हॉर्टन कॉनवे]] द्वारा पेश किया गया एक समूह है जो 13 बिंदुओं पर अभिनय करता है जैसे कि एक बिंदु को ठीक करने वाले तत्व [[मैथ्यू समूह]] | [[मैथ्यू ग्रुपॉयड]] [[जॉन हॉर्टन कॉनवे]] द्वारा पेश किया गया एक समूह है जो 13 बिंदुओं पर अभिनय करता है जैसे कि एक बिंदु को ठीक करने वाले तत्व [[मैथ्यू समूह]] M<sub>12</sub> की एक प्रति बनाते हैं। | ||
== समूहों से संबंध == | == समूहों से संबंध == | ||
{{Group-like structures}} | {{Group-like structures}} | ||
यदि एक | यदि एक ग्रुपॉयड में केवल एक ही वस्तु है, तो इसके आकारिकी का समुच्चय एक [[समूह (बीजगणित)]] बनाता है। बीजगणितीय परिभाषा का प्रयोग करते हुए, इस तरह के ग्रुपॉयड का शाब्दिक रूप से सिर्फ एक समूह है।<ref>Mapping a group to the corresponding groupoid with one object is sometimes called delooping, especially in the context of [[Homotopy|homotopy theory]], see {{Cite web|url=https://ncatlab.org/nlab/show/delooping#delooping_of_a_group_to_a_groupoid|title=delooping in nLab|website=ncatlab.org|access-date=2017-10-31}}.</ref> [[समूह सिद्धांत]] की कई अवधारणाएं ग्रुपॉयड के लिए ,[[समूह समरूपता]] की जगह[[ ऑपरेटर | प्रकार्यक]] की धारणा के साथ सामान्यीकृत होती हैं। | ||
प्रत्येक सकर्मक / जुड़ा हुआ समूह - अर्थात, जैसा कि ऊपर बताया गया है, जिसमें कोई भी दो वस्तुएँ कम से कम एक आकारिकी द्वारा जुड़ी हुई हैं - एक क्रिया समूह के लिए | प्रत्येक सकर्मक / जुड़ा हुआ समूह - अर्थात, जैसा कि ऊपर बताया गया है, जिसमें कोई भी दो वस्तुएँ कम से कम एक आकारिकी द्वारा जुड़ी हुई हैं - एक क्रिया समूह <math>(G, X)</math>के लिए समरूपी है (जैसा कि ऊपर परिभाषित किया गया है)। सकर्मकता से, क्रिया के तहत केवल एक [[कक्षा (गतिकी)|कक्षा]] होगी। | ||
ध्यान दें कि अभी उल्लिखित समरूपता अद्वितीय नहीं है, और कोई प्राकृतिक समकक्ष विकल्प नहीं है। एक सकर्मक समूह के लिए इस तरह | ध्यान दें कि अभी उल्लिखित समरूपता अद्वितीय नहीं है, और कोई [[प्राकृतिक]] समकक्ष विकल्प नहीं है। एक सकर्मक समूह के लिए इस तरह की एक समरूपता को चुनना अनिवार्य रूप से एक वस्तु <math>x_0</math>, एक [[समूह समरूपता]] <math>h</math> को <math>G(x_0)</math> से <math>G</math> तक, और <math>x_0</math> के अलावा प्रत्येक <math>x</math> के लिए, <math>G</math> से <math>x_0</math>से और <math>x</math> में एक आकारिकी को चुनना है। | ||
यदि कोई | यदि कोई ग्रुपॉयड सकर्मक नहीं है, तो यह उपरोक्त प्रकार के ग्रुपॉयड के [[असंयुक्त सम्मिलन]] के लिए समरूपी है, जिसे इसके जुड़े हुए घटक भी कहा जाता है (संभवतः विभिन्न समूहों के साथ <math>G</math> और समुच्चय <math>X</math> प्रत्येक जुड़े हुए घटक के लिए)। | ||
श्रेणी-सैद्धांतिक | श्रेणी-सैद्धांतिक शब्दों में, एक ग्रुपॉयड का प्रत्येक जुड़ा हुआ घटक एक समूह के साथ [[समतुल्य]] (लेकिन [[समरूपी]] नहीं) हैं, जो कि एक एकल समूह है। इस प्रकार कोई भी समूह असंबद्ध समूहों के एक [[बहुसमूह]] के बराबर है। दूसरे शब्दों में, केवल समूह <math>G</math> की समरूपता के बजाय समानता के लिए, किसी को समुच्चय <math>X</math> निर्दिष्ट करने की आवश्यकता नहीं है। उदाहरण के लिए, | ||
* का मौलिक समूह <math>X</math> के प्रत्येक पथ से जुड़े घटक के [[मौलिक समूह]] | * <math>X</math> का मौलिक समूह, <math>X</math> के प्रत्येक [[पथ से जुड़े घटक]] के [[मौलिक समूह|मौलिक समूहों]] के संग्रह के बराबर है , लेकिन एक समरूपता के लिए प्रत्येक घटक में बिंदुओं के समुच्चय को निर्दिष्ट करने की आवश्यकता होती है, | ||
* | *तुल्यता संबंध <math>\sim</math> के साथ समुच्चय <math>X</math> प्रत्येक तुल्यता वर्ग के लिए [[तुच्छ समूह]] की एक प्रति के समतुल्य (एक समूह के रूप में) है, लेकिन एक तुल्याकारिता के लिए यह निर्दिष्ट करना आवश्यक है कि प्रत्येक [[तुल्यता वर्ग]] क्या है, | ||
* | *समुच्चय <math>X</math>, समूह <math>G</math> की एक क्रिया से सुसज्जित है, क्रिया की प्रत्येक [[कक्षा]] के लिए <math>G</math> की एक प्रति के बराबर (एक समूह के रूप में) है, लेकिन एक [[समरूपता]] को यह निर्दिष्ट करने की आवश्यकता होती है कि प्रत्येक कक्षा क्या समुच्चय है। | ||
समूहों के एक मात्र संग्रह में समूह का पतन, श्रेणी-सिद्धांत के दृष्टिकोण से भी कुछ जानकारी खो देता है, क्योंकि यह प्राकृतिक नहीं | समूहों के एक मात्र संग्रह में समूह का पतन, श्रेणी-सिद्धांत के दृष्टिकोण से भी कुछ जानकारी खो देता है, क्योंकि यह [[प्राकृतिक]] नहीं है। इस प्रकार जब ग्रुपॉयड अन्य संरचनाओं के संदर्भ में उत्पन्न होते हैं, जैसा कि उपरोक्त उदाहरणों में है, तो यह पूरे ग्रुपॉयड को बनाए रखने में मददगार हो सकता है। अन्यथा, एक समूह के संदर्भ में प्रत्येक <math>G(x)</math> को देखने का एक तरीका चुनना होगा, और यह विकल्प यादृच्छिक हो सकता है। [[सांस्थितिकी]] के उदाहरण में, एक ही पथ से जुड़े घटक में प्रत्येक बिंदु <math>p</math> से प्रत्येक बिंदु <math>q</math> तक पथों (या पथों के समतुल्य वर्ग) का एक सुसंगत विकल्प बनाना होगा। | ||
एक अधिक रोशन करने वाले उदाहरण के रूप में, एक [[एंडोमोर्फिज्म]] वाले | एक अधिक रोशन करने वाले उदाहरण के रूप में, एक [[एंडोमोर्फिज्म|अंतःरूपांतरण]] वाले ग्रुपॉयड का वर्गीकरण विशुद्ध रूप से समूह सैद्धांतिक विचारों को कम नहीं करता है। यह इस तथ्य के अनुरूप है कि एक अंतःरूपांतरण वाले [[सदिश समष्टि]] का वर्गीकरण गैर-तुच्छ है। | ||
ग्रुपॉयड [[भागफल रूपवाद|आकारिकी]] समूहों की तुलना में अधिक प्रकार के होते हैं, उदाहरण के लिए, हमारे पास [[फ़िब्रेशन्स]], [[भागफल रूपवाद|आकारिकी]] [[समुपयोग]], [[सार्वभौमिक रूपवाद|सार्वभौमिक]] [[भागफल रूपवाद|आकारिकी]] और [[भागफल]] [[सार्वभौमिक रूपवाद|आकारिकी]] हैं। इस प्रकार एक समूह <math>G</math> उपसमूह <math>H</math>, <math>G</math> में <math>H</math> के [[सहसमुच्चयों]] के समुच्चय पर <math>G</math> की क्रिया उत्पन्न करता है इसलिए एक आच्छादन आकारिकी <math>p</math> से, मान लीजिए, <math>K</math> से <math>G</math> तक, जहां <math>K</math> [[शीर्ष समूहों]] के साथ एक ग्रुपॉयड है जो <math>H</math> तक समरूपी है। इस प्रकार समूह <math>G</math> की प्रस्तुतियों को समूह <math>K</math> की प्रस्तुतियों के लिए "उठाया" जा सकता है, और यह उपसमूह <math>H</math> की प्रस्तुतियों के बारे में जानकारी प्राप्त करने का एक उपयोगी तरीका है। अधिक जानकारी के लिए, संदर्भ में हिगिंस और ब्राउन द्वारा पुस्तकें देखें। | |||
== | == ग्रुपॉयड की श्रेणी == | ||
वह श्रेणी जिसकी वस्तुएँ | वह श्रेणी जिसकी वस्तुएँ ग्रुपॉयड हैं और जिनकी आकृतियाँ ग्रुपॉयड आकारिकी हैं, उन्हें ग्रुपॉयड श्रेणी या ग्रुपॉयड की श्रेणी कहा जाता है, और इसे जीआरपीडी द्वारा निरूपित किया जाता है। | ||
श्रेणी जीआरपीडी, छोटी श्रेणियों की श्रेणी की तरह, [[कार्टेशियन बंद]] है | श्रेणी जीआरपीडी, छोटी श्रेणियों की श्रेणी की तरह, [[कार्टेशियन बंद|कार्तीय बंद]] है, किसी भी ग्रुपॉयड <math>H,K</math> के लिय हम एक ग्रुपॉयड <math>\operatorname{GPD}(H,K)</math> का निर्माण कर सकते हैं, जिनकी वस्तुएं आकारिकी <math> H \to K </math> हैं और जिनके तीर आकारिकी के प्राकृतिक तुल्यता हैं। इस प्रकार यदि <math> H,K </math> केवल ग्रुपॉयड हैं, तो ऐसे तीर आकारिकी के संयुग्मन हैं। मुख्य परिणाम यह है कि किसी भी समूह के लिए <math> G,H,K </math> एक प्राकृतिक आक्षेप | ||
<math>\operatorname{Grpd}(G \times H, K) \cong \operatorname{Grpd}(G, \operatorname{GPD}(H,K)) | <math>\operatorname{Grpd}(G \times H, K) \cong \operatorname{Grpd}(G, \operatorname{GPD}(H,K))</math> है। | ||
यह परिणाम दिलचस्प है, भले ही सभी समूह <math> G,H,K </math> समूह मात्र हैं। | |||
जीआरपीडी का एक अन्य महत्वपूर्ण गुण यह है कि यह [[पूर्ण श्रेणी|पूर्ण]] और [[सह पूर्ण]] दोनों है। | |||
समावेश <math>i : \mathbf{Grpd} \to \mathbf{Cat}</math> बाएँ और दाएँ दोनों | === [[छोटी श्रेणियों की श्रेणी|कैट]] से संबंध === | ||
समावेश <math>i : \mathbf{Grpd} \to \mathbf{Cat}</math> में बाएँ और दाएँ दोनों [[सन्निकट]] हैं, | |||
:<math> \hom_{\mathbf{Grpd}}(C[C^{-1}], G) \cong \hom_{\mathbf{Cat}}(C, i(G)) </math> | :<math> \hom_{\mathbf{Grpd}}(C[C^{-1}], G) \cong \hom_{\mathbf{Cat}}(C, i(G)) </math> | ||
:<math> \hom_{\mathbf{Cat}}(i(G), C) \cong \hom_{\mathbf{Grpd}}(G, \mathrm{Core}(C)) </math> | :<math> \hom_{\mathbf{Cat}}(i(G), C) \cong \hom_{\mathbf{Grpd}}(G, \mathrm{Core}(C)) </math> | ||
यहाँ, <math>C[C^{-1}]</math> एक श्रेणी के स्थानीयकरण को दर्शाता है जो | यहाँ, <math>C[C^{-1}]</math> एक [[श्रेणी के स्थानीयकरण]] को दर्शाता है जो प्रत्येक आकारिकी को उलट देता है, और <math>\mathrm{Core}(C)</math> सभी समरूपताओं की उपश्रेणी को दर्शाता है। | ||
=== | === [[एससेट]] से संबंध === | ||
[[तंत्रिका (श्रेणी सिद्धांत)]] <math>N : \mathbf{Grpd} \to \mathbf{sSet}</math> जीआरपीडी को साधारण सेट की श्रेणी की पूर्ण उपश्रेणी के रूप में | [[तंत्रिका (श्रेणी सिद्धांत)|तंत्रिका प्रकार्यक]] <math>N : \mathbf{Grpd} \to \mathbf{sSet}</math> जीआरपीडी को साधारण सेट की श्रेणी की पूर्ण उपश्रेणी के रूप में सन्निहित करता है। ग्रुपॉयड की तंत्रिका हमेशा [[ कान जटिल |कान सम्मिश्र]] होती है। | ||
तंत्रिका में बायां जोड़ होता है | तंत्रिका में एक बायां जोड़ होता है | ||
:<math> \hom_{\mathbf{Grpd}}(\pi_1(X), G) \cong \hom_{\mathbf{sSet}}(X, N(G)) </math> | :<math> \hom_{\mathbf{Grpd}}(\pi_1(X), G) \cong \hom_{\mathbf{sSet}}(X, N(G)) </math> | ||
जहा, <math>\pi_1(X)</math> साधारण समुच्चय X के मूलभूत समूह को दर्शाता है। | |||
=== जीआरपीडी में ग्रुपॉयड === | |||
{{Main|दोहरा समूह बद्ध | |||
}} | |||
एक अतिरिक्त संरचना जो ग्रुपॉयड आंतरिक से ग्रुपॉयड, दोहरे समूह की श्रेणी में प्राप्त की जा सकती है।<ref>{{cite arXiv|last1=Cegarra|first1=Antonio M.|last2=Heredia|first2=Benjamín A.|last3=Remedios|first3=Josué|date=2010-03-19|title=Double groupoids and homotopy 2-types|class=math.AT|eprint=1003.3820}}</ref><ref>{{Cite journal|last=Ehresmann|first=Charles|date=1964|title=Catégories et structures : extraits|url=http://www.numdam.org/item/?id=SE_1964__6__A8_0|journal=Séminaire Ehresmann. Topologie et géométrie différentielle|language=en|volume=6|pages=1–31}}</ref> क्योंकि जीआरपीडी ए 2-श्रेणी है, ये वस्तुएँ 1-श्रेणी के बजाय 2-श्रेणी बनाती हैं क्योंकि वहाँ अतिरिक्त संरचना होती है। अनिवार्य रूप से, ये ग्रुपॉयड <math>\mathcal{G}_1,\mathcal{G}_0</math> प्रकार्यक <blockquote><math>s,t: \mathcal{G}_1 \to \mathcal{G}_0</math></blockquote>के साथ हैं और एक पहचान प्रकार्यक <blockquote> <math>i:\mathcal{G}_0 \to\mathcal{G}_1</math></blockquote>द्वारा दिया गया एक अंत: स्थापन है। इन 2-ग्रुपॉयड के बारे में सोचने का एक तरीका यह है कि इनमें वस्तुए, आकारिकी, और वर्ग होते हैं जो लंबवत और क्षैतिज रूप से एक साथ रचना कर सकते हैं। उदाहरण के लिए, दिए गए वर्गों <math>\begin{matrix} | |||
एक अतिरिक्त संरचना | |||
\bullet & \to & \bullet \\ | \bullet & \to & \bullet \\ | ||
\downarrow & & \downarrow \\ | \downarrow & & \downarrow \\ | ||
Line 267: | Line 277: | ||
\downarrow & & \downarrow \\ | \downarrow & & \downarrow \\ | ||
\bullet & \to & \bullet | \bullet & \to & \bullet | ||
\end{matrix}</math> | \end{matrix}</math>को <math>a</math> समान आकारिकी के साथ ,उन्हें एक आरेख <math>\begin{matrix} | ||
\bullet & \to & \bullet \\ | \bullet & \to & \bullet \\ | ||
\downarrow & & \downarrow \\ | \downarrow & & \downarrow \\ | ||
Line 273: | Line 283: | ||
\downarrow & & \downarrow \\ | \downarrow & & \downarrow \\ | ||
\bullet & \to & \bullet | \bullet & \to & \bullet | ||
\end{matrix}</math> | \end{matrix}</math>देकर लंबवत जोड़ा जा सकता है जिसे ऊर्ध्वाधर तीरों की रचना करके दूसरे वर्ग में परिवर्तित किया जा सकता है। वर्गों के क्षैतिज बन्धन के लिए एक समान रचना नियम है। | ||
== ज्यामितीय संरचनाओं के साथ | == ज्यामितीय संरचनाओं के साथ ग्रुपॉयड == | ||
ज्यामितीय वस्तुओं का अध्ययन करते समय, उत्पन्न होने वाले | ज्यामितीय वस्तुओं का अध्ययन करते समय, उत्पन्न होने वाले ग्रुपॉयड में प्रायः एक [[सांस्थितिकी]] होती है, जो उन्हें [[टोपोलॉजिकल ग्रुपॉयड|सांस्थितिक ग्रुपॉयड]] में बदल देती हैं, या यहां तक कि कुछ [[अलग-अलग संरचना]], उन्हें [[लाइ ग्रुपोइड्स|लाइ ग्रुपॉयड]] में बदल देते हैं। इन अंतिम वस्तुओं का अध्ययन उनके संबंधित [[झूठ बीजगणित|लाइ]] [[झूठ बीजगणित|बीजगणित]] ,[[झूठ समूह|लाइ ग्रुपॉयड]] और [[झूठ बीजगणित|लाइ]] [[बीजगणित]] के बीच संबंध के अनुरूप संदर्भ में भी किया जा सकता है। | ||
ज्यामिति से उत्पन्न होने वाले | ज्यामिति से उत्पन्न होने वाले समूह बद्ध्स में प्रायः आगे की संरचनाएं होती हैं जो ग्रुपॉयड गुणन के साथ परस्पर क्रिया करती हैं। उदाहरण के लिए, [[पोइसन ज्यामिति]] में एक [[ सहानुभूति समूह | साइमलेक्टिक समूह]] की धारणा है, जो एक संगत[[ सिंपलेक्टिक मैनिफोल्ड | सिंपलेक्टिक विधि]] के साथ एक [[झूठ बोलना|लाइ]] [[झूठ बोलना|ग्रुपॉयड]] है। इसी तरह, किसी के पास संगत [[रिमेंनियन मीट्रिक|रीमानी ज्यमिति]], या [[ जटिल कई गुना |सम्मिश्र संरचना]] आदि के साथ ग्रुपॉयड हो सकते हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
*∞-ग्रुपॉइड | *[[∞-ग्रुपॉइड|∞-ग्रुपॉयड]] | ||
*[[2-समूह]] | *[[2-समूह]] | ||
* [[ होमोटॉपी प्रकार सिद्धांत ]] | * [[ होमोटॉपी प्रकार सिद्धांत | समस्थेयता प्रकार सिद्धांत]] | ||
*उलट श्रेणी | *उलट श्रेणी | ||
* [[ग्रुपॉयड बीजगणित]] (बीजगणितीय ग्रुपॉयड के साथ भ्रमित नहीं होना चाहिए) | * [[ग्रुपॉयड बीजगणित]] ([[बीजगणितीय ग्रुपॉयड]] के साथ भ्रमित नहीं होना चाहिए) | ||
*[[आर-बीजगणित]] | *[[आर-बीजगणित]] | ||
Line 317: | Line 327: | ||
* {{nlab|id=fundamental+groupoid|title=fundamental groupoid}} | * {{nlab|id=fundamental+groupoid|title=fundamental groupoid}} | ||
* {{nlab|id=core|title=core}} | * {{nlab|id=core|title=core}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:Created On 01/05/2023]] | [[Category:Created On 01/05/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Webarchive template wayback links]] | |||
[[Category:बीजगणितीय संरचनाएं]] | |||
[[Category:श्रेणी सिद्धांत]] | |||
[[Category:होमोटॉपी सिद्धांत]] |
Latest revision as of 16:36, 16 October 2023
गणित में, विशेष रूप से श्रेणी सिद्धांत और समस्थेयता सिद्धांत में, एक ग्रुपॉयड (प्रायः कम ब्रांट ग्रुपॉयड या आभासी समूह) कई समान तरीकों से समूह की धारणा को सामान्यीकृत करता है। ग्रुपॉयड को एक रूप में देखा जा सकता है,
- द्विचर प्रचालन की जगह एक आंशिक फलन वाला समूह,
- 'श्रेणी' जिसमें प्रत्येक आकारिकी व्युत्क्रमणीय होती है। इस प्रकार की श्रेणी को आकारिकी पर एकल संक्रिया के साथ संवर्धित के रूप में देखा जा सकता है, जिसे समूह सिद्धांत के अनुरूप प्रतिलोम कहा जाता है।[1] ग्रुपॉयड जहां केवल एक वस्तु होती है वह सामान्य समूह होता है।
आश्रित प्रकार की उपस्थिति में, सामान्य रूप से एक श्रेणी को वर्गीकृत किए गए मोनोइड के रूप में देखा जा सकता है, और इसी तरह, एक ग्रुपॉयड को केवल वर्गीकृत किए गए समूह के रूप में देखा जा सकता है। आकारिकी एक वस्तु से दूसरी वस्तु पर ले जाता है, और प्रकारों के एक आश्रित परिवार का निर्माण करता हैं, इस प्रकार आकारिकी को , , में वर्गीकृत किया जा सकता है। संरचना तब कुल फलन है, , ताकि हो।
विशेष स्थितियों में सम्मिलित हैं,
- सेटोइड्स, समुच्चय जो एक तुल्यता संबंध के साथ आता है,
- जी-समुच्चय, समूह की क्रिया से सुसज्जित समुच्चय।
ग्रुपॉयड का उपयोग प्रायः ज्यामितीय वस्तुओं जैसे विविध के बारे में विश्लेषण करने के लिए किया जाता है। हेनरिक ब्रांट (1927) ने ब्रांट अर्धसमूह के माध्यम से ग्रुपॉयड को स्पष्ट रूप से पेश किया।[2]
परिभाषाएँ
ग्रुपॉयड एक बीजगणितीय संरचना है जिसमें एक अरिक्त समुच्च्य और एक द्विआधारी आंशिक फलन '' सम्मिलित है जो पर परिभाषित है।
बीजगणितीय
एक ग्रुपॉयड एक समुच्चय है जिसमें एक एकात्मक संक्रिया और आंशिक फलन है। यहाँ * एक द्विआधारी संक्रिया नहीं है क्योंकि यह आवश्यक रूप से के सभी तत्वों के जोड़े के लिए परिभाषित नहीं है। सटीक शर्तें जिसके तहत को परिभाषित किया गया है, वे यहाँ व्यक्त नहीं की गई हैं और स्थिति के अनुसार बदलती हैं।
संक्रियाएँ और −1 में निम्नलिखित स्वयंसिद्ध गुण हैं, में सभी , , और के लिए ,
- साहचर्य, यदि और परिभाषित हैं, तो और परिभाषित हैं और बराबर हैं। इसके विपरीत यदि एक और परिभाषित है, तब वे दोनों परिभाषित हैं (और वे एक दूसरे के बराबर हैं), तथा और भी परिभाषित हैं।
- गुणात्मक प्रतिलोम, और हमेशा परिभाषित होते हैं।
- पहचान, यदि परिभाषित किया गया है, तो , और । (पिछले दो स्वयंसिद्ध पहले से ही दिखाते हैं कि ये अभिव्यक्तिया परिभाषित और स्पष्ट हैं।)
इन स्वयंसिद्धों से दो आसान और उपयुक्त गुण निकलते हैं,
- ,
- अगर परिभाषित किया गया है, तो ।[3]
श्रेणी सिद्धांत
समूह एक छोटी श्रेणी है जिसमें प्रत्येक आकृतिवाद एक समरूपता है, अर्थात, उलटा।[1] अधिक स्पष्ट रूप से, एक समूह G है,
- वस्तुओं का एक समुच्चय G0
- G0 में वस्तुओं x और y की प्रत्येक जोड़ी के लिए, x से y तक आकारिकी (या तीर) का एक (संभवतः खाली) समुच्चय G(x,y) मौजूद है। हम f : x → y लिखते हैं, यह दर्शाने के लिए कि f, G(x,y) का एक तत्व है।
- प्रत्येक वस्तु x के लिए, G(x,x) का एक निर्दिष्ट तत्व ,
- वस्तुओं x, y, और z के प्रत्येक त्रिगुण के लिए, एक फलन ,
- वस्तुओं के प्रत्येक जोड़ी के लिए x, y एक फलन है ,
संतोषजनक, किसी भी f : x → y, g : y → z, और h : z → w के लिए,
- और ;
- ;
- और ।
यदि f, G(x, y) का एक तत्व है तो x को f का 'स्रोत' कहा जाता है, जिसे s(f) लिखा जाता है, और y को f का 'लक्ष्य' कहा जाता है, जिसे t(f) लिखा जाता है। एक समूह G को कभी-कभी के रूप में दर्शाया जाता है, जहां सभी रूपों का समुच्चय है, और दो तीर स्रोत और लक्ष्य का प्रतिनिधित्व करते हैं।
आमतौर पर अधिक , परिमित फाइबर उत्पादों को स्वीकार करने वाली याट्टीच्छक श्रेणी में एक समूहबद्ध वस्तु पर विचार किया जा सकता है।
परिभाषाओं की तुलना करना
बीजगणितीय और श्रेणी-सैद्धांतिक परिभाषाएँ समतुल्य हैं, जैसा कि अब हम दिखाते हैं। श्रेणी-सैद्धांतिक अर्थों में एक समूह को देखते हुए, G को सभी समुच्चय G (x, y) (यानी x से y तक आकारिकी के समुच्चय) का असंयुक्त सम्मिलन होने दें। जब और G पर आंशिक संचालन बन जाते हैं, तब वास्तव में हर जगह परिभाषित किया जाएगा। हम ∗ को और −1 को के रूप में परिभाषित करते हैं, जो बीजगणितीय अर्थ में एक ग्रुपॉयड देता है। G0 (और इसलिए ) के स्पष्ट संदर्भ को छोड़ा जा सकता है।
इसके विपरीत, बीजगणितीय अर्थ में एक ग्रुपॉयड G दिया गया है, एक तुल्यता संबंध को इसके तत्वों पर द्वारा परिभाषित करें , यदि ∗a a−1 = b∗ b-1। मान लीजिए कि G0 , अर्थात के तुल्यता वर्गों का समुच्चय है। a* a−1 को से निरूपित करें यदि साथ हो ।
अब को सभी तत्वों f के समुच्चय के रूप में परिभाषित करें जिससे कि का अस्तित्व हो। और दिया हुआ है, उनके योग को के रूप में परिभाषित किया गया है। यह देखने के लिए कि यह अच्छी तरह से परिभाषित है, निरीक्षण करें कि और का अस्तित्व है, इसलिए का भी अस्तित्व है। x पर तत्समक आकारिकी तब है, और f का श्रेणी-सैद्धांतिक व्युत्क्रम f-1 है।
ऊपर दी गई परिभाषाओं में समुच्चय को कक्षाओं से बदला जा सकता है, जैसा कि आमतौर पर श्रेणी सिद्धांत में होता है।
शीर्ष समूह और कक्षाएँ
ग्रुपॉयड G को देखते हुए, शीर्ष समूह या 'समदैशिकता समूह' या G में 'वस्तु समूह' विधि G (x,x) के उपसमुच्चय हैं, जहां x G की कोई वस्तु है। ऊपर दिए गए स्वयंसिद्धों से यह आसानी से पता चलता है कि ये वास्तव में समूह हैं, क्योंकि तत्वों की प्रत्येक जोड़ी रचना योग्य है और व्युत्क्रम एक ही शीर्ष समूह में हैं।
एक बिंदु पर ग्रुपॉयड G की 'कक्षा' समुच्चय द्वारा दी गई है जिसमें प्रत्येक बिंदु सम्मिलित है जो G में एक आकारिकी द्वारा x से जोड़ा जा सकता है। यदि दो बिंदु और समान कक्षाओं में हैं, तो उनके शीर्ष समूह और तुल्याकारी हैं, यदि से तक कोई आकारिकी है, तो तुल्याकारिता मानचित्रण द्वारा दी जाती है।
कक्षाएँ समुच्चय X का एक विभाजन बनाती हैं, यदि इसकी केवल एक कक्षा होती है तो एक समूह को संक्रामी कहा जाता है (समकक्ष रूप से, यदि यह एक श्रेणी के रूप में जुड़ा हुआ है)। उस स्थिति में, सभी शीर्ष समूह समरूपी होते हैं (दूसरी ओर, यह संक्रामकता के लिए पर्याप्त स्थिति नहीं है, प्रतिउदाहरणों के लिए नीचे दिया गया अनुभाग देखें)।
उपसमूह और आकारिकी
का एक उपसमूह एक उपश्रेणी है जो स्वयं एक समूह है। इसे विस्तृत या पूर्ण कहा जाता है यदि यह एक उपश्रेणी के रूप में विस्तृत या पूर्ण है, क्रमशः, यदि प्रत्येक के लिए या है।
एक ग्रुपॉयड आकारिकी केवल दो (श्रेणी-सैद्धांतिक) ग्रुपॉयड के बीच एक प्रकार्यक है।
ग्रुपॉयड की विशेष प्रकार की आकारिकी संबद्ध हैं। ग्रुपॉयड के एक आकारिकी को एक कंपन कहा जाता है यदि प्रत्येक वस्तु के लिए का और प्रत्येक आकारिकी का से शुरू होता है, से शुरू होने वाले का एक आकारिकी ऐसा होता है जैसे कि । एक स्पंदन को समुपयोग आकारिकी या ग्रुपॉयड का समुपयोग कहा जाता है यदि आगे ऐसा अद्वितीय हो। ग्रुपॉयड के समुपयोग आकारिकी विशेष रूप से उपयोगी होते हैं क्योंकि उनका उपयोग समष्टि के मानचित्रों को समुपयोग करने के लिए किया जा सकता है।[4]
यह भी सच है कि किसी दिए गए ग्रुपॉयड के आकारिकी को समुपयोग करने की श्रेणी समुच्चय पर ग्रुपॉयड की क्रियाओं की श्रेणी के बराबर है।
उदाहरण
सांस्थिति
सांस्थितिक समष्टि दिया गया है, मान लीजिए , का समुच्चय है। बिंदु से बिंदु तक के आकारिकी से तक निरंतर पथों के समतुल्य वर्ग हैं, दो पथ समतुल्य हैं यदि वे समस्थानी हैं। इस तरह के दो रूपों की रचना पहले मार्ग का अनुसरण करके की जाती है, फिर दूसरे की समरूपता तुल्यता प्रत्याभुति देती है कि यह रचना साहचर्य है। इस ग्रुपॉयड को का मौलिक समूह कहा जाता है , जिसे (या कभी-कभी, ) द्वारा निरूपित किया जाता है।[5] सामान्य मौलिक समूह तो बिंदु के लिए शीर्ष समूह है।
मौलिक समूह की कक्षाएँ के पथ से जुड़े घटक हैं। इसलिए, पथ से जुड़े स्थान का मूलभूत समूह सकर्मक है, और हम ज्ञात तथ्य को पुनर्प्राप्त करते हैं , किसी भी आधार बिंदु पर मूलभूत समूह समरूप हैं। इसके अलावा, इस स्थिति में, मौलिक समूह और मौलिक समूह श्रेणियों के बराबर हैं, (सामान्य सिद्धांत के लिए नीचे अनुभाग देखें)।
इस विचार का एक महत्वपूर्ण विस्तार मौलिक समूह पर विचार करना है जहां आधार बिंदुओं का एक चुना हुआ समूह है। यहाँ का एक (विस्तृत) उपसमूह है ,जहाँ कोई केवल उन रास्तों पर विचार करता है जिनके अंत बिंदु से संबंधित हैं। समुच्चय को वर्तमान स्थिति की ज्यामिति के अनुसार चुना जा सकता है।
तुल्यता संबंध
अगर एक सेटॉइड है, अर्थात एक समतुल्य संबंध वाला समुच्चय , तो इस तुल्यता संबंध का प्रतिनिधित्व करने वाला एक समूह निम्नानुसार बनाया जा सकता है:
- ग्रुपॉयड की वस्तुएं के तत्व हैं ,
- में किन्हीं दो तत्वों और के लिए , से तक एकल आकारिकी है ( से निरूपित करें) यदि केवल ,
- और है की रचना।
इस समूह के शीर्ष समूह हमेशा तुच्छ होते हैं, इसके अलावा, यह समूह आम तौर पर सकर्मक नहीं है और इसकी कक्षाएँ बिल्कुल तुल्यता वर्ग हैं। दो अधिकतम उदाहरण हैं,
- यदि का प्रत्येक तत्व के प्रत्येक अन्य तत्व के साथ संबंध रखता है, तो हमें की जोड़ी का ग्रुपॉयड प्राप्त करते हैं, जिसमें संपूर्ण तीरों के समूह के रूप में होता है, और जो सकर्मक होता है।
- यदि का प्रत्येक तत्व केवल स्वयं के साथ संबंध में है, तो इकाई ग्रुपॉयड प्राप्त करता है, जिसमें तीरों के समुच्चय के रूप में है, और जो पूरी तरह से अकर्मक है (प्रत्येक सिंगलटन एक कक्षा है)।
उदाहरण
- अगर स्मूथ बहुविध का स्मूथ विशेषण निमज्जन है, तो एक तुल्यता संबंध है[6] क्योंकि में सांस्थितिक समष्टि के विशेषण मानचित्र के तहत के भागफल सांस्थितिक के लिए एक सांस्थितिक तुल्य कारी है। अगर हम लिखते हैं, तो हमें ग्रुपॉयड मिलता है जिसे कभी-कभी स्मूथ बहुविध के विशेषण निमज्जन का साधारण समूह कहा जाता है।
- यदि हम स्वतुल्यता की आवश्यकता को शिथिल करते हैं और 'आंशिक तुल्यता संबंधों' पर विचार करते हैं, तो सेट के लिए तर्कसंगत यथार्थपरक पर तुल्यता की अर्ध-निर्णायक धारणाओं पर विचार करना संभव हो जाता है। यह ग्रुपॉयड को समुच्चय सिद्धांत के लिए एक संगणनीय सन्निकटन के रूप में उपयोग करने की अनुमति देता है, जिसे पीईआर प्रारूप कहा जाता है। जिसे एक श्रेणी के रूप में माना जाता है, प्रति प्रारूप एक कार्तीय बंद श्रेणी है जिसमें प्राकृतिक संख्या वस्तु और उप वस्तु वर्गीकारक हैं, जो मार्टिन हाइलैंड द्वारा पेश किए गए प्रभावी टोपोस को जन्म देते हैं।
चेक ग्रुपॉयड
एक चेक ग्रुपॉयड [6]p. 5 एक विशेष प्रकार का ग्रुपॉयड है जो कुछ कई गुना के खुले आवरण द्वारा दिए गए तुल्यता संबंध से जुड़ा है। इसकी वस्तुएं असंयुक्त सम्मिलन
द्वारा दी गई हैं,
और इसके तीर चौराहे
हैं।
स्रोत और लक्ष्य मानचित्र तब प्रेरित मानचित्र
और समावेशन मानचित्र
द्वारा दिए गए हैं जो एक समूह की संरचना देते हैं। वास्तव में,
को -पुनरावृत्त फाइबर उत्पाद के रूप में समायोजन करके इसे और बढ़ाया जा सकता है, जहां संयोजन योग्य तीरों के टुपल्स का प्रतिनिधित्व करता है।
फाइबर उत्पाद का संरचना मानचित्र स्पष्ट रूप से लक्ष्य मानचित्र है, क्योंकि
एक कार्तीय आरेख है जहाँ के मानचित्र लक्ष्य मानचित्रित हैं। इस निर्माण को कुछ ∞-ग्रुपॉयड के लिए एक प्रारूप के रूप में देखा जा सकता है। इसके अलावा, इस निर्माण का एक और आर्टिफैक्ट है k- कोसायकल
एबेलियन समूहों के कुछ निरंतर शेफ के लिए एक फलन के रूप में प्रदर्शित किया जा सकता है जो कोहोलॉजी कक्षाओं का एक स्पष्ट प्रतिनिधित्व देता है।
समूह क्रिया
यदि समूह समुच्चय पर कार्य करता है , तो हम इस समूह क्रिया का प्रतिनिधित्व करने वाले क्रिया ग्रुपॉयड (या परिवर्तन ग्रुपॉयड ) को निम्नानुसार बना सकते हैं,
- वस्तुएँ के तत्व हैं,
- में किन्हीं दो तत्वों और के लिए, से तक की आकृतियाँ के तत्वों के अनुरूप हैं जैसे कि ,
- आकारिकी की संरचना के द्विआधारी संक्रिया की व्याख्या करती है।
अधिक स्पष्ट रूप से, क्रिया ग्रुपॉयड और के साथ और स्रोत और लक्ष्य मानचित्र और के साथ एक छोटी श्रेणी है। इसे प्रायः (या उचित कार्य के लिए) निरूपित किया जाता है। ग्रुपॉयड में गुणन (या संघटन) तब होता है जब इसे प्रदान करके परिभाषित किया जाता है।
में के लिए, शीर्ष समूह में के साथ वे होते हैं, जो दी गई क्रिया के लिए पर समस्थानिक उपसमूह है दी गई क्रिया के लिए (यही कारण है कि शीर्ष समूहों को समदैशिक समूह भी कहा जाता है)। इसी तरह, क्रिया ग्रुपॉयड की कक्षाएँ समूह क्रिया की कक्षा हैं, और ग्रुपॉयड सकर्मक है यदि केवल समूह क्रिया सकर्मक है।
-समुच्चयो का वर्णन करने का एक अन्य तरीका क्रियात्मक श्रेणी है, जहाँ एक तत्व के साथ ग्रुपॉयड (श्रेणी) है और समूह के लिए समरूपी है। वास्तव में, इस श्रेणी का प्रत्येक प्रकार्यक एक समुच्चय को परिभाषित करता है और में प्रत्येक के लिए में (अर्थात में प्रत्येक आकारिकी के लिए) एक आक्षेप : उत्पन्न करता है। प्रकार्यक की स्पष्ट संरचना हमें आश्वस्त करती है कि समुच्चय पर -क्रिया को परिभाषित करता है। (अद्वितीय) प्रतिनिधित्व करने योग्य प्रकार्यक : का केली प्रतिनिधित्व है। वास्तव में, यह प्रकार्यक के लिए समरूपी है और इसलिए को समुच्चय में भेजता है जो परिभाषा के अनुसार समुच्चय और आकारिकी का (अर्थात का तत्व ) समुच्चय के क्रमचय में है। हम योनेडा अंत: स्थापन से यह निष्कर्ष निकालते हैं कि के क्रमपरिवर्तन के समूह का एक उपसमूह ,समूह समूह के लिए समरूपी है ।
परिमित समुच्चय
परिमित समुच्चय पर की समूह क्रिया पर विचार करें जो प्रत्येक संख्या को उसके ऋणात्मक में ले जाता है, जिसके लिए और दिए गए है। भागफल समूह इस समूह क्रिया से तुल्यता वर्गों का समुच्चय है , और पर की समूह क्रिया है।
गुणक विविधता
कोई भी परिमित समूह जो को मानचित्रित करता है, सजातीयउपसमष्टि पर एक समूह क्रिया देता है (चूंकि यह स्वसमाकृतिकता का समूह है)। तब, भागफल समूह के रूप का हो सकता है, जिसके मूल में स्थिरक के साथ एक बिंदु होता है। इस तरह के उदाहरण ऑर्बिफोल्ड्स के सिद्धांत का आधार बनाते हैं। ऑर्बिफोल्ड्स का एक और सामान्य रूप से अध्ययन किया गया परिवार भारित प्रक्षेपी समष्टि और उनमें से उप-स्थान हैं, जैसे कैलाबी-यॉ ऑर्बिफोल्ड्स।
ग्रुपॉयड का फाइबर उत्पाद
ग्रुपॉयड आकारिकी के साथ ग्रुपॉयड का आरेख दिया गया है
जहाँ और , जिसे हम ग्रुपॉयड बना सकते हैं जिनकी वस्तुएँ त्रिगुण हैं , जहाँ , , और में हैं। आकारिकी को आकारिकी की एक जोड़ी के रूप में परिभाषित किया जा सकता है जहां और ऐसे हैं कि त्रिगुण के लिए, , , और में क्रमविनिमेय आरेख है।[7]
समरूप बीजगणित
एक ठोस एबेलियन श्रेणी में वस्तुओं के एक दो टर्म सम्मिश्र
का उपयोग ग्रुपॉयड बनाने के लिए किया जा सकता है। इसमें वस्तुओं के रूप में समुच्चय और तीर के रूप में समुच्चय है, स्रोत आकारिकी केवल पर प्रक्षेपण है, जबकि लक्ष्य आकारिकी से बना पर प्रक्षेपण और पर प्रक्षेपण का जोड़ है। अर्थात् दिया है, और हमारे पास
- है।
बेशक, अगर एबेलियन श्रेणी एक योजना पर सुसंगत ढेरों की श्रेणी है, तो इस निर्माण का उपयोग ग्रुपॉयड के प्रीशेफ बनाने के लिए किया जा सकता है।
पहेलियाँ
जबकि रूबिक क्यूब जैसी पहेलियों को समूह सिद्धांत (रुबिक क्यूब समूह देखें) का उपयोग करके तैयार किया जा सकता है, कुछ पहेलियों को ग्रुपॉयड के रूप में बेहतर रूप से तैयार किया जाता है।[8]
पन्द्रह पहेली के परिवर्तन एक ग्रुपॉयड बनाते हैं (एक समूह नहीं, क्योंकि सभी चालों की रचना नहीं की जा सकती)।[9][10][11] यह ग्रुपॉयड संरूपण पर कार्य करता है।
मैथ्यू ग्रुपॉयड
मैथ्यू ग्रुपॉयड जॉन हॉर्टन कॉनवे द्वारा पेश किया गया एक समूह है जो 13 बिंदुओं पर अभिनय करता है जैसे कि एक बिंदु को ठीक करने वाले तत्व मैथ्यू समूह M12 की एक प्रति बनाते हैं।
समूहों से संबंध
Totalityα | Associativity | Identity | Inverse | Commutativity | |
---|---|---|---|---|---|
Semigroupoid | Unneeded | Required | Unneeded | Unneeded | Unneeded |
Small category | Unneeded | Required | Required | Unneeded | Unneeded |
Groupoid | Unneeded | Required | Required | Required | Unneeded |
Magma | Required | Unneeded | Unneeded | Unneeded | Unneeded |
Quasigroup | Required | Unneeded | Unneeded | Required | Unneeded |
Unital magma | Required | Unneeded | Required | Unneeded | Unneeded |
Semigroup | Required | Required | Unneeded | Unneeded | Unneeded |
Loop | Required | Unneeded | Required | Required | Unneeded |
Monoid | Required | Required | Required | Unneeded | Unneeded |
Group | Required | Required | Required | Required | Unneeded |
Commutative monoid | Required | Required | Required | Unneeded | Required |
Abelian group | Required | Required | Required | Required | Required |
^α The closure axiom, used by many sources and defined differently, is equivalent. |
यदि एक ग्रुपॉयड में केवल एक ही वस्तु है, तो इसके आकारिकी का समुच्चय एक समूह (बीजगणित) बनाता है। बीजगणितीय परिभाषा का प्रयोग करते हुए, इस तरह के ग्रुपॉयड का शाब्दिक रूप से सिर्फ एक समूह है।[12] समूह सिद्धांत की कई अवधारणाएं ग्रुपॉयड के लिए ,समूह समरूपता की जगह प्रकार्यक की धारणा के साथ सामान्यीकृत होती हैं।
प्रत्येक सकर्मक / जुड़ा हुआ समूह - अर्थात, जैसा कि ऊपर बताया गया है, जिसमें कोई भी दो वस्तुएँ कम से कम एक आकारिकी द्वारा जुड़ी हुई हैं - एक क्रिया समूह के लिए समरूपी है (जैसा कि ऊपर परिभाषित किया गया है)। सकर्मकता से, क्रिया के तहत केवल एक कक्षा होगी।
ध्यान दें कि अभी उल्लिखित समरूपता अद्वितीय नहीं है, और कोई प्राकृतिक समकक्ष विकल्प नहीं है। एक सकर्मक समूह के लिए इस तरह की एक समरूपता को चुनना अनिवार्य रूप से एक वस्तु , एक समूह समरूपता को से तक, और के अलावा प्रत्येक के लिए, से से और में एक आकारिकी को चुनना है।
यदि कोई ग्रुपॉयड सकर्मक नहीं है, तो यह उपरोक्त प्रकार के ग्रुपॉयड के असंयुक्त सम्मिलन के लिए समरूपी है, जिसे इसके जुड़े हुए घटक भी कहा जाता है (संभवतः विभिन्न समूहों के साथ और समुच्चय प्रत्येक जुड़े हुए घटक के लिए)।
श्रेणी-सैद्धांतिक शब्दों में, एक ग्रुपॉयड का प्रत्येक जुड़ा हुआ घटक एक समूह के साथ समतुल्य (लेकिन समरूपी नहीं) हैं, जो कि एक एकल समूह है। इस प्रकार कोई भी समूह असंबद्ध समूहों के एक बहुसमूह के बराबर है। दूसरे शब्दों में, केवल समूह की समरूपता के बजाय समानता के लिए, किसी को समुच्चय निर्दिष्ट करने की आवश्यकता नहीं है। उदाहरण के लिए,
- का मौलिक समूह, के प्रत्येक पथ से जुड़े घटक के मौलिक समूहों के संग्रह के बराबर है , लेकिन एक समरूपता के लिए प्रत्येक घटक में बिंदुओं के समुच्चय को निर्दिष्ट करने की आवश्यकता होती है,
- तुल्यता संबंध के साथ समुच्चय प्रत्येक तुल्यता वर्ग के लिए तुच्छ समूह की एक प्रति के समतुल्य (एक समूह के रूप में) है, लेकिन एक तुल्याकारिता के लिए यह निर्दिष्ट करना आवश्यक है कि प्रत्येक तुल्यता वर्ग क्या है,
- समुच्चय , समूह की एक क्रिया से सुसज्जित है, क्रिया की प्रत्येक कक्षा के लिए की एक प्रति के बराबर (एक समूह के रूप में) है, लेकिन एक समरूपता को यह निर्दिष्ट करने की आवश्यकता होती है कि प्रत्येक कक्षा क्या समुच्चय है।
समूहों के एक मात्र संग्रह में समूह का पतन, श्रेणी-सिद्धांत के दृष्टिकोण से भी कुछ जानकारी खो देता है, क्योंकि यह प्राकृतिक नहीं है। इस प्रकार जब ग्रुपॉयड अन्य संरचनाओं के संदर्भ में उत्पन्न होते हैं, जैसा कि उपरोक्त उदाहरणों में है, तो यह पूरे ग्रुपॉयड को बनाए रखने में मददगार हो सकता है। अन्यथा, एक समूह के संदर्भ में प्रत्येक को देखने का एक तरीका चुनना होगा, और यह विकल्प यादृच्छिक हो सकता है। सांस्थितिकी के उदाहरण में, एक ही पथ से जुड़े घटक में प्रत्येक बिंदु से प्रत्येक बिंदु तक पथों (या पथों के समतुल्य वर्ग) का एक सुसंगत विकल्प बनाना होगा।
एक अधिक रोशन करने वाले उदाहरण के रूप में, एक अंतःरूपांतरण वाले ग्रुपॉयड का वर्गीकरण विशुद्ध रूप से समूह सैद्धांतिक विचारों को कम नहीं करता है। यह इस तथ्य के अनुरूप है कि एक अंतःरूपांतरण वाले सदिश समष्टि का वर्गीकरण गैर-तुच्छ है।
ग्रुपॉयड आकारिकी समूहों की तुलना में अधिक प्रकार के होते हैं, उदाहरण के लिए, हमारे पास फ़िब्रेशन्स, आकारिकी समुपयोग, सार्वभौमिक आकारिकी और भागफल आकारिकी हैं। इस प्रकार एक समूह उपसमूह , में के सहसमुच्चयों के समुच्चय पर की क्रिया उत्पन्न करता है इसलिए एक आच्छादन आकारिकी से, मान लीजिए, से तक, जहां शीर्ष समूहों के साथ एक ग्रुपॉयड है जो तक समरूपी है। इस प्रकार समूह की प्रस्तुतियों को समूह की प्रस्तुतियों के लिए "उठाया" जा सकता है, और यह उपसमूह की प्रस्तुतियों के बारे में जानकारी प्राप्त करने का एक उपयोगी तरीका है। अधिक जानकारी के लिए, संदर्भ में हिगिंस और ब्राउन द्वारा पुस्तकें देखें।
ग्रुपॉयड की श्रेणी
वह श्रेणी जिसकी वस्तुएँ ग्रुपॉयड हैं और जिनकी आकृतियाँ ग्रुपॉयड आकारिकी हैं, उन्हें ग्रुपॉयड श्रेणी या ग्रुपॉयड की श्रेणी कहा जाता है, और इसे जीआरपीडी द्वारा निरूपित किया जाता है।
श्रेणी जीआरपीडी, छोटी श्रेणियों की श्रेणी की तरह, कार्तीय बंद है, किसी भी ग्रुपॉयड के लिय हम एक ग्रुपॉयड का निर्माण कर सकते हैं, जिनकी वस्तुएं आकारिकी हैं और जिनके तीर आकारिकी के प्राकृतिक तुल्यता हैं। इस प्रकार यदि केवल ग्रुपॉयड हैं, तो ऐसे तीर आकारिकी के संयुग्मन हैं। मुख्य परिणाम यह है कि किसी भी समूह के लिए एक प्राकृतिक आक्षेप
है।
यह परिणाम दिलचस्प है, भले ही सभी समूह समूह मात्र हैं।
जीआरपीडी का एक अन्य महत्वपूर्ण गुण यह है कि यह पूर्ण और सह पूर्ण दोनों है।
कैट से संबंध
समावेश में बाएँ और दाएँ दोनों सन्निकट हैं,
यहाँ, एक श्रेणी के स्थानीयकरण को दर्शाता है जो प्रत्येक आकारिकी को उलट देता है, और सभी समरूपताओं की उपश्रेणी को दर्शाता है।
एससेट से संबंध
तंत्रिका प्रकार्यक जीआरपीडी को साधारण सेट की श्रेणी की पूर्ण उपश्रेणी के रूप में सन्निहित करता है। ग्रुपॉयड की तंत्रिका हमेशा कान सम्मिश्र होती है।
तंत्रिका में एक बायां जोड़ होता है
जहा, साधारण समुच्चय X के मूलभूत समूह को दर्शाता है।
जीआरपीडी में ग्रुपॉयड
एक अतिरिक्त संरचना जो ग्रुपॉयड आंतरिक से ग्रुपॉयड, दोहरे समूह की श्रेणी में प्राप्त की जा सकती है।[13][14] क्योंकि जीआरपीडी ए 2-श्रेणी है, ये वस्तुएँ 1-श्रेणी के बजाय 2-श्रेणी बनाती हैं क्योंकि वहाँ अतिरिक्त संरचना होती है। अनिवार्य रूप से, ये ग्रुपॉयड प्रकार्यक
के साथ हैं और एक पहचान प्रकार्यक
द्वारा दिया गया एक अंत: स्थापन है। इन 2-ग्रुपॉयड के बारे में सोचने का एक तरीका यह है कि इनमें वस्तुए, आकारिकी, और वर्ग होते हैं जो लंबवत और क्षैतिज रूप से एक साथ रचना कर सकते हैं। उदाहरण के लिए, दिए गए वर्गों और को समान आकारिकी के साथ ,उन्हें एक आरेख देकर लंबवत जोड़ा जा सकता है जिसे ऊर्ध्वाधर तीरों की रचना करके दूसरे वर्ग में परिवर्तित किया जा सकता है। वर्गों के क्षैतिज बन्धन के लिए एक समान रचना नियम है।
ज्यामितीय संरचनाओं के साथ ग्रुपॉयड
ज्यामितीय वस्तुओं का अध्ययन करते समय, उत्पन्न होने वाले ग्रुपॉयड में प्रायः एक सांस्थितिकी होती है, जो उन्हें सांस्थितिक ग्रुपॉयड में बदल देती हैं, या यहां तक कि कुछ अलग-अलग संरचना, उन्हें लाइ ग्रुपॉयड में बदल देते हैं। इन अंतिम वस्तुओं का अध्ययन उनके संबंधित लाइ बीजगणित ,लाइ ग्रुपॉयड और लाइ बीजगणित के बीच संबंध के अनुरूप संदर्भ में भी किया जा सकता है।
ज्यामिति से उत्पन्न होने वाले समूह बद्ध्स में प्रायः आगे की संरचनाएं होती हैं जो ग्रुपॉयड गुणन के साथ परस्पर क्रिया करती हैं। उदाहरण के लिए, पोइसन ज्यामिति में एक साइमलेक्टिक समूह की धारणा है, जो एक संगत सिंपलेक्टिक विधि के साथ एक लाइ ग्रुपॉयड है। इसी तरह, किसी के पास संगत रीमानी ज्यमिति, या सम्मिश्र संरचना आदि के साथ ग्रुपॉयड हो सकते हैं।
यह भी देखें
- ∞-ग्रुपॉयड
- 2-समूह
- समस्थेयता प्रकार सिद्धांत
- उलट श्रेणी
- ग्रुपॉयड बीजगणित (बीजगणितीय ग्रुपॉयड के साथ भ्रमित नहीं होना चाहिए)
- आर-बीजगणित
टिप्पणियाँ
- ↑ 1.0 1.1 Dicks & Ventura (1996). एक नि: शुल्क समूह के इंजेक्शन एंडोमोर्फिज्म के एक परिवार द्वारा तय किया गया समूह. p. 6.
- ↑ "Brandt semi-group", Encyclopedia of Mathematics, EMS Press, 2001 [1994], ISBN 1-4020-0609-8
- ↑
Proof of first property: from 2. and 3. we obtain a−1 = a−1 * a * a−1 and (a−1)−1 = (a−1)−1 * a−1 * (a−1)−1. Substituting the first into the second and applying 3. two more times yields (a−1)−1 = (a−1)−1 * a−1 * a * a−1 * (a−1)−1 = (a−1)−1 * a−1 * a = a. ✓
Proof of second property: since a * b is defined, so is (a * b)−1 * a * b. Therefore (a * b)−1 * a * b * b−1 = (a * b)−1 * a is also defined. Moreover since a * b is defined, so is a * b * b−1 = a. Therefore a * b * b−1 * a−1 is also defined. From 3. we obtain (a * b)−1 = (a * b)−1 * a * a−1 = (a * b)−1 * a * b * b−1 * a−1 = b−1 * a−1. ✓ - ↑ J.P. May, A Concise Course in Algebraic Topology, 1999, The University of Chicago Press ISBN 0-226-51183-9 (see chapter 2)
- ↑ "nLab में मौलिक Groupoid". ncatlab.org. Retrieved 2017-09-17.
- ↑ 6.0 6.1 Block, Jonathan; Daenzer, Calder (2009-01-09). "कनेक्शन के साथ गेर्ब्स के लिए मुकाई द्वैत". arXiv:0803.1529 [math.QA].
- ↑ "स्थानीयकरण और ग्रोमोव-विटन इनवेरिएंट्स" (PDF). p. 9. Archived (PDF) from the original on February 12, 2020.
- ↑ An Introduction to Groups, Groupoids and Their Representations: An Introduction; Alberto Ibort, Miguel A. Rodriguez; CRC Press, 2019.
- ↑ Jim Belk (2008) Puzzles, Groups, and Groupoids, The Everything Seminar
- ↑ The 15-puzzle groupoid (1) Archived 2015-12-25 at the Wayback Machine, Never Ending Books
- ↑ The 15-puzzle groupoid (2) Archived 2015-12-25 at the Wayback Machine, Never Ending Books
- ↑ Mapping a group to the corresponding groupoid with one object is sometimes called delooping, especially in the context of homotopy theory, see "delooping in nLab". ncatlab.org. Retrieved 2017-10-31..
- ↑ Cegarra, Antonio M.; Heredia, Benjamín A.; Remedios, Josué (2010-03-19). "Double groupoids and homotopy 2-types". arXiv:1003.3820 [math.AT].
- ↑ Ehresmann, Charles (1964). "Catégories et structures : extraits". Séminaire Ehresmann. Topologie et géométrie différentielle (in English). 6: 1–31.
संदर्भ
- Brandt, H (1927), "Über eine Verallgemeinerung des Gruppenbegriffes", Mathematische Annalen, 96 (1): 360–366, doi:10.1007/BF01209171, S2CID 119597988
- Brown, Ronald, 1987, "From groups to groupoids: a brief survey," Bull. London Math. Soc. 19: 113–34. Reviews the history of groupoids up to 1987, starting with the work of Brandt on quadratic forms. The downloadable version updates the many references.
- —, 2006. Topology and groupoids. Booksurge. Revised and extended edition of a book previously published in 1968 and 1988. Groupoids are introduced in the context of their topological application.
- —, Higher dimensional group theory. Explains how the groupoid concept has led to higher-dimensional homotopy groupoids, having applications in homotopy theory and in group cohomology. Many references.
- Dicks, Warren; Ventura, Enric (1996), The group fixed by a family of injective endomorphisms of a free group, Mathematical Surveys and Monographs, vol. 195, AMS Bookstore, ISBN 978-0-8218-0564-0
- Dokuchaev, M.; Exel, R.; Piccione, P. (2000). "Partial Representations and Partial Group Algebras". Journal of Algebra. Elsevier. 226: 505–532. arXiv:math/9903129. doi:10.1006/jabr.1999.8204. ISSN 0021-8693. S2CID 14622598.
- F. Borceux, G. Janelidze, 2001, Galois theories. Cambridge Univ. Press. Shows how generalisations of Galois theory lead to Galois groupoids.
- Cannas da Silva, A., and A. Weinstein, Geometric Models for Noncommutative Algebras. Especially Part VI.
- Golubitsky, M., Ian Stewart, 2006, "Nonlinear dynamics of networks: the groupoid formalism", Bull. Amer. Math. Soc. 43: 305-64
- "Groupoid", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Higgins, P. J., "The fundamental groupoid of a graph of groups", J. London Math. Soc. (2) 13 (1976) 145–149.
- Higgins, P. J. and Taylor, J., "The fundamental groupoid and the homotopy crossed complex of an orbit space", in Category theory (Gummersbach, 1981), Lecture Notes in Math., Volume 962. Springer, Berlin (1982), 115–122.
- Higgins, P. J., 1971. Categories and groupoids. Van Nostrand Notes in Mathematics. Republished in Reprints in Theory and Applications of Categories, No. 7 (2005) pp. 1–195; freely downloadable. Substantial introduction to category theory with special emphasis on groupoids. Presents applications of groupoids in group theory, for example to a generalisation of Grushko's theorem, and in topology, e.g. fundamental groupoid.
- Mackenzie, K. C. H., 2005. General theory of Lie groupoids and Lie algebroids. Cambridge Univ. Press.
- Weinstein, Alan, "Groupoids: unifying internal and external symmetry — A tour through some examples." Also available in Postscript., Notices of the AMS, July 1996, pp. 744–752.
- Weinstein, Alan, "The Geometry of Momentum" (2002)
- R.T. Zivaljevic. "Groupoids in combinatorics—applications of a theory of local symmetries". In Algebraic and geometric combinatorics, volume 423 of Contemp. Math., 305–324. Amer. Math. Soc., Providence, RI (2006)
- fundamental groupoid at the nLab
- core at the nLab