पीएच (pH): Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 4 users not shown) | |||
Line 2: | Line 2: | ||
{{Acids and bases}} | {{Acids and bases}} | ||
[[ रसायन विज्ञान ]] में, | [[ रसायन विज्ञान ]] में, pH ({{IPAc-en|p|iː|ˈ|eɪ|tʃ}}), ऐतिहासिक रूप से [[ हाइड्रोजन ]] (या हाइड्रोजन की क्षमता) को दर्शाता है।<ref>{{cite journal|author1-link=William B. Jensen|last1=Jensen|first1=William B.|date=2004|title=The Symbol for pH|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/102.%20pH.pdf|journal=Journal of Chemical Education|volume=81|issue=1|pages=21|doi=10.1021/ed081p21|bibcode=2004JChEd..81...21J|access-date=15 July 2020|archive-date=14 December 2019|archive-url=https://web.archive.org/web/20191214110759/http://www.che.uc.edu/jensen/w.%20b.%20jensen/reprints/102.%20ph.pdf|url-status=live}}</ref> एक [[ जलीय घोल |जलीय घोल]] की [[ अम्ल |अम्लता]] या क्षार (रसायन) को निर्दिष्ट करने के लिए उपयोग किया जाने वाला पैमाना है। अम्लीय विलयनों (हाइड्रोजन ((H<sup>+</sup>) आयनों की उच्च सांद्रता वाले विलयन) को मूल या क्षारीय विलयनों की तुलना में कम pH मान के लिए मापा जाता है। | ||
pH स्केल [[ लघुगणकीय पैमाने ]]है और विलयन में [[ हाइड्रोनियम ]] की सांद्रता को व्युत्क्रम रूप से इंगित करता है।<ref name="Bates">Bates, Roger G. ''Determination of pH: theory and practice''. Wiley, 1973.</ref> | |||
:<math chem="">\ce{pH} = - \log(a_\ce{H+}) = -\log([\ce{H+}] | :<math chem="">\ce{pH} = - \log(a_\ce{H+}) = -\log([\ce{H+}])</math> | ||
जहां विलयन में H+ का संतुलन मोलर सांद्रता (mol/l) है। 25 °C (77°F) पर, 7 से कम pH वाले विलयन अम्लीय होते हैं, और 7 से अधिक pH वाले विलयन क्षारीय होते हैं। इस तापमान पर 7 के | जहां विलयन में H<sup>+</sup> का संतुलन मोलर सांद्रता (mol/l) है। 25 °C (77°F) पर, 7 से कम pH वाले विलयन अम्लीय होते हैं, और 7 से अधिक pH वाले विलयन क्षारीय होते हैं। इस तापमान पर 7 के pH वाले विलयन उदासीन होते हैं (यानी H<sup>+</sup> की समान सांद्रता, आयन OH<sup>−</sup> के रूप में आयन, यानी [[ शुद्ध पानी ]]) होती है। pH का अनावेशी मान तापमान पर निर्भर करता है और 7 से कम है यदि तापमान 25 °c से अधिक बढ़ जाता है। pH मान बहुत केंद्रित एसिड ताकत के लिए 0 से कम हो सकता है, या बहुत केंद्रित आधार (रसायन विज्ञान) प्रबल आधारों के लिए 14 से अधिक हो सकता है।<ref>{{cite journal | last1 = Lim | first1 = Kieran F. | year = 2006 | title = Negative pH Does Exist | journal = Journal of Chemical Education | volume = 83 | issue = 10 | pages = 1465 | doi=10.1021/ed083p1465| bibcode = 2006JChEd..83.1465L | doi-access = free }}</ref> | ||
pH स्केल मानक विलयनों के एक सेट के लिए मापन ट्रेसबिलिटी है जिसका pH अंतरराष्ट्रीय समझौते द्वारा स्थापित किया गया है।<ref name="covington" />[[ हाइड्रोजन इलेक्ट्रोड | हाइड्रोजन इलेक्ट्रोड]] और [[ सिल्वर क्लोराइड इलेक्ट्रोड | सिल्वर क्लोराइड इलेक्ट्रोड]] जैसे मानक इलेक्ट्रोड के बीच संभावित अंतर को मापकर प्राथमिक pH मानक मान [[ बिजली उत्पन्न करनेवाली सेल | बिजली उत्पन्न करनेवाली सेल]] का उपयोग करके निर्धारित किए जाते हैं। जलीय घोल के pH को [[ ग्लास इलेक्ट्रोड | ग्लास इलेक्ट्रोड]] और [[ पी एच मीटर | पी एच मीटर]] या रंग बदलने वाले pH संकेतक से मापा जा सकता है। रसायन विज्ञान, कृषि विज्ञान, चिकित्सा, जल उपचार और कई अन्य अनुप्रयोगों में pH के मापन महत्वपूर्ण हैं। | |||
== इतिहास == | == इतिहास == | ||
pH की अवधारणा सबसे पहले 1909 में [[ कार्ल्सबर्ग प्रयोगशाला ]]में [[ डेनिश लोग | डेनिश]] केमिस्ट सरेन पीटर लॉरिट्ज सोरेनसेन द्वारा पेश की गई थी।<ref name=Sørensen>{{cite journal | last1 = Sørensen | first1 = S. P. L. | year = 1909 | title = माप और एंजाइमी प्रक्रियाओं में हाइड्रोजन आयन एकाग्रता के महत्व के बारे में| journal = Biochem. Z. | volume = 21 | pages = 131–304 | url = https://core.ac.uk/download/pdf/14517358.pdf | quote = मूल जर्मन: नंबर p के लिए मैं हाइड्रोजन आयन एक्सपोनेंट नाम और संकेतन p<sub>H</sub>• सुझाता हूं। किसी विलयन के हाइड्रोजन आयन घातांक (p<sub>H</sub>•) को हाइड्रोजन आयनों से संबंधित विलयन के सामान्यता कारक के पारस्परिक मूल्य के ब्रिग के लघुगणक के रूप में समझा जाता है।| access-date = 22 March 2021 | archive-date = 15 April 2021 | archive-url = https://web.archive.org/web/20210415205740/https://core.ac.uk/download/pdf/14517358.pdf | url-status = live }} 1909 में दो अन्य प्रकाशन प्रकाशित हुए, एक फ्रेंच में और एक डेनिश में। </ref> और 1924 में विद्युत रासायनिक कोशिकाओं के संदर्भ में परिभाषाओं और मापों को समायोजित करने के लिए आधुनिक pH में संशोधित किया गया था। पहले पत्रों में, अंकन में H<sup>•</sup> लोअरकेस p के सबस्क्रिप्ट के रूप में, इस प्रकार: "p<sub>H</sub>•"। | |||
<blockquote> साइन | <blockquote> साइन p के लिए, मैं 'हाइड्रोजन आयन एक्सपोनेंट' नाम का और प्रतीक p<sub>H</sub>• प्रस्तावित करता हूं। फिर, हाइड्रोजन आयन घातांक के लिए (p<sub>H</sub>•) एक विलयन के, संबंधित हाइड्रोजन आयन [[ समतुल्य एकाग्रता | समतुल्य सांद्रता]] के [[ सामान्य लघुगणक ]]के ऋणात्मक मान को समझना है।<ref name=Sørensen/> | ||
pH में अक्षर p का सटीक अर्थ विवादित है, क्योंकि सॉरेन्सन ने यह स्पष्ट नहीं किया कि उन्होंने इसका उपयोग क्यों किया।<ref>{{Cite journal|last=Francl|first=Michelle|date=August 2010|title=Urban legends of chemistry|url=https://www.nature.com/articles/nchem.750.epdf|journal=Nature Chemistry|volume=2|issue=8|pages=600–601|doi=10.1038/nchem.750|pmid=20651711|bibcode=2010NatCh...2..600F|issn=1755-4330|access-date=21 July 2019|archive-date=6 August 2020|archive-url=https://web.archive.org/web/20200806053215/https://www.nature.com/articles/nchem.750.epdf|url-status=live}}</ref> सॉरेन्सन संभावित अंतरों का उपयोग करके | pH में अक्षर p का सटीक अर्थ विवादित है, क्योंकि सॉरेन्सन ने यह स्पष्ट नहीं किया कि उन्होंने इसका उपयोग क्यों किया।<ref>{{Cite journal|last=Francl|first=Michelle|date=August 2010|title=Urban legends of chemistry|url=https://www.nature.com/articles/nchem.750.epdf|journal=Nature Chemistry|volume=2|issue=8|pages=600–601|doi=10.1038/nchem.750|pmid=20651711|bibcode=2010NatCh...2..600F|issn=1755-4330|access-date=21 July 2019|archive-date=6 August 2020|archive-url=https://web.archive.org/web/20200806053215/https://www.nature.com/articles/nchem.750.epdf|url-status=live}}</ref> सॉरेन्सन संभावित अंतरों का उपयोग करके pH को मापने का एक तरीका बताता है, और यह हाइड्रोजन आयनों की सांद्रता में 10 की ऋणात्मक शक्ति का प्रतिनिधित्व करता है। पत्र पी फ्रांसीसी पुइसेंस, जर्मन पोटेन्ज़, या डेनिश पोटेन्स के लिए खड़ा हो सकता है, जिसका अर्थ शक्ति है, या इसका अर्थ संभावित हो सकता है। इनके लिए सभी शब्द फ्रेंच भाषा, [[ जर्मन भाषा ]] और [[ डेनिश भाषा ]] में अक्षर "p'" से प्रारम्भ होते हैं - सभी भाषाएँ सोरेनसेन में प्रकाशित हुईं: कार्ल्सबर्ग प्रयोगशाला फ्रेंच भाषी थी, जर्मन वैज्ञानिक प्रकाशन की प्रमुख भाषा थी, और सोरेनसेन डेनिश थी। उन्होंने पेपर में कहीं और भी उसी तरह अक्षर क्यू का उपयोग किया। उसने परीक्षण विलयन p और संदर्भ विलयन q को मनमाने ढंग से लेबल भी किया हो सकता है; ये अक्षर प्रायः जोड़े जाते हैं।<ref>{{cite journal|last1=Myers|first1=Rollie J.|year=2010|title=One-Hundred Years of pH|journal=Journal of Chemical Education|volume=87|issue=1|pages=30–32|bibcode=2010JChEd..87...30M|doi=10.1021/ed800002c}}</ref> कुछ साहित्य सूत्रों का कहना है कि pH [[ लैटिन भाषा ]] के पोंडस हाइड्रोजनी (हाइड्रोजन की मात्रा) या पोटेंशिया हाइड्रोजनी (हाइड्रोजन की शक्ति) के लिए खड़ा है, यद्यपि यह सोरेनसेन के लेखन द्वारा समर्थित नहीं है।<ref name="Otterson">{{cite journal |last1=Otterson |first1=David W. |title=Tech Talk: (11) pH Measurement and Control Basics. |journal=Measurement and Control |date=2015 |volume=48 |issue=10 |pages=309–312 |doi=10.1177/0020294015600474 |s2cid=110716297 |url=https://journals.sagepub.com/doi/pdf/10.1177/0020294015600474 |access-date=16 June 2022}}</ref><ref name="Lian">{{cite journal |last1=Lian |first1=Ying |last2=Zhang |first2=Wei |last3=Ding |first3=Longjiang |last4=Zhang |first4=Xiaoai |last5=Zhang |first5=Yinglu |last6=Wang |first6=Xu-dong |title=Nanomaterials for Intracellular pH Sensing and Imaging. |journal=Novel Nanomaterials for Biomedical, Environmental and Energy Applications. |series=Micro and Nano Technologies |date=2019 |pages=241–273 |doi=10.1016/B978-0-12-814497-8.00008-4 |isbn=9780128144978 |s2cid=104410918 |url=https://www.sciencedirect.com/science/article/pii/B9780128144978000084 |access-date=16 June 2022}}</ref><ref name="Bradley">{{cite news |last1=Bradley |first1=David |title=When it comes to caustic wit and an acid tongue, mind your Ps and Qs. |url=https://www.materialstoday.com/materials-chemistry/comment/caustic-wit-acid-tongues-mind-your-ps-and-qs/ |access-date=16 June 2022 |publisher=Materials Today |date=21 February 2018}}</ref> | ||
वर्तमान में रसायन विज्ञान में, p सामान्य लघुगणक के लिए खड़ा है, और इसका उपयोग p''K''<sub>a</sub> शब्द में भी किया जाता है, [[ अम्ल पृथक्करण स्थिरांक |अम्ल पृथक्करण स्थिरांक]] <ref name="Jens">{{cite journal|author=Nørby, Jens|year=2000|title=The origin and the meaning of the little p in pH|journal=Trends in Biochemical Sciences|volume=25|issue=1|pages=36–37|doi=10.1016/S0968-0004(99)01517-0|pmid=10637613}}</ref> और | वर्तमान में रसायन विज्ञान में, p सामान्य लघुगणक के लिए खड़ा है, और इसका उपयोग p''K''<sub>a</sub> शब्द में भी किया जाता है, [[ अम्ल पृथक्करण स्थिरांक |अम्ल पृथक्करण स्थिरांक]] <ref name="Jens">{{cite journal|author=Nørby, Jens|year=2000|title=The origin and the meaning of the little p in pH|journal=Trends in Biochemical Sciences|volume=25|issue=1|pages=36–37|doi=10.1016/S0968-0004(99)01517-0|pmid=10637613}}</ref> और pOH,[[ हीड्राकसीड | हीड्राकसीड]] आयनों के बराबर के लिए उपयोग किया जाता है। | ||
बैक्ट्रियोलॉजिस्ट एलिस कैथरीन इवान्स, जिन्होंने डेयरी और[[ खाद्य सुरक्षा | खाद्य सुरक्षा]] को प्रभावित किया, 1910 के दशक में | बैक्ट्रियोलॉजिस्ट एलिस कैथरीन इवान्स, जिन्होंने डेयरी और[[ खाद्य सुरक्षा | खाद्य सुरक्षा]] को प्रभावित किया, 1910 के दशक में pH मापने के तरीकों को विकसित करने के लिए विलियम मैन्सफील्ड क्लार्क और उनके सहयोगियों को श्रेय दिया, जिसका प्रयोगशाला और औद्योगिक उपयोग पर व्यापक प्रभाव था। अपने संस्मरण में, उन्होंने यह उल्लेख नहीं किया है कि कुछ साल पहले क्लार्क और उनके सहयोगियों को सॉरेन्सन के काम के बारे में कितना या कितना कम पता था।<ref name="Evans-Memoirs">{{cite web |last1=Evans |first1=Alice C. |author-link=Alice Catherine Evans |year=1963 |title=Memoirs |url=https://history.nih.gov/archives/downloads/aliceevans.pdf |website=NIH Office of History |publisher=National Institutes of Health Office of History |access-date=2018-03-27 |archive-date=15 December 2017 |archive-url=https://web.archive.org/web/20171215000804/https://history.nih.gov/archives/downloads/aliceevans.pdf |url-status=dead }}</ref>{{rp|10<!-- 12 of 65 in PDF-->}} उसने कहा: | ||
<blockquote>इन अध्ययनों में [बैक्टीरिया के चयापचय के] डॉ. क्लार्क का ध्यान बैक्टीरिया के विकास पर एसिड के प्रभाव को निर्देशित किया गया था। उन्होंने पाया कि यह हाइड्रोजन-आयन सांद्रता की स्थिति में एसिड की तीव्रता है जो उनके विकास को प्रभावित करती है। लेकिन अम्लता को मापने के उपस्थित तरीके एसिड की मात्रा निर्धारित करते हैं, तीव्रता नहीं। इसके बाद, अपने सहयोगियों के साथ, डॉ. क्लार्क ने हाइड्रोजन-आयन सांद्रता को मापने के लिए सटीक तरीके विकसित किए। इन तरीकों ने दुनिया भर में जैविक प्रयोगशालाओं में उपयोग में आने वाली एसिड सामग्री को निर्धारित करने की गलत अनुमापन विधि को बदल दिया। साथ ही वे कई औद्योगिक और अन्य प्रक्रियाओं में लागू पाए गए जिनमें वे व्यापक उपयोग में आए।<ref name="Evans-Memoirs" />{{rp|10<!-- 12 of 65 in PDF-->}} | <blockquote>इन अध्ययनों में [बैक्टीरिया के चयापचय के] डॉ. क्लार्क का ध्यान बैक्टीरिया के विकास पर एसिड के प्रभाव को निर्देशित किया गया था। उन्होंने पाया कि यह हाइड्रोजन-आयन सांद्रता की स्थिति में एसिड की तीव्रता है जो उनके विकास को प्रभावित करती है। लेकिन अम्लता को मापने के उपस्थित तरीके एसिड की मात्रा निर्धारित करते हैं, तीव्रता नहीं। इसके बाद, अपने सहयोगियों के साथ, डॉ. क्लार्क ने हाइड्रोजन-आयन सांद्रता को मापने के लिए सटीक तरीके विकसित किए। इन तरीकों ने दुनिया भर में जैविक प्रयोगशालाओं में उपयोग में आने वाली एसिड सामग्री को निर्धारित करने की गलत अनुमापन विधि को बदल दिया। साथ ही वे कई औद्योगिक और अन्य प्रक्रियाओं में लागू पाए गए जिनमें वे व्यापक उपयोग में आए।<ref name="Evans-Memoirs" />{{rp|10<!-- 12 of 65 in PDF-->}} | ||
1934 में [[ कैलिफोर्निया प्रौद्योगिकी संस्थान | कैलिफोर्निया प्रौद्योगिकी संस्थान]] के एक प्रोफेसर[[ अर्नोल्ड ऑरविल बेकमैन | अर्नोल्ड ऑरविल बेकमैन]] ने | 1934 में [[ कैलिफोर्निया प्रौद्योगिकी संस्थान | कैलिफोर्निया प्रौद्योगिकी संस्थान]] के एक प्रोफेसर[[ अर्नोल्ड ऑरविल बेकमैन | अर्नोल्ड ऑरविल बेकमैन]] ने pH को मापने के लिए पहली [[ इलेक्ट्रानिक्स | इलेक्ट्रानिक्स]] विधि का आविष्कार किया था।<ref>{{cite web|title= Origins: Birth of the pH Meter |url= https://eands.caltech.edu/origins-birth-of-the-ph-meter/|website=Caltech Engineering & Science Magazine|access-date=11 March 2018 |archive-url= https://web.archive.org/web/20181106180207/https://eands.caltech.edu/origins-birth-of-the-ph-meter/|archive-date=6 November 2018|url-status=dead}}</ref> यह स्थानीय साइट्रस उत्पादक सनकिस्ट ग्रोअर्स, इनकॉर्पोरेटेड के जवाब में था जो नींबू के pH का त्वरित परीक्षण करने के लिए एक बेहतर तरीका चाहते थे जो वे अपने आस-पास के बागों से उठा रहे थे।<ref>{{cite web |last1= Tetrault |first1=Sharon|title=The Beckmans|url=https://books.google.com/books?id=nf0DAAAAMBAJ&q=ph+caltech+beckman+sunkist&pg=PA96|website=Orange Coast|publisher=Orange Coast Magazine|access-date=11 March 2018| date=June 2002|archive-date=15 April 2021|archive-url= https://web.archive.org/web/20210415222325/https://books.google.com/books?id=nf0DAAAAMBAJ&q=ph+caltech+beckman+sunkist&pg=PA96| url-status=live}}</ref> | ||
== परिभाषा | == परिभाषा == | ||
=== | === pH === | ||
विलयन में | विलयन में pH को [[ हाइड्रोजन आयन |हाइड्रोजन आयन]] [[ गतिविधि (रसायन विज्ञान) |गतिविधि (रसायन विज्ञान)]] ''a''<sub>H</sub>+ के पारस्परिक के दशमलव लघुगणक के रूप में परिभाषित किया गया है।गणितीय रूप से pH इस प्रकार व्यक्त किया जाता है:<ref name="covington">{{cite journal |doi=10.1351/pac198557030531 |last1=Covington |url=http://www.iupac.org/publications/pac/1985/pdf/5703x0531.pdf |first1=A. K. |last2=Bates |first2=R. G. |last3=Durst |first3=R. A. |title=Definitions of pH scales, standard reference values, measurement of pH, and related terminology |journal=Pure Appl. Chem. |year=1985 |volume=57 |pages=531–542 |issue=3 |s2cid=14182410 |url-status=live |archive-url=https://web.archive.org/web/20070924235637/http://www.iupac.org/publications/pac/1985/pdf/5703x0531.pdf |archive-date=24 September 2007}}</ref> | ||
:<math chem="">\ce{pH} = - \log_{10}(a_\ce{H+}) = \log_{10}\left(\frac 1 {a_\ce{H+}} \right) </math> | :<math chem="">\ce{pH} = - \log_{10}(a_\ce{H+}) = \log_{10}\left(\frac 1 {a_\ce{H+}} \right) </math> | ||
उदाहरण के लिए, 5×10<sup>−6</sup> की हाइड्रोजन आयन गतिविधि वाले विलयन के लिए (उस स्तर पर, यह अनिवार्य रूप से प्रति लीटर विलयन में हाइड्रोजन आयनों के मोल (इकाई) की संख्या है) लघुगणक का तर्क | उदाहरण के लिए, 5×10<sup>−6</sup> की हाइड्रोजन आयन गतिविधि वाले विलयन के लिए (उस स्तर पर, यह अनिवार्य रूप से प्रति लीटर विलयन में हाइड्रोजन आयनों के मोल (इकाई) की संख्या है) लघुगणक का तर्क: | ||
pH = - log<sub>10</sub> (5 x 10<sup>-</sup> 6) = 5.3 | |||
इस परिभाषा को इसलिए अपनाया गया क्योंकि [[ आयन-चयनात्मक इलेक्ट्रोड |आयन-चयनात्मक इलेक्ट्रोड]], जिनका उपयोग | ध्यान दें कि pH तापमान पर निर्भर करता है। उदाहरण के लिए 0 डिग्री सेल्सियस पर शुद्ध पानी का pH लगभग 7.47 होता है। 25 डिग्री सेल्सियस पर यह 7.00 है, और 100 डिग्री सेल्सियस पर यह 6.14 है। | ||
इस परिभाषा को इसलिए अपनाया गया क्योंकि [[ आयन-चयनात्मक इलेक्ट्रोड |आयन-चयनात्मक इलेक्ट्रोड]], जिनका उपयोग pH को मापने के लिए किया जाता है, गतिविधि पर प्रतिक्रिया करते हैं। इलेक्ट्रोड पोटेंशियल, ई, हाइड्रोजन आयन के लिए एनर्नस्ट समीकरण का अनुसरण करता है, जिसे इस प्रकार व्यक्त किया जा सकता है: | |||
:<math chem=""> E = E^0 + \frac{RT}{F} \ln(a_\ce{H+})=E^0 - \frac{2.303 RT}{F} \ce{pH}</math> | :<math chem=""> E = E^0 + \frac{RT}{F} \ln(a_\ce{H+})=E^0 - \frac{2.303 RT}{F} \ce{pH}</math> | ||
जहां ''E'' मापी गई क्षमता है, ''E''<sup>0</sup> मानक इलेक्ट्रोड क्षमता है, R [[ गैस स्थिरांक |गैस स्थिरांक]] है, T [[ केल्विन |केल्विन]] में तापमान है, F [[ फैराडे स्थिरांक |फैराडे स्थिरांक]] है। {{chem2|H+}} के लिए, हस्तांतरित इलेक्ट्रॉनों की संख्या एक है। | जहां ''E'' मापी गई क्षमता है, ''E''<sup>0</sup> मानक इलेक्ट्रोड क्षमता है, R [[ गैस स्थिरांक |गैस स्थिरांक]] है, T [[ केल्विन |केल्विन]] में तापमान है, F [[ फैराडे स्थिरांक |फैराडे स्थिरांक]] है। {{chem2|H+}} के लिए, हस्तांतरित इलेक्ट्रॉनों की संख्या एक है। | ||
यह इस प्रकार है कि इलेक्ट्रोड क्षमता | यह इस प्रकार है कि इलेक्ट्रोड क्षमता pH के समानुपाती होती है जब pH को गतिविधि के संदर्भ में परिभाषित किया जाता है। pH का सटीक माप अंतर्राष्ट्रीय मानक [[ आईएसओ 31-8 | आईएसओ 31-8]] में निम्नानुसार प्रस्तुत किया गया है:<ref>Quantities and units – Part 8: Physical chemistry and molecular physics, Annex C (normative): pH. [[International Organization for Standardization]], 1992.</ref> एक संदर्भ इलेक्ट्रोड और हाइड्रोजन आयन गतिविधि के प्रति संवेदनशील इलेक्ट्रोड के बीच [[ वैद्युतवाहक बल | वैद्युतवाहक बल]] (ईएमएफ) को मापने के लिए एक गैल्वेनिक सेल की स्थापना की जाती है, जब वे दोनों एक ही जलीय घोल में डूबे होते हैं। संदर्भ इलेक्ट्रोड सिल्वर क्लोराइड इलेक्ट्रोड या[[ संतृप्त कैलोमेल इलेक्ट्रोड | संतृप्त कैलोमेल इलेक्ट्रोड]] हो सकता है। हाइड्रोजन-आयन चयनात्मक इलेक्ट्रोड[[ मानक हाइड्रोजन इलेक्ट्रोड | मानक हाइड्रोजन इलेक्ट्रोड]] है। | ||
:<span class="texhtml">संदर्भ इलेक्ट्रोड | KCl का सान्द्र विलयन || परीक्षण विलयन | H<sub>2</sub> | Pt | :<span class="texhtml">संदर्भ इलेक्ट्रोड | KCl का सान्द्र विलयन || परीक्षण विलयन | H<sub>2</sub> | Pt | ||
सबसे पहले, सेल ज्ञात हाइड्रोजन आयन गतिविधि के विलयन से भर जाता है और इलेक्ट्रोमोटिव बल, ''E''<sub>S</sub> मापा जाता है। फिर इलेक्ट्रोमोटिव बल, ''E''<sub>X</sub>, अज्ञात | सबसे पहले, सेल ज्ञात हाइड्रोजन आयन गतिविधि के विलयन से भर जाता है और इलेक्ट्रोमोटिव बल, ''E''<sub>S</sub> मापा जाता है। फिर इलेक्ट्रोमोटिव बल, ''E''<sub>X</sub>, अज्ञात pH के विलयन वाले एक ही सेल को मापा जाता है। | ||
:<math chem="">\ce{pH(X)} = \ce{pH(S)}+\frac{E_\ce{S} - E_\ce{X} }{z}</math> | :<math chem="">\ce{pH(X)} = \ce{pH(S)}+\frac{E_\ce{S} - E_\ce{X} }{z}</math> | ||
दो मापा इलेक्ट्रोमोटिव बल मूल्यों के बीच का अंतर | दो मापा इलेक्ट्रोमोटिव बल मूल्यों के बीच का अंतर pH के समानुपाती होता है। अंशांकन की यह विधि मानक इलेक्ट्रोड क्षमता को जानने की आवश्यकता से बचाती है। आनुपातिकता स्थिरांक, 1/''z'', आदर्श रूप से किसके बराबर है? <math>\frac{1}{2.303RT/F}\ </math>, नर्नस्टियन ढलान। | ||
अभ्यास में, इस प्रक्रिया को लागू करने के लिए बोझिल हाइड्रोजन इलेक्ट्रोड के अतिरिक्त एक ग्लास इलेक्ट्रोड का उपयोग किया जाता है। एक संयुक्त ग्लास इलेक्ट्रोड में एक अंतर्निर्मित संदर्भ इलेक्ट्रोड होता है। यह ज्ञात हाइड्रोजन आयन गतिविधि के बफर विलयन के खिलाफ कैलिब्रेटेड है। [[ IUPAC |IUPAC]] (इंटरनेशनल यूनियन ऑफ प्योर एंड एप्लाइड केमिस्ट्री) द्वारा प्रस्तावित ज्ञात हाइड्रोजन आयन (H+) गतिविधि विलयनों के सेट के उपयोग का प्रस्ताव दिया है।<ref name="covington" /> इस तथ्य को समायोजित करने के लिए दो या अधिक बफर विलयन का उपयोग किया जाता है कि ढलान आदर्श से थोड़ा भिन्न हो सकता है। अंशांकन के लिए इस दृष्टिकोण को लागू करने के लिए, इलेक्ट्रोड को पहले एक मानक विलयन में डुबोया जाता है और | अभ्यास में, इस प्रक्रिया को लागू करने के लिए बोझिल हाइड्रोजन इलेक्ट्रोड के अतिरिक्त एक ग्लास इलेक्ट्रोड का उपयोग किया जाता है। एक संयुक्त ग्लास इलेक्ट्रोड में एक अंतर्निर्मित संदर्भ इलेक्ट्रोड होता है। यह ज्ञात हाइड्रोजन आयन गतिविधि के बफर विलयन के खिलाफ कैलिब्रेटेड है। [[ IUPAC |IUPAC]] (इंटरनेशनल यूनियन ऑफ प्योर एंड एप्लाइड केमिस्ट्री) द्वारा प्रस्तावित ज्ञात हाइड्रोजन आयन (H+) गतिविधि विलयनों के सेट के उपयोग का प्रस्ताव दिया है।<ref name="covington" /> इस तथ्य को समायोजित करने के लिए दो या अधिक बफर विलयन का उपयोग किया जाता है कि ढलान आदर्श से थोड़ा भिन्न हो सकता है। अंशांकन के लिए इस दृष्टिकोण को लागू करने के लिए, इलेक्ट्रोड को पहले एक मानक विलयन में डुबोया जाता है और pH मीटर पर रीडिंग को मानक बफर मान के बराबर समायोजित किया जाता है। एक दूसरे मानक बफर विलयन से पढ़ने को तब समायोजित किया जाता है, ढलान नियंत्रण का उपयोग करके, उस विलयन के लिए pH के बराबर होना। अधिक विवरण, IUPAC अनुशंसाओं में दिए गए हैं।<ref name="covington" /> जब दो से अधिक बफर विलयनों का उपयोग किया जाता है तो मानक बफर मानों के संबंध में प्रेक्षित pH मानों को एक सीधी रेखा में फिट करके इलेक्ट्रोड को कैलिब्रेट किया जाता है। वाणिज्यिक मानक बफर विलयन सामान्यतः 25 डिग्री सेल्सियस पर मूल्य और अन्य तापमानों के लिए लागू किए जाने वाले सुधार कारक के बारे में जानकारी के साथ आते हैं। | ||
pH पैमाना लॉगरिदमिक है और इसलिए pH एक [[ आयाम रहित मात्रा |आयाम रहित मात्रा]] है। | |||
=== | === p [H] === | ||
यह 1909 में सॉरेन्सन की मूल परिभाषा थी,<ref name="Sor">{{cite web|url=http://www.carlsberggroup.com/Company/heritage/Research/Pages/pHValue.aspx |title=Carlsberg Group Company History Page |publisher=Carlsberggroup.com |archive-url=https://web.archive.org/web/20140118043012/http://www.carlsberggroup.com/Company/heritage/Research/Pages/pHValue.aspx |archive-date=18 January 2014 |url-status=live |access-date=7 May 2013}}</ref> जिसे 1924 में | यह 1909 में सॉरेन्सन की मूल परिभाषा थी,<ref name="Sor">{{cite web|url=http://www.carlsberggroup.com/Company/heritage/Research/Pages/pHValue.aspx |title=Carlsberg Group Company History Page |publisher=Carlsberggroup.com |archive-url=https://web.archive.org/web/20140118043012/http://www.carlsberggroup.com/Company/heritage/Research/Pages/pHValue.aspx |archive-date=18 January 2014 |url-status=live |access-date=7 May 2013}}</ref> जिसे 1924 में pH के पक्ष में स्थानांतरित कर दिया गया था। [H] हाइड्रोजन आयनों की सांद्रता है, जिसे [{{chem2|H(+)}}] निरूपित किया गया है आधुनिक रसायन विज्ञान में, जिसमें सांद्रता की इकाइयाँ प्रतीत होती हैं। अधिक सही ढंग से, तनु घोल में {{chem2|H(+)}} की थर्मोडायनामिक गतिविधि प्रतिस्थापित किया जाना चाहिए [H<sup>+</sup>]/c<sub>0</sub>, जहां मानक अवस्था सांद्रता c<sub>0</sub> = 1 mol/L है। यह अनुपात एक शुद्ध संख्या है जिसका लघुगणक परिभाषित किया जा सकता है। | ||
यद्यपि, हाइड्रोजन आयनों की सांद्रता के संदर्भ में इलेक्ट्रोड को कैलिब्रेट करने पर सीधे हाइड्रोजन आयनों की सांद्रता को मापना संभव है। ऐसा करने का एक तरीका, जिसका व्यापक रूप से उपयोग किया गया है, पृष्ठभूमि इलेक्ट्रोलाइट की अपेक्षाकृत उच्च सांद्रता की उपस्थिति में प्रबल क्षारीय की ज्ञात सांद्रता के विलयन के साथ प्रबल एसिड की ज्ञात सांद्रता के विलयन का अनुमापन करना है। चूँकि अम्ल और क्षार की सांद्रता ज्ञात है, इसलिए हाइड्रोजन आयनों की सांद्रता की गणना करना आसान है ताकि मापी गई क्षमता को सांद्रता के साथ सहसंबद्ध किया जा सके। सामान्यतः ग्रैन प्लॉट इलेक्ट्रोड अंशांकन का उपयोग करके किया जाता है।<ref>{{cite journal| volume=42 |doi=10.1021/ed042p375| last=Rossotti| first=F.J.C.|author2=Rossotti, H.|year=1965|title=Potentiometric titrations solution containing the background electrolyte. |journal=J. Chem. Educ.}}</ref> इस प्रकार, इस प्रक्रिया का उपयोग करने का प्रभाव गतिविधि को सांद्रता के संख्यात्मक मान के बराबर बनाना है। | यद्यपि, हाइड्रोजन आयनों की सांद्रता के संदर्भ में इलेक्ट्रोड को कैलिब्रेट करने पर सीधे हाइड्रोजन आयनों की सांद्रता को मापना संभव है। ऐसा करने का एक तरीका, जिसका व्यापक रूप से उपयोग किया गया है, पृष्ठभूमि इलेक्ट्रोलाइट की अपेक्षाकृत उच्च सांद्रता की उपस्थिति में प्रबल क्षारीय की ज्ञात सांद्रता के विलयन के साथ प्रबल एसिड की ज्ञात सांद्रता के विलयन का अनुमापन करना है। चूँकि अम्ल और क्षार की सांद्रता ज्ञात है, इसलिए हाइड्रोजन आयनों की सांद्रता की गणना करना आसान है ताकि मापी गई क्षमता को सांद्रता के साथ सहसंबद्ध किया जा सके। सामान्यतः ग्रैन प्लॉट इलेक्ट्रोड अंशांकन का उपयोग करके किया जाता है।<ref>{{cite journal| volume=42 |doi=10.1021/ed042p375| last=Rossotti| first=F.J.C.|author2=Rossotti, H.|year=1965|title=Potentiometric titrations solution containing the background electrolyte. |journal=J. Chem. Educ.}}</ref> इस प्रकार, इस प्रक्रिया का उपयोग करने का प्रभाव गतिविधि को सांद्रता के संख्यात्मक मान के बराबर बनाना है। | ||
ग्लास इलेक्ट्रोड (और अन्य [[ आयन चयनात्मक इलेक्ट्रोड |आयन चयनात्मक इलेक्ट्रोड]]) को जांच की जा रही माध्यम के समान एक माध्यम में कैलिब्रेट किया जाना चाहिए। उदाहरण के लिए, यदि कोई समुद्री जल के नमूने के | ग्लास इलेक्ट्रोड (और अन्य [[ आयन चयनात्मक इलेक्ट्रोड |आयन चयनात्मक इलेक्ट्रोड]]) को जांच की जा रही माध्यम के समान एक माध्यम में कैलिब्रेट किया जाना चाहिए। उदाहरण के लिए, यदि कोई समुद्री जल के नमूने के pH को मापना चाहता है, तो इलेक्ट्रोड को उसकी रासायनिक संरचना में समुद्री जल के समान एक विलयन में कैलिब्रेट किया जाना चाहिए, जैसा कि नीचे बताया गया है। | ||
पी [एच] और | पी [एच] और pH के बीच का अंतर काफी छोटा है। यह <ref>{{VogelQuantitative}}, Section 13.23, "Determination of pH"</ref> pH = p[H] + 0.04 बताया गया है। दोनों प्रकार के मापन के लिए pH शब्द का उपयोग करना समान्य बात है। | ||
=== | ===pH सूचक === | ||
{{Main|पीएच सूचक}} | {{Main|पीएच सूचक}} | ||
{| class="wikitable floatright" | {| class="wikitable floatright" | ||
|+ सामान्य विलयनों का औसत | |+ सामान्य विलयनों का औसत pH | ||
!पदार्थ | !पदार्थ | ||
! | !pH रेंज | ||
!प्रकार | !प्रकार | ||
|- | |- | ||
Line 102: | Line 104: | ||
| style="background-color: #330066; text-align: center; color: #FFFFFF" " | 13.0 – 13.6 | | style="background-color: #330066; text-align: center; color: #FFFFFF" " | 13.0 – 13.6 | ||
|} | |} | ||
संकेतक का उपयोग | संकेतक का उपयोग pH को मापने के लिए किया जा सकता है, इस तथ्य का उपयोग करके कि उनका रंग pH के साथ बदलता है। एक मानक रंग चार्ट के साथ एक परीक्षण विलयन के रंग की दृश्य तुलना pH को निकटतम पूर्ण संख्या में मापने का साधन प्रदान करती है। वर्णमापक (रसायन विज्ञान) या [[ स्पेक्ट्रोफोटोमीटर | स्पेक्ट्रोफोटोमीटर]] का उपयोग करके रंग को स्पेक्ट्रोफोटोमेट्रिक रूप से मापा जाता है तो अधिक सटीक माप संभव है। सार्वभौमिक संकेतक कई संकेतकों का मिश्रण होता है जैसे pH 2 से pH 10 तक लगातार रंग परिवर्तन होता है। pH मापने की एक वैकल्पिक विधि एक इलेक्ट्रॉनिक pH मीटर का उपयोग कर रही है, जो सीधे pH-संवेदी इलेक्ट्रोड और एक संदर्भ इलेक्ट्रोड के बीच वोल्टेज अंतर को मापता है। | ||
=== | ===pOH === | ||
pOH को कभी-कभी हाइड्रॉक्साइड आयनों की सांद्रता के माप के रूप में {{chem2|OH−}} प्रयोग किया जाता है, pOH मान pH माप से प्राप्त होते हैं। पानी में हाइड्रॉक्साइड आयनों की सांद्रता हाइड्रोजन आयनों की सांद्रता से संबंधित है | |||
:<math chem="">[\ce{OH^-}] = \frac{K_\ce{W}}{[\ce{H^+}]}</math> | :<math chem="">[\ce{OH^-}] = \frac{K_\ce{W}}{[\ce{H^+}]}</math> | ||
Line 111: | Line 113: | ||
:<math chem="">\ce{pOH} = \ce{p}K_\ce{W} - \ce{pH}</math> | :<math chem="">\ce{pOH} = \ce{p}K_\ce{W} - \ce{pH}</math> | ||
तो, कमरे के तापमान पर, | तो, कमरे के तापमान पर, pOH ≈ 14 - pH। यद्यपि यह अन्य परिस्थितियों में, जैसे कि[[ क्षारीय मिट्टी | क्षारीय मिट्टी]] की माप में सख्ती से मान्य नहीं है। | ||
=== गैर-जलीय विलयन === | === गैर-जलीय विलयन === | ||
हाइड्रोजन आयन सांद्रता (गतिविधियों) को गैर-जलीय सॉल्वैंट्स में मापा जा सकता है। इन मापों के आधार पर | हाइड्रोजन आयन सांद्रता (गतिविधियों) को गैर-जलीय सॉल्वैंट्स में मापा जा सकता है। इन मापों के आधार पर pH मान जलीय pH मानों से भिन्न पैमाने के होते हैं, क्योंकि गतिविधि (रसायन विज्ञान) विभिन्न मानक अवस्थाओं से संबंधित होती है। हाइड्रोजन आयन गतिविधि ''a<sub>H<sup>+</sup></sub>'', परिभाषित किया जा सकता<ref name="GoldBook">{{GoldBookRef|title=activity (relative activity), ''a''|file=A00115}}</ref><ref name="GreenBook">{{GreenBookRef2nd|pages=49–50}}</ref> जैसा: | ||
:<math chem="">a_\ce{H+} = \exp\left (\frac{\mu_\ce{H+} - \mu^{\ominus}_\ce{H+}}{RT}\right )</math> | :<math chem="">a_\ce{H+} = \exp\left (\frac{\mu_\ce{H+} - \mu^{\ominus}_\ce{H+}}{RT}\right )</math> | ||
जहाँ μ<sub>H<sup>+</sup></sub> हाइड्रोजन आयन की[[ रासायनिक क्षमता | रासायनिक क्षमता]] है, <math chem="">\mu^{\ominus}_\ce{H+}</math> चयनित मानक अवस्था में इसकी रासायनिक क्षमता है, R गैस स्थिरांक है और T[[ थर्मोडायनामिक तापमान | थर्मोडायनामिक तापमान]] है। इसलिए, अलग-अलग सॉल्वेटेड प्रोटॉन आयनों जैसे लिओनियम आयनों के कारण विभिन्न पैमानों पर | जहाँ μ<sub>H<sup>+</sup></sub> हाइड्रोजन आयन की[[ रासायनिक क्षमता | रासायनिक क्षमता]] है, <math chem="">\mu^{\ominus}_\ce{H+}</math> चयनित मानक अवस्था में इसकी रासायनिक क्षमता है, R गैस स्थिरांक है और T[[ थर्मोडायनामिक तापमान | थर्मोडायनामिक तापमान]] है। इसलिए, अलग-अलग सॉल्वेटेड प्रोटॉन आयनों जैसे लिओनियम आयनों के कारण विभिन्न पैमानों पर pH मानों की सीधे तुलना नहीं की जा सकती है, जिसके लिए इंटरसॉल्वेंट स्केल की आवश्यकता होती है जिसमें हाइड्रोनियम/लियोनियम आयन के हस्तांतरण गतिविधि गुणांक सम्मलित होते हैं। | ||
=== एकीकृत निरपेक्ष | pH[[ अम्लता समारोह | अम्लता फलन]] का एक उदाहरण है। अन्य अम्लता कार्यों को परिभाषित किया जा सकता है। उदाहरण के लिए,[[ हैमेट अम्लता समारोह | हैमेट अम्लता फलन]], ''H''<sub>0</sub> [[ सुपर एसिड |सुपर एसिड]] के संबंध में विकसित किया गया है। | ||
2010 में, | === एकीकृत निरपेक्ष pH पैमाने === | ||
2010 में, pH को मापने के लिए एक नया दृष्टिकोण प्रस्तावित किया गया था, जिसे एकीकृत पूर्ण pH स्केल कहा गया था। यह दृष्टिकोण एक सामान्य संदर्भ मानक को विभिन्न विलयनों में उपयोग करने की अनुमति देता है, चाहे उनकी pH सीमा कुछ भी हो। एकीकृत निरपेक्ष pH स्केल, प्रोटॉन की पूर्ण रासायनिक क्षमता पर आधारित है, जैसा कि लुईस एसिड-बेस सिद्धांत द्वारा परिभाषित किया गया है। यह पैमाने तरल पदार्थ, गैसों और यहां तक कि ठोस पर भी लागू होता है।<ref name="Krossing">{{Cite journal|last1=Himmel|first1=Daniel|last2=Goll|first2=Sascha K.|last3=Leito|first3=Ivo|last4=Krossing|first4=Ingo|date=2010-08-16|title=A Unified pH Scale for All Phases|journal=Angewandte Chemie International Edition|volume=49|issue=38|pages=6885–6888|doi=10.1002/anie.201000252|pmid=20715223|issn=1433-7851}}</ref> एकीकृत निरपेक्ष pH पैमाने के लाभों में स्थिरता, सटीकता, और नमूना प्रकार की एक विस्तृत श्रृंखला के लिए प्रयोज्यता सम्मलित है। यह सटीक और बहुमुखी है क्योंकि यह pH मापन के लिए एक सामान्य संदर्भ मानक के रूप में कार्य करता है। यद्यपि, कार्यान्वयन प्रयास, उपस्थित डेटा, जटिलता और संभावित लागत के साथ संगतता कुछ चुनौतियां हैं। | |||
=== | === pH की चरम सीमा === | ||
लगभग 2.5 (ca. 0.003 mol/dm<sup>3</sup> एसिड) और लगभग 10.5 से ऊपर (ca. 0.0003 mol/dm<sup>3</sup> क्षारीय) के लिए विशेष प्रक्रियाओं की आवश्यकता होती है, क्योंकि ग्लास इलेक्ट्रोड का उपयोग करते समय, एनर्नस्ट समीकरण उन स्थितियों में टूट जाता है। विभिन्न कारक इसमें योगदान करते हैं। यह नहीं माना जा सकता है कि[[ तरल जंक्शन क्षमता | तरल जंक्शन क्षमता]] | लगभग 2.5 (ca. 0.003 mol/dm<sup>3</sup> एसिड) और लगभग 10.5 से ऊपर (ca. 0.0003 mol/dm<sup>3</sup> क्षारीय) के लिए विशेष प्रक्रियाओं की आवश्यकता होती है, क्योंकि ग्लास इलेक्ट्रोड का उपयोग करते समय, एनर्नस्ट समीकरण उन स्थितियों में टूट जाता है। विभिन्न कारक इसमें योगदान करते हैं। यह नहीं माना जा सकता है कि[[ तरल जंक्शन क्षमता | तरल जंक्शन क्षमता]] pH से स्वतंत्र है।<ref name="Feldman">{{cite journal|doi=10.1021/ac60120a014|title=Use and Abuse of pH measurements|journal=Analytical Chemistry|author=Feldman, Isaac |volume=28|pages=1859–1866|year=1956|issue=12}}</ref> इसके अतिरिक्त, अत्यधिक pH का अर्थ है कि विलयन केंद्रित है, इसलिए आयनिक शक्ति भिन्नता से इलेक्ट्रोड क्षमता प्रभावित होती है। उच्च pH पर ग्लास इलेक्ट्रोड क्षारीय त्रुटि से प्रभावित हो सकता है, क्योंकि इलेक्ट्रोड जैसे {{chem2|Na+}} और {{chem2|K+}} विलयन में केशन की सांद्रता के प्रति संवेदनशील हो जाता है।<ref>{{VogelQuantitative}}, Section 13.19 The glass electrode</ref> विशेष रूप से निर्मित इलेक्ट्रोड उपलब्ध हैं जो आंशिक रूप से इन समस्याओं को दूर करते हैं। | ||
खानों या खान अवशेषों से अपवाह कुछ बहुत कम | खानों या खान अवशेषों से अपवाह कुछ बहुत कम pH मान उत्पन्न कर सकता है।<ref>{{cite journal |last1=Nordstrom |first1=D. Kirk |last2=Alpers |first2=Charles N. |title=Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California |date=March 1999 |pmid=10097057 |doi=10.1073/pnas.96.7.3455 |volume=96 |issue=7 |pages=3455–62 |pmc=34288 |journal=Proceedings of the National Academy of Sciences of the United States of America |bibcode=1999PNAS...96.3455N |url=http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1495&context=usgsstaffpub |doi-access=free |access-date=4 November 2018 |archive-date=23 September 2017 |archive-url=https://web.archive.org/web/20170923012227/http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1495&context=usgsstaffpub |url-status=live }}</ref> | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
शुद्ध जल उदासीन होता है। जब एक एसिड पानी में घुल जाता है, तो | शुद्ध जल उदासीन होता है। जब एक एसिड पानी में घुल जाता है, तो pH 7 (25 डिग्री सेल्सियस) से कम होगा। जब क्षार (रसायन विज्ञान), या विशेष रूप से क्षार, पानी में घुल जाता है, तो pH 7 से अधिक होगा। एक प्रबल एसिड का विलयन, जैसे [[ हाइड्रोक्लोरिक एसिड | हाइड्रोक्लोरिक एसिड]] , 1 mol dm<sup>−3</sup> की सांद्रता पर का pH 0 होता है। [[ सोडियम हाइड्रॉक्साइड | सोडियम हाइड्रॉक्साइड]] जैसे प्रबल क्षार का घोल, 1 mol dm<sup>−3</sup> सांद्रण का pH 14 है। इस प्रकार, मापा pH मान ज्यादातर 0 से 14 की सीमा में होगा, यद्यपि ऋणात्मक pH मान और 14 से ऊपर के मान पूरी तरह से संभव हैं। चूंकि pH लघुगणकीय पैमाना है, एक pH इकाई का अंतर हाइड्रोजन आयन सांद्रता में दस गुना अंतर के बराबर है। | ||
उदासीनता का | उदासीनता का pH बिल्कुल 7 (25 डिग्री सेल्सियस) नहीं है, यद्यपि ज्यादातर स्थितियो में यह एक अच्छा सन्निकटन है। उदासीनता को उस स्थिति के रूप में परिभाषित किया जाता है जहां [{{chem2|H+}}] = [{{chem2|OH−}}] (या गतिविधियां बराबर हैं)। चूँकि जल का स्व-आयनीकरण इन सान्द्रताओं का गुणनफल धारण करता है [H<sup>+</sup>] × [OH<sup>−</sup>] = K<sub>w</sub>, यह देखा जा सकता है कि उदासीनता पर {{radic|1=[H+] = [OH−] = √Kw}}, या pH = pK<sub>w</sub>/2. pK<sub>w</sub> लगभग 14 है लेकिन आयनिक शक्ति और तापमान पर निर्भर करता है, और इसलिए उदासीनता का pH भी करता है। शुद्ध पानी और शुद्ध पानी में [[ सोडियम क्लोराइड | सोडियम क्लोराइड]] का घोल दोनों उदासीन हैं, क्योंकि पानी का स्व-आयनीकरण दोनों आयनों की समान संख्या पैदा करता है। यद्यपि उदासीन NaCl विलयन का pH उदासीन शुद्ध पानी से थोड़ा अलग होगा क्योंकि हाइड्रोजन और हाइड्रॉक्साइड आयनों की गतिविधि आयनिक शक्ति पर निर्भर है, इसलिए K<sub>w</sub> आयनिक शक्ति के साथ बदलता रहता है। | ||
अगर शुद्ध पानी हवा के संपर्क में आता है तो यह हल्का अम्लीय हो जाता है। ऐसा इसलिए है क्योंकि पानी हवा से [[ कार्बन डाइऑक्साइड | कार्बन डाइऑक्साइड]] को अवशोषित करता है, जो फिर धीरे-धीरे [[ बिकारबोनिट | बिकारबोनिट]] और हाइड्रोजन आयनों में परिवर्तित हो जाता है (अनिवार्य रूप से [[ कार्बोनिक एसिड | कार्बोनिक एसिड]] बनाता है)। | अगर शुद्ध पानी हवा के संपर्क में आता है तो यह हल्का अम्लीय हो जाता है। ऐसा इसलिए है क्योंकि पानी हवा से [[ कार्बन डाइऑक्साइड | कार्बन डाइऑक्साइड]] को अवशोषित करता है, जो फिर धीरे-धीरे [[ बिकारबोनिट | बिकारबोनिट]] और हाइड्रोजन आयनों में परिवर्तित हो जाता है (अनिवार्य रूप से [[ कार्बोनिक एसिड | कार्बोनिक एसिड]] बनाता है)। | ||
Line 137: | Line 137: | ||
{{chem|CO|2| + H|2|O {{eqm}} HCO|3|-| + H|+}} | {{chem|CO|2| + H|2|O {{eqm}} HCO|3|-| + H|+}} | ||
<blockquote><blockquote><blockquote><blockquote> | <blockquote><blockquote><blockquote><blockquote> | ||
=== मिट्टी में | === मिट्टी में pH === | ||
====मृदा | ====मृदा pH श्रेणी का वर्गीकरण ==== | ||
यूनाइटेड स्टेट्स डिपार्टमेंट ऑफ एग्रीकल्चर[[ प्राकृतिक संसाधन संरक्षण सेवा | प्राकृतिक संसाधन संरक्षण सेवा]], पूर्व में मृदा संरक्षण सेवा, मृदा | यूनाइटेड स्टेट्स डिपार्टमेंट ऑफ एग्रीकल्चर[[ प्राकृतिक संसाधन संरक्षण सेवा | प्राकृतिक संसाधन संरक्षण सेवा]], पूर्व में मृदा संरक्षण सेवा, मृदा pH श्रेणी को निम्नानुसार वर्गीकृत करती है:<ref>{{cite web|author=Soil Survey Division Staff|url= http://soils.usda.gov/technical/manual/contents/chapter3.html |title=Soil survey manual.1993. Chapter 3, selected chemical properties. |publisher=Soil Conservation Service. U.S. Department of Agriculture Handbook 18 |access-date=2011-03-12 |url-status=dead |archive-url=https://web.archive.org/web/20110514151830/http://soils.usda.gov/technical/manual/contents/chapter3.html |archive-date=14 May 2011}}</ref> | ||
{| class="wikitable" style="align: center;" | {| class="wikitable" style="align: center;" | ||
|- | |- | ||
! scope="col" |मान | ! scope="col" |मान | ||
! scope="col" | | ! scope="col" |pH रेंज | ||
|- | |- | ||
|अति अम्लीय|| < 3.5 | |अति अम्लीय|| < 3.5 | ||
Line 171: | Line 171: | ||
|अति क्षारीय || > 10.5 | |अति क्षारीय || > 10.5 | ||
|} | |} | ||
यूरोप में, टॉपसॉइल | यूरोप में, टॉपसॉइल pH मिट्टी की मूल सामग्री, अपरदन प्रभाव, जलवायु और वनस्पति से प्रभावित होता है। हाल का नक्शा<ref>{{Cite journal|last1=Ballabio|first1=Cristiano|last2=Lugato|first2=Emanuele|last3=Fernández-Ugalde|first3= Oihane|last4=Orgiazzi|first4=Alberto|last5=Jones|first5=Arwyn|last6=Borrelli|first6=Pasquale|last7=Montanarella|first7=Luca|last8=Panagos|first8=Panos|date=2019|title=Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression|journal=Geoderma|language=en|volume=355|pages=113912|doi=10.1016/j.geoderma.2019.113912|pmid=31798185|pmc=6743211|bibcode=2019Geode.355k3912B|doi-access=free}}</ref> यूरोप में ऊपरी मिट्टी का pH भूमध्यसागरीय, हंगरी, पूर्वी रोमानिया, उत्तरी फ्रांस में क्षारीय मिट्टी को दर्शाता है। स्कैंडिनेवियाई देशों, पुर्तगाल, पोलैंड और उत्तरी जर्मनी में अधिक अम्लीय मिट्टी है। | ||
==== मिट्टी का | ==== मिट्टी का pH मापना ==== | ||
क्षेत्र में मिट्टी विषम कोलाइडल प्रणाली है जिसमें रेत, गाद, मिट्टी, सूक्ष्मजीव, पौधों की जड़ें, और असंख्य अन्य जीवित कोशिकाएं और सड़ने वाले कार्बनिक पदार्थ सम्मलित हैं। मृदा | क्षेत्र में मिट्टी विषम कोलाइडल प्रणाली है जिसमें रेत, गाद, मिट्टी, सूक्ष्मजीव, पौधों की जड़ें, और असंख्य अन्य जीवित कोशिकाएं और सड़ने वाले कार्बनिक पदार्थ सम्मलित हैं। मृदा pH एक मास्टर चर है जो असंख्य प्रक्रियाओं और मिट्टी और पर्यावरण वैज्ञानिकों, किसानों और इंजीनियरों के हित के गुणों को प्रभावित करता है।<ref name=":0">{{Cite book |last= McBride |first= Murray |title= Environmental chemistry of soils|publisher=Oxford University Press|year=1994|isbn=0-19-507011-9|location=New York |pages= 169–174}}</ref> H<sup>+</sup> की सांद्रता की मात्रा निर्धारित करने के लिए इस तरह की जटिल प्रणाली में, किसी दिए गए मिट्टी के क्षितिज से मिट्टी के नमूने प्रयोगशाला में लाए जाते हैं, जहां उन्हें विश्लेषण से पहले समरूप, छलनी और कभी-कभी सुखाया जाता है। मिट्टी का एक द्रव्यमान (उदाहरण के लिए, 5 ग्राम क्षेत्र-नम क्षेत्र की स्थितियों का सर्वोत्तम प्रतिनिधित्व करने के लिए) को आसुत जल या 0.01 M CaCl के घोल में मिलाया जाता है।<sub>2</sub> (उदाहरण के लिए, 10 एमएल)। अच्छी तरह से मिलाने के बाद, निलंबन को जोर से हिलाया जाता है और 15-20 मिनट तक खड़े रहने दिया जाता है, इस दौरान, रेत और गाद के कण बाहर निकल जाते हैं और मिट्टी और अन्य कोलाइड पानी में निलंबित रहते हैं, जिसे जलीय चरण के रूप में जाना जाता है। pH मीटर से जुड़े एक pH इलेक्ट्रोड को जलीय चरण के ऊपरी हिस्से में डालने से पहले ज्ञात pH (उदाहरण के लिए, pH 4 और 7) के बफ़र्ड विलयनों के साथ कैलिब्रेट किया जाता है और pH को मापा जाता है। एक संयोजन pH इलेक्ट्रोड दोनों H<sup>+</sup> को सम्मलित करता है, सेंसिंग इलेक्ट्रोड (ग्लास इलेक्ट्रोड) और एक संदर्भ इलेक्ट्रोड जो pH-असंवेदनशील संदर्भ वोल्टेज और हाइड्रोजन इलेक्ट्रोड को एक नमक पुल प्रदान करता है। अन्य विन्यासों में, कांच और संदर्भ इलेक्ट्रोड अलग-अलग होते हैं और दो बंदरगाहों में pH मीटर से जुड़े होते हैं। pH मीटर दो इलेक्ट्रोड के बीच संभावित (वोल्टेज) अंतर को मापता है और इसे pH में परिवर्तित करता है। अलग संदर्भ इलेक्ट्रोड सामान्यतः कैलोमेल इलेक्ट्रोड होता है, संयोजन इलेक्ट्रोड में सिल्वर-सिल्वर क्लोराइड इलेक्ट्रोड का उपयोग किया जाता है।<ref name=":0" /> | ||
उपरोक्त तरीके से मिट्टी के | उपरोक्त तरीके से मिट्टी के pH को परिचालन रूप से परिभाषित करने में कई अनिश्चितताएं हैं। चूंकि कांच और संदर्भ इलेक्ट्रोड के बीच एक विद्युत संभावित अंतर मापा जाता है, H<sup>+</sup> की गतिविधि वास्तव में सांद्रता के अतिरिक्त परिमाणित किया जा रहा है। H<sup>+</sup> गतिविधि को कभी-कभी प्रभावी H<sup>+</sup> कहा जाता है, सांद्रता और सीधे प्रोटॉन की रासायनिक क्षमता और ठोस चरणों के साथ संतुलन में मिट्टी के घोल में रासायनिक और विद्युत कार्य करने की क्षमता से संबंधित है।<ref>{{Cite book|last=Essington|first=Michael E.|title=Soil and Water Chemistry|publisher=CRC Press|year=2004|isbn=0-8493-1258-2|location=Boca Raton, Florida|pages=474–482}}</ref> मिट्टी और कार्बनिक पदार्थ के कण अपनी सतहों पर ऋणात्मक आवेश रखते हैं, और H<sup>+</sup> इनकी ओर आकर्षित आयन H<sup>+</sup> के साथ साम्यावस्था में होते हैं, मिट्टी के घोल में आयन हैं। परिभाषा के अनुसार, मापा pH केवल जलीय चरण में निर्धारित किया जाता है, लेकिन प्राप्त मूल्य मिट्टी के कोलाइड्स की उपस्थिति और प्रकृति और जलीय चरण की आयनिक शक्ति से प्रभावित होता है। घोल में पानी-से-मिट्टी के अनुपात को बदलने से पानी-कोलाइड संतुलन, विशेष रूप से आयनिक शक्ति को परेशान करके pH को बदल सकते हैं। 0.01 M CaCl<sub>2</sub> का उपयोग पानी के अतिरिक्त पानी से मिट्टी के अनुपात के इस प्रभाव को कम करता है और मिट्टी के pH का अधिक सुसंगत सन्निकटन देता है जो पौधे की जड़ वृद्धि, राइजोस्फीयर और माइक्रोबियल गतिविधि, जल निकासी जल अम्लता और मिट्टी में रासायनिक प्रक्रियाओं से संबंधित है। 0.01 M CaCl<sub>2</sub> का उपयोग करना सभी घुलनशील आयनों को जलीय चरण में कोलाइडयन सतहों के करीब लाता है, और H<sup>+</sup> की अनुमति देता है उनके करीब मापी जाने वाली गतिविधि। 0.01 M CaCl<sub>2</sub> का उपयोग करना विलयन जिससे H<sup>+</sup> गतिविधि के अधिक सुसंगत, मात्रात्मक अनुमान की अनुमति मिलती है, खासकर यदि विविध मिट्टी के नमूनों की तुलना स्थान और समय में की जा रही हो। | ||
=== प्रकृति में | === प्रकृति में pH === | ||
pH-निर्भर पौधे रंजक जिनका उपयोग pH संकेतक के रूप में किया जा सकता है, कई पौधों में पाए जाते हैं, जिनमें[[ हिबिस्कुस | हिबिस्कुस]], लाल गोभी ([[ एंथोसायनिन |एंथोसायनिन]]) और अंगूर ([[ लाल शराब |लाल शराब]]) सम्मलित हैं। खट्टे फलों का रस मुख्य रूप से अम्लीय होता है क्योंकि इसमें[[ साइट्रस | साइट्रस]] एसिड होता है। अन्य[[ कार्बोज़ाइलिक तेजाब | कार्बोज़ाइलिक तेजाब]] कई जीवित प्रणालियों में पाए जाते हैं। उदाहरण के लिए, [[ दुग्धाम्ल | दुग्धाम्ल]] मांसपेशियों की गतिविधि द्वारा निर्मित होता है। एडेनोसाइन ट्राइ[[ फास्फेट | फास्फेट]] जैसे फॉस्फेट डेरिवेटिव्स के [[ प्रोटोनेशन | प्रोटोनेशन]] की स्थिति pH-निर्भर है। ऑक्सीजन-परिवहन एंजाइम [[ हीमोग्लोबिन | हीमोग्लोबिन]] की कार्यप्रणाली pH द्वारा रूट प्रभाव के रूप में जानी जाने वाली प्रक्रिया से प्रभावित होती है। | |||
=== समुद्री जल === | === समुद्री जल === | ||
{{See also|महासागर अम्लीकरण}} | {{See also|महासागर अम्लीकरण}} | ||
[[ समुद्री जल | समुद्री जल]] का | [[ समुद्री जल | समुद्री जल]] का pH सामान्यतः 7.4 और 8.5 के बीच की सीमा तक सीमित होता है।<ref name="Chester Marine Geochem">{{cite book|last=Chester, Jickells|first=Roy, Tim|title=Marine Geochemistry|date=2012|publisher=Blackwell Publishing|isbn=978-1-118-34907-6}}</ref> यह महासागर के कार्बन चक्र महासागर में एक महत्वपूर्ण भूमिका निभाता है, और कार्बन डाइऑक्साइड उत्सर्जन ग्रीनहाउस गैस उत्सर्जन के कारण चल रहे [[ महासागर अम्लीकरण | महासागर अम्लीकरण]] के प्रमाण हैं।<ref name="raven05">{{cite book| author=Royal Society |url= http://dge.stanford.edu/labs/caldeiralab/Caldeira%20downloads/RoyalSociety_OceanAcidification.pdf|year=2005|title=Ocean acidification due to increasing atmospheric carbon dioxide|isbn=978-0-85403-617-2|url-status=live|archive-url= https://web.archive.org/web/20100716000207/http://dge.stanford.edu/labs/caldeiralab/Caldeira%20downloads/RoyalSociety_OceanAcidification.pdf|archive-date=16 July 2010}}</ref> यद्यपि, pH माप समुद्री जल की रासायनिक संपत्ति से जटिल है, और रासायनिक समुद्री विज्ञान में कई अलग pH पैमाने उपस्थित हैं।<ref name="zeebe">Zeebe, R. E. and Wolf-Gladrow, D. (2001) ''CO<sub>2</sub> in seawater: equilibrium, kinetics, isotopes'', Elsevier Science B.V., Amsterdam, Netherlands {{ISBN|0-444-50946-1}}</ref> | ||
'''समुद्र विज्ञान में तीन | '''समुद्र विज्ञान में तीन pH पैमाने''' | ||
pH पैमाने की अपनी परिचालन परिभाषा के हिस्से के रूप में, आईयूपीएसी pH मानों की एक श्रृंखला में बफर विलयनों की एक श्रृंखला को परिभाषित करता है (प्रायः [[ राष्ट्रीय मानक ब्यूरो | राष्ट्रीय मानक ब्यूरो]] (एनबीएस) या राष्ट्रीय मानक और प्रौद्योगिकी संस्थान (एनआईएसटी) पदनाम के साथ चिह्नित)। समुद्री जल (≈0.7) की तुलना में इन विलयनों में अपेक्षाकृत कम आयनिक शक्ति (≈0.1) होती है, और परिणामस्वरूप, समुद्री जल के pH को चिह्नित करने में उपयोग के लिए अनुशंसित नहीं किया जाता है, क्योंकि आयनिक शक्ति के अंतर मानक इलेक्ट्रोड में परिवर्तन का कारण बनते हैं। इस समस्या को हल करने के लिए [[ कृत्रिम समुद्री जल | कृत्रिम समुद्री जल]] पर आधारित बफ़र्स की एक वैकल्पिक श्रृंखला विकसित की गई थी।<ref>{{cite journal|doi=10.1016/0011-7471(73)90101-0|author=Hansson, I.|year=1973|title=A new set of pH-scales and standard buffers for seawater|journal=Deep-Sea Research|volume=20|pages=479–491| issue= 5| bibcode= 1973DSRA...20..479H}}</ref> यह नई श्रृंखला नमूनों और बफ़र्स के बीच आयनिक शक्ति के अंतर की समस्या को हल करती है, और नए pH पैमाने को 'कुल पैमाने' के रूप में संदर्भित किया जाता है, जिसे प्रायः ''pH<sub>T</sub>'' के रूप में दर्शाया जाता है।[[ सल्फेट | सल्फेट]] आयनों वाले माध्यम का उपयोग करके कुल पैमाने को परिभाषित किया गया था। ये आयन प्रोटोनेशन का अनुभव करते हैं, {{chem2|H+}} + {{chem|SO|4|2-| ↔ HSO|4|-}}, जैसे कि कुल पैमाने में दोनों [[ प्रोटॉन | प्रोटॉन]] (मुक्त हाइड्रोजन आयन) और हाइड्रोजन सल्फेट आयनों का प्रभाव सम्मलित है: | |||
:[{{chem2|H+}}]<sub>T</sub> = [{{chem2|H+}}]<sub>F</sub> + [{{chem|HSO|4|-}}] | :[{{chem2|H+}}]<sub>T</sub> = [{{chem2|H+}}]<sub>F</sub> + [{{chem|HSO|4|-}}] | ||
Line 203: | Line 203: | ||
यद्यपि, इसके अतिरिक्त जटिलता पर विचार करने का लाभ माध्यम में फ्लोराइड की प्रचुरता पर निर्भर है। समुद्री जल में, उदाहरण के लिए, सल्फेट आयन फ्लोराइड की तुलना में बहुत अधिक सांद्रता (>400 गुना) पर होते हैं। नतीजतन, अधिकांश व्यावहारिक उद्देश्यों के लिए, कुल और समुद्री जल के पैमाने के बीच का अंतर बहुत छोटा है। | यद्यपि, इसके अतिरिक्त जटिलता पर विचार करने का लाभ माध्यम में फ्लोराइड की प्रचुरता पर निर्भर है। समुद्री जल में, उदाहरण के लिए, सल्फेट आयन फ्लोराइड की तुलना में बहुत अधिक सांद्रता (>400 गुना) पर होते हैं। नतीजतन, अधिकांश व्यावहारिक उद्देश्यों के लिए, कुल और समुद्री जल के पैमाने के बीच का अंतर बहुत छोटा है। | ||
निम्नलिखित तीन समीकरण | निम्नलिखित तीन समीकरण pH के तीन पैमानों को संक्षेप में प्रस्तुत करते हैं: | ||
: pH<sub>F</sub> = −log [H<sup>+</sup>]<sub>F</sub> | : pH<sub>F</sub> = −log [H<sup>+</sup>]<sub>F</sub> | ||
: pH<sub>T</sub> = −log([H<sup>+</sup>]<sub>F</sub> + [HSO−4]) = −log[H<sup>+</sup>]<sub>T</sub> | : pH<sub>T</sub> = −log([H<sup>+</sup>]<sub>F</sub> + [HSO−4]) = −log[H<sup>+</sup>]<sub>T</sub> | ||
: pH<sub>SWS</sub> = −log(H<sup>+</sup>]<sub>F</sub> + [HSO−4] + [HF]) = −log[v]<sub>SWS</sub> | : pH<sub>SWS</sub> = −log(H<sup>+</sup>]<sub>F</sub> + [HSO−4] + [HF]) = −log[v]<sub>SWS</sub> | ||
व्यावहारिक रूप से, तीन समुद्री जल | व्यावहारिक रूप से, तीन समुद्री जल pH स्केल उनके मूल्यों में 0.10 pH इकाइयों तक भिन्न होते हैं, अंतर जो सामान्यतः आवश्यक pH माप की सटीकता से बहुत अधिक होते हैं, विशेष रूप से, महासागर के [[ कुल अकार्बनिक कार्बन |कुल अकार्बनिक कार्बन]] के संबंध में हैं।<ref name="zeebe" /> चूंकि यह सल्फेट और फ्लोराइड आयनों के विचार को छोड़ देता है, मुक्त पैमाना कुल और समुद्री जल दोनों पैमानों से काफी अलग है। फ्लोराइड आयन के सापेक्ष महत्वहीन होने के कारण, कुल और समुद्री जल के पैमाने में बहुत कम अंतर होता है। | ||
=== लिविंग सिस्टम === | === लिविंग सिस्टम === | ||
:{| class="wikitable" | :{| class="wikitable" | ||
|+जीवित प्रणालियों में | |+जीवित प्रणालियों में pH<ref name="Boron2012">{{cite book |last1=Boron |first1=Walter, F. |url= https://www.google.co.in/books/edition/_/54mxMgO5H_YC?hl=en&gbpv=1&dq=pH%20in%20living%20systems&pg=PA652 |title=Medical Physiology: A Cellular And Molecular Approach |last2=Boulpaep |first2=Emile L. |date=13 January 2012 |publisher=[[Elsevier Health Sciences]], Saunders |isbn=9781455711819 |pages=652–671 |oclc=1017876653 |access-date=8 May 2022 |archive-date=8 May 2022 |archive-url=https://web.archive.org/web/20220508051939/https://www.google.co.in/books/edition/_/54mxMgO5H_YC?hl=en&gbpv=1&dq=pH+in+living+systems&pg=PA652 |url-status=live |edition=2nd }}</ref> | ||
|- | |- | ||
! Compartment | ! Compartment | ||
Line 229: | Line 229: | ||
| [[Cytosol|साइटोसोल]] || 7.2 | | [[Cytosol|साइटोसोल]] || 7.2 | ||
|- | |- | ||
| [[Blood|रक्त]] (साधारण | | [[Blood|रक्त]] (साधारण pH) || 7.34–7.45<ref name="Boron2012" /> | ||
|- | |- | ||
| [[Cerebrospinal fluid|मस्तिष्कमेरु द्रव]] (CSF) || 7.5 | | [[Cerebrospinal fluid|मस्तिष्कमेरु द्रव]] (CSF) || 7.5 | ||
Line 237: | Line 237: | ||
| [[Pancreas|अग्न्याशय स्राव]]|| 8.1 | | [[Pancreas|अग्न्याशय स्राव]]|| 8.1 | ||
|} | |} | ||
विभिन्न सेलुलर डिब्बों,[[ शरीर के तरल पदार्थ | शरीर के तरल पदार्थ]] और अंगों के | विभिन्न सेलुलर डिब्बों,[[ शरीर के तरल पदार्थ | शरीर के तरल पदार्थ]] और अंगों के pH को सामान्यतः एसिड-बेस [[ समस्थिति |समस्थिति]] नामक प्रक्रिया में कसकर नियंत्रित किया जाता है। एसिड-बेस होमियोस्टेसिस में सबसे समान्य विकार [[ अम्लरक्तता |अम्लरक्तता]] है, जिसका मतलब है कि शरीर में एसिड अधिभार, सामान्यतः pH 7.35 से नीचे गिरने से परिभाषित होता है। इसके विपरीत, क्षारता की विशेषता अत्यधिक उच्च रक्त pH है। | ||
रक्त का | रक्त का pH सामान्यतः pH 7.365 के मान के साथ थोड़ा बुनियादी होता है। जीव विज्ञान और चिकित्सा में इस मान को प्रायः शारीरिक pH के रूप में जाना जाता है। दांतों की मैल एक स्थानीय अम्लीय वातावरण बना सकती है जिसके परिणामस्वरूप अखनिजीकरण द्वारा दंत क्षय हो सकता है। [[ एनजाइम |एनजाइम]] और अन्य [[ प्रोटीन | प्रोटीन]] में इष्टतम pH रेंज होती है और इस सीमा के बाहर निष्क्रिय या [[ विकृतीकरण (जैव रसायन) | विकृतीकरण (जैव रसायन)]] हो सकता है। | ||
== | == pH की गणना == | ||
अम्ल और/या क्षार युक्त विलयन के pH की गणना संतुलन स्थिरांकों के निर्धारण का एक उदाहरण है। प्रजातीकरण गणना, अर्थात, विलयन में उपस्थित सभी रासायनिक प्रजातियों की सांद्रता की गणना के लिए गणितीय प्रक्रिया है। प्रक्रिया की जटिलता विलयन की प्रकृति पर निर्भर करती है। कठोर अम्ल और क्षार के लिए चरम स्थितियों को छोड़कर कोई गणना आवश्यक नहीं है। एक अशक्त एसिड वाले विलयन के | अम्ल और/या क्षार युक्त विलयन के pH की गणना संतुलन स्थिरांकों के निर्धारण का एक उदाहरण है। प्रजातीकरण गणना, अर्थात, विलयन में उपस्थित सभी रासायनिक प्रजातियों की सांद्रता की गणना के लिए गणितीय प्रक्रिया है। प्रक्रिया की जटिलता विलयन की प्रकृति पर निर्भर करती है। कठोर अम्ल और क्षार के लिए चरम स्थितियों को छोड़कर कोई गणना आवश्यक नहीं है। एक अशक्त एसिड वाले विलयन के pH को [[ द्विघात समीकरण | द्विघात समीकरण]] के विलयन की आवश्यकता होती है। अशक्त आधार वाले विलयन के pH को [[ घन समीकरण |घन समीकरण]] के विलयन की आवश्यकता हो सकती है। सामान्य स्थितियों में गैर-रैखिक एक साथ समीकरणों के एक सेट के विलयन की आवश्यकता होती है। | ||
एक जटिल कारक यह है कि पानी स्वयं एक अशक्त अम्ल और एक अशक्त आधार है (देखें उभयधर्मिता)। यह संतुलन के अनुसार पानी का स्व-आयनीकरण करता है | एक जटिल कारक यह है कि पानी स्वयं एक अशक्त अम्ल और एक अशक्त आधार है (देखें उभयधर्मिता)। यह संतुलन के अनुसार पानी का स्व-आयनीकरण करता है | ||
:{{chem2|2 H2O <-> H3O+ (aq) + OH- (aq)}} | :{{chem2|2 H2O <-> H3O+ (aq) + OH- (aq)}} | ||
एक अम्ल पृथक्करण स्थिरांक के साथ, {{mvar|K<sub>w</sub>}} के रूप में परिभाषित किया गया है | एक अम्ल पृथक्करण स्थिरांक के साथ, {{mvar|K<sub>w</sub>}} के रूप में परिभाषित किया गया है | ||
:<math chem="">K_w = \ce{[H+][OH^{-}]} | :<math chem="">K_w = \ce{[H+][OH^{-}]} </math> | ||
जहां [H<sup>+</sup>] जलीय [[ हाइड्रोनियम आयन | हाइड्रोनियम आयन]] और [OH की सांद्रता के लिए खड़ा है<sup>−</sup>] [[ हाइड्रोक्साइड आयन | हाइड्रोक्साइड आयन]] की सांद्रता का प्रतिनिधित्व करता है। इस संतुलन को उच्च | जहां [H<sup>+</sup>] जलीय [[ हाइड्रोनियम आयन | हाइड्रोनियम आयन]] और [OH की सांद्रता के लिए खड़ा है<sup>−</sup>] [[ हाइड्रोक्साइड आयन | हाइड्रोक्साइड आयन]] की सांद्रता का प्रतिनिधित्व करता है। इस संतुलन को उच्च pH पर ध्यान में रखा जाना चाहिए और जब विलेय की सघनता बेहद कम हो। | ||
===प्रबल अम्ल और क्षार=== | ===प्रबल अम्ल और क्षार=== | ||
प्रबल अम्ल और प्रबल क्षार ऐसे यौगिक हैं जो व्यावहारिक उद्देश्यों के लिए जल में पूर्णतया वियोजित होते हैं। सामान्य परिस्थितियों में इसका अर्थ है कि अम्लीय विलयन में हाइड्रोजन आयनों की सांद्रता अम्ल की सांद्रता के बराबर ली जा सकती है। | प्रबल अम्ल और प्रबल क्षार ऐसे यौगिक हैं जो व्यावहारिक उद्देश्यों के लिए जल में पूर्णतया वियोजित होते हैं। सामान्य परिस्थितियों में इसका अर्थ है कि अम्लीय विलयन में हाइड्रोजन आयनों की सांद्रता अम्ल की सांद्रता के बराबर ली जा सकती है। pH तब सांद्रता मूल्य के लघुगणक के बराबर होता है। हाइड्रोक्लोरिक अम्ल (HCl) प्रबल अम्ल का एक उदाहरण है। HCl के 0.01M विलयन का 2 (pH = −log10(0.01)) के बराबर होता है। सोडियम हाइड्रोक्साइड, NaOH, एक प्रबल आधार का उदाहरण है। NaOH के 0.01M विलयन का 2 (pOH = −log10(0.01)) के बराबर है। उपरोक्त pOH खंड में pOH की परिभाषा से, इसका मतलब है कि pH लगभग 12 के बराबर है। उच्च सांद्रता पर सोडियम हाइड्रॉक्साइड के विलयन के लिए स्व- आयनीकरण संतुलन को ध्यान में रखा जाना चाहिए। | ||
सांद्रता बेहद कम होने पर स्व-आयनीकरण पर भी विचार किया जाना चाहिए। उदाहरण के लिए, 5×10<sup>−8</sup>M की सांद्रता पर हाइड्रोक्लोरिक अम्ल के विलयन पर विचार करें। ऊपर दी गई सरल प्रक्रिया से पता चलता है कि इसका | सांद्रता बेहद कम होने पर स्व-आयनीकरण पर भी विचार किया जाना चाहिए। उदाहरण के लिए, 5×10<sup>−8</sup>M की सांद्रता पर हाइड्रोक्लोरिक अम्ल के विलयन पर विचार करें। ऊपर दी गई सरल प्रक्रिया से पता चलता है कि इसका pH 7.3 है। यह स्पष्ट रूप से गलत है क्योंकि एक एसिड विलयन का pH 7 से कम होना चाहिए। सिस्टम को हाइड्रोक्लोरिक एसिड और[[ उभयधर्मी | उभयधर्मी]] पदार्थ पानी के मिश्रण के रूप में मानने पर 6.89 का pH परिणाम मिलता है।<ref>{{cite web|last=Maloney|first=Chris|title=pH calculation of a very small concentration of a strong acid.|url=http://sinophibe.blogspot.com/2011/03/ph-calculation-of-very-small.html|access-date=13 March 2011|url-status=live|archive-url=https://web.archive.org/web/20110708062942/http://sinophibe.blogspot.com/2011/03/ph-calculation-of-very-small.html|archive-date=8 July 2011}}</ref> | ||
=== अशक्त अम्ल और क्षार === | === अशक्त अम्ल और क्षार === | ||
Line 265: | Line 265: | ||
C,[[ विश्लेषणात्मक एकाग्रता | विश्लेषणात्मक सांद्रता]] के लिए खड़ा है। कुछ पाठों में, एक द्रव्यमान संतुलन समीकरण को आवेश संतुलन के समीकरण से बदल दिया जाता है। यह इस तरह के साधारण स्थितियो के लिए संतोषजनक है, लेकिन नीचे दिए गए अधिक जटिल स्थितियो पर लागू करना अधिक कठिन है। K को परिभाषित करने वाले समीकरण के साथ<sub>a</sub>, अब तीन अज्ञात में तीन समीकरण हैं। जब अम्ल C<sub>A</sub> = C<sub>H</sub> = C<sub>a</sub> को जल में घोला जाता है, इसलिए [A] = [H] अम्ल की सघनता होती है। कुछ और बीजगणितीय हेरफेर के बाद हाइड्रोजन आयन सांद्रता में एक समीकरण प्राप्त किया जा सकता है। | C,[[ विश्लेषणात्मक एकाग्रता | विश्लेषणात्मक सांद्रता]] के लिए खड़ा है। कुछ पाठों में, एक द्रव्यमान संतुलन समीकरण को आवेश संतुलन के समीकरण से बदल दिया जाता है। यह इस तरह के साधारण स्थितियो के लिए संतोषजनक है, लेकिन नीचे दिए गए अधिक जटिल स्थितियो पर लागू करना अधिक कठिन है। K को परिभाषित करने वाले समीकरण के साथ<sub>a</sub>, अब तीन अज्ञात में तीन समीकरण हैं। जब अम्ल C<sub>A</sub> = C<sub>H</sub> = C<sub>a</sub> को जल में घोला जाता है, इसलिए [A] = [H] अम्ल की सघनता होती है। कुछ और बीजगणितीय हेरफेर के बाद हाइड्रोजन आयन सांद्रता में एक समीकरण प्राप्त किया जा सकता है। | ||
:<math chem="">[\ce H]^2 + K_a[\ce H] - K_a C_a = 0</math> | :<math chem="">[\ce H]^2 + K_a[\ce H] - K_a C_a = 0</math> | ||
इस द्विघात समीकरण का विलयन हाइड्रोजन आयन सांद्रता देता है और इसलिए p[H] या अधिक अशुद्ध | इस द्विघात समीकरण का विलयन हाइड्रोजन आयन सांद्रता देता है और इसलिए p[H] या अधिक अशुद्ध pH है। इस प्रक्रिया को एक आइस टेबल में चित्रित किया गया है, जिसका उपयोग pH की गणना करने के लिए भी किया जा सकता है जब सिस्टम में कुछ अतिरिक्त (प्रबल) एसिड या क्षारीय अर्थात, जब CA ≠ CH को जोड़ा गया है। | ||
उदाहरण के लिए, [[ बेंज़ोइक अम्ल |बेंज़ोइक अम्ल]] , pK<sub>a</sub> = 4.19 के 0.01M घोल का pH क्या है? | उदाहरण के लिए, [[ बेंज़ोइक अम्ल |बेंज़ोइक अम्ल]] , pK<sub>a</sub> = 4.19 के 0.01M घोल का pH क्या है? | ||
Line 290: | Line 290: | ||
== यह भी देखें == | == यह भी देखें == | ||
* | * pH संकेतक | ||
* [[ धमनी रक्त गैस | धमनी रक्त गैस]] | * [[ धमनी रक्त गैस | धमनी रक्त गैस]] | ||
* [[ रासायनिक संतुलन | रासायनिक संतुलन]] | * [[ रासायनिक संतुलन | रासायनिक संतुलन]] | ||
Line 302: | Line 302: | ||
==बाहरी कड़ियाँ== | ==बाहरी कड़ियाँ== | ||
{{DEFAULTSORT:Ph}} | {{DEFAULTSORT:Ph}} | ||
[[Category: | |||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page|Ph]] | ||
[[Category:Created On 08/01/2023]] | [[Category:CS1 English-language sources (en)]] | ||
[[Category:Created On 08/01/2023|Ph]] | |||
[[Category:Lua-based templates|Ph]] | |||
[[Category:Machine Translated Page|Ph]] | |||
[[Category:Pages with script errors|Ph]] | |||
[[Category:Templates Vigyan Ready|Ph]] | |||
[[Category:Templates that add a tracking category|Ph]] | |||
[[Category:Templates that generate short descriptions|Ph]] | |||
[[Category:Templates using TemplateData|Ph]] | |||
[[Category:अम्ल-क्षार रसायन|Ph]] |
Latest revision as of 12:11, 10 June 2023
रसायन विज्ञान में, pH (/piːˈeɪtʃ/), ऐतिहासिक रूप से हाइड्रोजन (या हाइड्रोजन की क्षमता) को दर्शाता है।[1] एक जलीय घोल की अम्लता या क्षार (रसायन) को निर्दिष्ट करने के लिए उपयोग किया जाने वाला पैमाना है। अम्लीय विलयनों (हाइड्रोजन ((H+) आयनों की उच्च सांद्रता वाले विलयन) को मूल या क्षारीय विलयनों की तुलना में कम pH मान के लिए मापा जाता है।
pH स्केल लघुगणकीय पैमाने है और विलयन में हाइड्रोनियम की सांद्रता को व्युत्क्रम रूप से इंगित करता है।[2]
जहां विलयन में H+ का संतुलन मोलर सांद्रता (mol/l) है। 25 °C (77°F) पर, 7 से कम pH वाले विलयन अम्लीय होते हैं, और 7 से अधिक pH वाले विलयन क्षारीय होते हैं। इस तापमान पर 7 के pH वाले विलयन उदासीन होते हैं (यानी H+ की समान सांद्रता, आयन OH− के रूप में आयन, यानी शुद्ध पानी ) होती है। pH का अनावेशी मान तापमान पर निर्भर करता है और 7 से कम है यदि तापमान 25 °c से अधिक बढ़ जाता है। pH मान बहुत केंद्रित एसिड ताकत के लिए 0 से कम हो सकता है, या बहुत केंद्रित आधार (रसायन विज्ञान) प्रबल आधारों के लिए 14 से अधिक हो सकता है।[3]
pH स्केल मानक विलयनों के एक सेट के लिए मापन ट्रेसबिलिटी है जिसका pH अंतरराष्ट्रीय समझौते द्वारा स्थापित किया गया है।[4] हाइड्रोजन इलेक्ट्रोड और सिल्वर क्लोराइड इलेक्ट्रोड जैसे मानक इलेक्ट्रोड के बीच संभावित अंतर को मापकर प्राथमिक pH मानक मान बिजली उत्पन्न करनेवाली सेल का उपयोग करके निर्धारित किए जाते हैं। जलीय घोल के pH को ग्लास इलेक्ट्रोड और पी एच मीटर या रंग बदलने वाले pH संकेतक से मापा जा सकता है। रसायन विज्ञान, कृषि विज्ञान, चिकित्सा, जल उपचार और कई अन्य अनुप्रयोगों में pH के मापन महत्वपूर्ण हैं।
इतिहास
pH की अवधारणा सबसे पहले 1909 में कार्ल्सबर्ग प्रयोगशाला में डेनिश केमिस्ट सरेन पीटर लॉरिट्ज सोरेनसेन द्वारा पेश की गई थी।[5] और 1924 में विद्युत रासायनिक कोशिकाओं के संदर्भ में परिभाषाओं और मापों को समायोजित करने के लिए आधुनिक pH में संशोधित किया गया था। पहले पत्रों में, अंकन में H• लोअरकेस p के सबस्क्रिप्ट के रूप में, इस प्रकार: "pH•"।
साइन p के लिए, मैं 'हाइड्रोजन आयन एक्सपोनेंट' नाम का और प्रतीक pH• प्रस्तावित करता हूं। फिर, हाइड्रोजन आयन घातांक के लिए (pH•) एक विलयन के, संबंधित हाइड्रोजन आयन समतुल्य सांद्रता के सामान्य लघुगणक के ऋणात्मक मान को समझना है।[5]
pH में अक्षर p का सटीक अर्थ विवादित है, क्योंकि सॉरेन्सन ने यह स्पष्ट नहीं किया कि उन्होंने इसका उपयोग क्यों किया।[6] सॉरेन्सन संभावित अंतरों का उपयोग करके pH को मापने का एक तरीका बताता है, और यह हाइड्रोजन आयनों की सांद्रता में 10 की ऋणात्मक शक्ति का प्रतिनिधित्व करता है। पत्र पी फ्रांसीसी पुइसेंस, जर्मन पोटेन्ज़, या डेनिश पोटेन्स के लिए खड़ा हो सकता है, जिसका अर्थ शक्ति है, या इसका अर्थ संभावित हो सकता है। इनके लिए सभी शब्द फ्रेंच भाषा, जर्मन भाषा और डेनिश भाषा में अक्षर "p'" से प्रारम्भ होते हैं - सभी भाषाएँ सोरेनसेन में प्रकाशित हुईं: कार्ल्सबर्ग प्रयोगशाला फ्रेंच भाषी थी, जर्मन वैज्ञानिक प्रकाशन की प्रमुख भाषा थी, और सोरेनसेन डेनिश थी। उन्होंने पेपर में कहीं और भी उसी तरह अक्षर क्यू का उपयोग किया। उसने परीक्षण विलयन p और संदर्भ विलयन q को मनमाने ढंग से लेबल भी किया हो सकता है; ये अक्षर प्रायः जोड़े जाते हैं।[7] कुछ साहित्य सूत्रों का कहना है कि pH लैटिन भाषा के पोंडस हाइड्रोजनी (हाइड्रोजन की मात्रा) या पोटेंशिया हाइड्रोजनी (हाइड्रोजन की शक्ति) के लिए खड़ा है, यद्यपि यह सोरेनसेन के लेखन द्वारा समर्थित नहीं है।[8][9][10]
वर्तमान में रसायन विज्ञान में, p सामान्य लघुगणक के लिए खड़ा है, और इसका उपयोग pKa शब्द में भी किया जाता है, अम्ल पृथक्करण स्थिरांक [11] और pOH, हीड्राकसीड आयनों के बराबर के लिए उपयोग किया जाता है।
बैक्ट्रियोलॉजिस्ट एलिस कैथरीन इवान्स, जिन्होंने डेयरी और खाद्य सुरक्षा को प्रभावित किया, 1910 के दशक में pH मापने के तरीकों को विकसित करने के लिए विलियम मैन्सफील्ड क्लार्क और उनके सहयोगियों को श्रेय दिया, जिसका प्रयोगशाला और औद्योगिक उपयोग पर व्यापक प्रभाव था। अपने संस्मरण में, उन्होंने यह उल्लेख नहीं किया है कि कुछ साल पहले क्लार्क और उनके सहयोगियों को सॉरेन्सन के काम के बारे में कितना या कितना कम पता था।[12]: 10 उसने कहा:
इन अध्ययनों में [बैक्टीरिया के चयापचय के] डॉ. क्लार्क का ध्यान बैक्टीरिया के विकास पर एसिड के प्रभाव को निर्देशित किया गया था। उन्होंने पाया कि यह हाइड्रोजन-आयन सांद्रता की स्थिति में एसिड की तीव्रता है जो उनके विकास को प्रभावित करती है। लेकिन अम्लता को मापने के उपस्थित तरीके एसिड की मात्रा निर्धारित करते हैं, तीव्रता नहीं। इसके बाद, अपने सहयोगियों के साथ, डॉ. क्लार्क ने हाइड्रोजन-आयन सांद्रता को मापने के लिए सटीक तरीके विकसित किए। इन तरीकों ने दुनिया भर में जैविक प्रयोगशालाओं में उपयोग में आने वाली एसिड सामग्री को निर्धारित करने की गलत अनुमापन विधि को बदल दिया। साथ ही वे कई औद्योगिक और अन्य प्रक्रियाओं में लागू पाए गए जिनमें वे व्यापक उपयोग में आए।[12]: 10
1934 में कैलिफोर्निया प्रौद्योगिकी संस्थान के एक प्रोफेसर अर्नोल्ड ऑरविल बेकमैन ने pH को मापने के लिए पहली इलेक्ट्रानिक्स विधि का आविष्कार किया था।[13] यह स्थानीय साइट्रस उत्पादक सनकिस्ट ग्रोअर्स, इनकॉर्पोरेटेड के जवाब में था जो नींबू के pH का त्वरित परीक्षण करने के लिए एक बेहतर तरीका चाहते थे जो वे अपने आस-पास के बागों से उठा रहे थे।[14]
परिभाषा
pH
विलयन में pH को हाइड्रोजन आयन गतिविधि (रसायन विज्ञान) aH+ के पारस्परिक के दशमलव लघुगणक के रूप में परिभाषित किया गया है।गणितीय रूप से pH इस प्रकार व्यक्त किया जाता है:[4]
उदाहरण के लिए, 5×10−6 की हाइड्रोजन आयन गतिविधि वाले विलयन के लिए (उस स्तर पर, यह अनिवार्य रूप से प्रति लीटर विलयन में हाइड्रोजन आयनों के मोल (इकाई) की संख्या है) लघुगणक का तर्क:
pH = - log10 (5 x 10- 6) = 5.3
ध्यान दें कि pH तापमान पर निर्भर करता है। उदाहरण के लिए 0 डिग्री सेल्सियस पर शुद्ध पानी का pH लगभग 7.47 होता है। 25 डिग्री सेल्सियस पर यह 7.00 है, और 100 डिग्री सेल्सियस पर यह 6.14 है।
इस परिभाषा को इसलिए अपनाया गया क्योंकि आयन-चयनात्मक इलेक्ट्रोड, जिनका उपयोग pH को मापने के लिए किया जाता है, गतिविधि पर प्रतिक्रिया करते हैं। इलेक्ट्रोड पोटेंशियल, ई, हाइड्रोजन आयन के लिए एनर्नस्ट समीकरण का अनुसरण करता है, जिसे इस प्रकार व्यक्त किया जा सकता है:
जहां E मापी गई क्षमता है, E0 मानक इलेक्ट्रोड क्षमता है, R गैस स्थिरांक है, T केल्विन में तापमान है, F फैराडे स्थिरांक है। H+ के लिए, हस्तांतरित इलेक्ट्रॉनों की संख्या एक है।
यह इस प्रकार है कि इलेक्ट्रोड क्षमता pH के समानुपाती होती है जब pH को गतिविधि के संदर्भ में परिभाषित किया जाता है। pH का सटीक माप अंतर्राष्ट्रीय मानक आईएसओ 31-8 में निम्नानुसार प्रस्तुत किया गया है:[15] एक संदर्भ इलेक्ट्रोड और हाइड्रोजन आयन गतिविधि के प्रति संवेदनशील इलेक्ट्रोड के बीच वैद्युतवाहक बल (ईएमएफ) को मापने के लिए एक गैल्वेनिक सेल की स्थापना की जाती है, जब वे दोनों एक ही जलीय घोल में डूबे होते हैं। संदर्भ इलेक्ट्रोड सिल्वर क्लोराइड इलेक्ट्रोड या संतृप्त कैलोमेल इलेक्ट्रोड हो सकता है। हाइड्रोजन-आयन चयनात्मक इलेक्ट्रोड मानक हाइड्रोजन इलेक्ट्रोड है।
- संदर्भ इलेक्ट्रोड | KCl का सान्द्र विलयन || परीक्षण विलयन | H2 | Pt
सबसे पहले, सेल ज्ञात हाइड्रोजन आयन गतिविधि के विलयन से भर जाता है और इलेक्ट्रोमोटिव बल, ES मापा जाता है। फिर इलेक्ट्रोमोटिव बल, EX, अज्ञात pH के विलयन वाले एक ही सेल को मापा जाता है।
दो मापा इलेक्ट्रोमोटिव बल मूल्यों के बीच का अंतर pH के समानुपाती होता है। अंशांकन की यह विधि मानक इलेक्ट्रोड क्षमता को जानने की आवश्यकता से बचाती है। आनुपातिकता स्थिरांक, 1/z, आदर्श रूप से किसके बराबर है? , नर्नस्टियन ढलान।
अभ्यास में, इस प्रक्रिया को लागू करने के लिए बोझिल हाइड्रोजन इलेक्ट्रोड के अतिरिक्त एक ग्लास इलेक्ट्रोड का उपयोग किया जाता है। एक संयुक्त ग्लास इलेक्ट्रोड में एक अंतर्निर्मित संदर्भ इलेक्ट्रोड होता है। यह ज्ञात हाइड्रोजन आयन गतिविधि के बफर विलयन के खिलाफ कैलिब्रेटेड है। IUPAC (इंटरनेशनल यूनियन ऑफ प्योर एंड एप्लाइड केमिस्ट्री) द्वारा प्रस्तावित ज्ञात हाइड्रोजन आयन (H+) गतिविधि विलयनों के सेट के उपयोग का प्रस्ताव दिया है।[4] इस तथ्य को समायोजित करने के लिए दो या अधिक बफर विलयन का उपयोग किया जाता है कि ढलान आदर्श से थोड़ा भिन्न हो सकता है। अंशांकन के लिए इस दृष्टिकोण को लागू करने के लिए, इलेक्ट्रोड को पहले एक मानक विलयन में डुबोया जाता है और pH मीटर पर रीडिंग को मानक बफर मान के बराबर समायोजित किया जाता है। एक दूसरे मानक बफर विलयन से पढ़ने को तब समायोजित किया जाता है, ढलान नियंत्रण का उपयोग करके, उस विलयन के लिए pH के बराबर होना। अधिक विवरण, IUPAC अनुशंसाओं में दिए गए हैं।[4] जब दो से अधिक बफर विलयनों का उपयोग किया जाता है तो मानक बफर मानों के संबंध में प्रेक्षित pH मानों को एक सीधी रेखा में फिट करके इलेक्ट्रोड को कैलिब्रेट किया जाता है। वाणिज्यिक मानक बफर विलयन सामान्यतः 25 डिग्री सेल्सियस पर मूल्य और अन्य तापमानों के लिए लागू किए जाने वाले सुधार कारक के बारे में जानकारी के साथ आते हैं।
pH पैमाना लॉगरिदमिक है और इसलिए pH एक आयाम रहित मात्रा है।
p [H]
यह 1909 में सॉरेन्सन की मूल परिभाषा थी,[16] जिसे 1924 में pH के पक्ष में स्थानांतरित कर दिया गया था। [H] हाइड्रोजन आयनों की सांद्रता है, जिसे [H+] निरूपित किया गया है आधुनिक रसायन विज्ञान में, जिसमें सांद्रता की इकाइयाँ प्रतीत होती हैं। अधिक सही ढंग से, तनु घोल में H+ की थर्मोडायनामिक गतिविधि प्रतिस्थापित किया जाना चाहिए [H+]/c0, जहां मानक अवस्था सांद्रता c0 = 1 mol/L है। यह अनुपात एक शुद्ध संख्या है जिसका लघुगणक परिभाषित किया जा सकता है।
यद्यपि, हाइड्रोजन आयनों की सांद्रता के संदर्भ में इलेक्ट्रोड को कैलिब्रेट करने पर सीधे हाइड्रोजन आयनों की सांद्रता को मापना संभव है। ऐसा करने का एक तरीका, जिसका व्यापक रूप से उपयोग किया गया है, पृष्ठभूमि इलेक्ट्रोलाइट की अपेक्षाकृत उच्च सांद्रता की उपस्थिति में प्रबल क्षारीय की ज्ञात सांद्रता के विलयन के साथ प्रबल एसिड की ज्ञात सांद्रता के विलयन का अनुमापन करना है। चूँकि अम्ल और क्षार की सांद्रता ज्ञात है, इसलिए हाइड्रोजन आयनों की सांद्रता की गणना करना आसान है ताकि मापी गई क्षमता को सांद्रता के साथ सहसंबद्ध किया जा सके। सामान्यतः ग्रैन प्लॉट इलेक्ट्रोड अंशांकन का उपयोग करके किया जाता है।[17] इस प्रकार, इस प्रक्रिया का उपयोग करने का प्रभाव गतिविधि को सांद्रता के संख्यात्मक मान के बराबर बनाना है।
ग्लास इलेक्ट्रोड (और अन्य आयन चयनात्मक इलेक्ट्रोड) को जांच की जा रही माध्यम के समान एक माध्यम में कैलिब्रेट किया जाना चाहिए। उदाहरण के लिए, यदि कोई समुद्री जल के नमूने के pH को मापना चाहता है, तो इलेक्ट्रोड को उसकी रासायनिक संरचना में समुद्री जल के समान एक विलयन में कैलिब्रेट किया जाना चाहिए, जैसा कि नीचे बताया गया है।
पी [एच] और pH के बीच का अंतर काफी छोटा है। यह [18] pH = p[H] + 0.04 बताया गया है। दोनों प्रकार के मापन के लिए pH शब्द का उपयोग करना समान्य बात है।
pH सूचक
सामान्य विलयनों का औसत pH पदार्थ pH रेंज प्रकार बैटरी का अम्ल < 1 अम्ल गैस्ट्रिक अम्ल 1.0 – 1.5 सिरका 2.5 संतरे का रस 3.3 – 4.2 ब्लैक कॉफ़ी 5 – 5.03 दूध 6.5 – 6.8 शुद्ध जल पर 25 °C 7 न्यूट्रल समुद्र का पानी 7.5 – 8.4 आधार अमोनिया 11.0 – 11.5 ब्लीच 12.5 लाइ 13.0 – 13.6 संकेतक का उपयोग pH को मापने के लिए किया जा सकता है, इस तथ्य का उपयोग करके कि उनका रंग pH के साथ बदलता है। एक मानक रंग चार्ट के साथ एक परीक्षण विलयन के रंग की दृश्य तुलना pH को निकटतम पूर्ण संख्या में मापने का साधन प्रदान करती है। वर्णमापक (रसायन विज्ञान) या स्पेक्ट्रोफोटोमीटर का उपयोग करके रंग को स्पेक्ट्रोफोटोमेट्रिक रूप से मापा जाता है तो अधिक सटीक माप संभव है। सार्वभौमिक संकेतक कई संकेतकों का मिश्रण होता है जैसे pH 2 से pH 10 तक लगातार रंग परिवर्तन होता है। pH मापने की एक वैकल्पिक विधि एक इलेक्ट्रॉनिक pH मीटर का उपयोग कर रही है, जो सीधे pH-संवेदी इलेक्ट्रोड और एक संदर्भ इलेक्ट्रोड के बीच वोल्टेज अंतर को मापता है।
pOH
pOH को कभी-कभी हाइड्रॉक्साइड आयनों की सांद्रता के माप के रूप में OH− प्रयोग किया जाता है, pOH मान pH माप से प्राप्त होते हैं। पानी में हाइड्रॉक्साइड आयनों की सांद्रता हाइड्रोजन आयनों की सांद्रता से संबंधित है
जहां Kw जल का स्व-आयनीकरण है | जल का स्व-आयनीकरण स्थिरांक है। लघुगणक लेना
तो, कमरे के तापमान पर, pOH ≈ 14 - pH। यद्यपि यह अन्य परिस्थितियों में, जैसे कि क्षारीय मिट्टी की माप में सख्ती से मान्य नहीं है।
गैर-जलीय विलयन
हाइड्रोजन आयन सांद्रता (गतिविधियों) को गैर-जलीय सॉल्वैंट्स में मापा जा सकता है। इन मापों के आधार पर pH मान जलीय pH मानों से भिन्न पैमाने के होते हैं, क्योंकि गतिविधि (रसायन विज्ञान) विभिन्न मानक अवस्थाओं से संबंधित होती है। हाइड्रोजन आयन गतिविधि aH+, परिभाषित किया जा सकता[19][20] जैसा:
जहाँ μH+ हाइड्रोजन आयन की रासायनिक क्षमता है, चयनित मानक अवस्था में इसकी रासायनिक क्षमता है, R गैस स्थिरांक है और T थर्मोडायनामिक तापमान है। इसलिए, अलग-अलग सॉल्वेटेड प्रोटॉन आयनों जैसे लिओनियम आयनों के कारण विभिन्न पैमानों पर pH मानों की सीधे तुलना नहीं की जा सकती है, जिसके लिए इंटरसॉल्वेंट स्केल की आवश्यकता होती है जिसमें हाइड्रोनियम/लियोनियम आयन के हस्तांतरण गतिविधि गुणांक सम्मलित होते हैं।
pH अम्लता फलन का एक उदाहरण है। अन्य अम्लता कार्यों को परिभाषित किया जा सकता है। उदाहरण के लिए, हैमेट अम्लता फलन, H0 सुपर एसिड के संबंध में विकसित किया गया है।
एकीकृत निरपेक्ष pH पैमाने
2010 में, pH को मापने के लिए एक नया दृष्टिकोण प्रस्तावित किया गया था, जिसे एकीकृत पूर्ण pH स्केल कहा गया था। यह दृष्टिकोण एक सामान्य संदर्भ मानक को विभिन्न विलयनों में उपयोग करने की अनुमति देता है, चाहे उनकी pH सीमा कुछ भी हो। एकीकृत निरपेक्ष pH स्केल, प्रोटॉन की पूर्ण रासायनिक क्षमता पर आधारित है, जैसा कि लुईस एसिड-बेस सिद्धांत द्वारा परिभाषित किया गया है। यह पैमाने तरल पदार्थ, गैसों और यहां तक कि ठोस पर भी लागू होता है।[21] एकीकृत निरपेक्ष pH पैमाने के लाभों में स्थिरता, सटीकता, और नमूना प्रकार की एक विस्तृत श्रृंखला के लिए प्रयोज्यता सम्मलित है। यह सटीक और बहुमुखी है क्योंकि यह pH मापन के लिए एक सामान्य संदर्भ मानक के रूप में कार्य करता है। यद्यपि, कार्यान्वयन प्रयास, उपस्थित डेटा, जटिलता और संभावित लागत के साथ संगतता कुछ चुनौतियां हैं।
pH की चरम सीमा
लगभग 2.5 (ca. 0.003 mol/dm3 एसिड) और लगभग 10.5 से ऊपर (ca. 0.0003 mol/dm3 क्षारीय) के लिए विशेष प्रक्रियाओं की आवश्यकता होती है, क्योंकि ग्लास इलेक्ट्रोड का उपयोग करते समय, एनर्नस्ट समीकरण उन स्थितियों में टूट जाता है। विभिन्न कारक इसमें योगदान करते हैं। यह नहीं माना जा सकता है कि तरल जंक्शन क्षमता pH से स्वतंत्र है।[22] इसके अतिरिक्त, अत्यधिक pH का अर्थ है कि विलयन केंद्रित है, इसलिए आयनिक शक्ति भिन्नता से इलेक्ट्रोड क्षमता प्रभावित होती है। उच्च pH पर ग्लास इलेक्ट्रोड क्षारीय त्रुटि से प्रभावित हो सकता है, क्योंकि इलेक्ट्रोड जैसे Na+ और K+ विलयन में केशन की सांद्रता के प्रति संवेदनशील हो जाता है।[23] विशेष रूप से निर्मित इलेक्ट्रोड उपलब्ध हैं जो आंशिक रूप से इन समस्याओं को दूर करते हैं।
खानों या खान अवशेषों से अपवाह कुछ बहुत कम pH मान उत्पन्न कर सकता है।[24]
अनुप्रयोग
शुद्ध जल उदासीन होता है। जब एक एसिड पानी में घुल जाता है, तो pH 7 (25 डिग्री सेल्सियस) से कम होगा। जब क्षार (रसायन विज्ञान), या विशेष रूप से क्षार, पानी में घुल जाता है, तो pH 7 से अधिक होगा। एक प्रबल एसिड का विलयन, जैसे हाइड्रोक्लोरिक एसिड , 1 mol dm−3 की सांद्रता पर का pH 0 होता है। सोडियम हाइड्रॉक्साइड जैसे प्रबल क्षार का घोल, 1 mol dm−3 सांद्रण का pH 14 है। इस प्रकार, मापा pH मान ज्यादातर 0 से 14 की सीमा में होगा, यद्यपि ऋणात्मक pH मान और 14 से ऊपर के मान पूरी तरह से संभव हैं। चूंकि pH लघुगणकीय पैमाना है, एक pH इकाई का अंतर हाइड्रोजन आयन सांद्रता में दस गुना अंतर के बराबर है।
उदासीनता का pH बिल्कुल 7 (25 डिग्री सेल्सियस) नहीं है, यद्यपि ज्यादातर स्थितियो में यह एक अच्छा सन्निकटन है। उदासीनता को उस स्थिति के रूप में परिभाषित किया जाता है जहां [H+] = [OH−] (या गतिविधियां बराबर हैं)। चूँकि जल का स्व-आयनीकरण इन सान्द्रताओं का गुणनफल धारण करता है [H+] × [OH−] = Kw, यह देखा जा सकता है कि उदासीनता पर √[H+] = [OH−] = √Kw, या pH = pKw/2. pKw लगभग 14 है लेकिन आयनिक शक्ति और तापमान पर निर्भर करता है, और इसलिए उदासीनता का pH भी करता है। शुद्ध पानी और शुद्ध पानी में सोडियम क्लोराइड का घोल दोनों उदासीन हैं, क्योंकि पानी का स्व-आयनीकरण दोनों आयनों की समान संख्या पैदा करता है। यद्यपि उदासीन NaCl विलयन का pH उदासीन शुद्ध पानी से थोड़ा अलग होगा क्योंकि हाइड्रोजन और हाइड्रॉक्साइड आयनों की गतिविधि आयनिक शक्ति पर निर्भर है, इसलिए Kw आयनिक शक्ति के साथ बदलता रहता है।
अगर शुद्ध पानी हवा के संपर्क में आता है तो यह हल्का अम्लीय हो जाता है। ऐसा इसलिए है क्योंकि पानी हवा से कार्बन डाइऑक्साइड को अवशोषित करता है, जो फिर धीरे-धीरे बिकारबोनिट और हाइड्रोजन आयनों में परिवर्तित हो जाता है (अनिवार्य रूप से कार्बोनिक एसिड बनाता है)।
CO
2+ H
2O ⇌ HCO−
3+ H+
मिट्टी में pH
मृदा pH श्रेणी का वर्गीकरण
यूनाइटेड स्टेट्स डिपार्टमेंट ऑफ एग्रीकल्चर प्राकृतिक संसाधन संरक्षण सेवा, पूर्व में मृदा संरक्षण सेवा, मृदा pH श्रेणी को निम्नानुसार वर्गीकृत करती है:[25]
मान pH रेंज अति अम्लीय < 3.5 अत्यधिक अम्लीय 3.5–4.4 बहुत तेज अम्लीय 4.5–5.0 प्रबल अम्लीय 5.1–5.5 मध्यम अम्लीय 5.6–6.0 थोड़ा अम्लीय 6.1–6.5 उदासीन 6.6–7.3 थोड़ा क्षारीय 7.4–7.8 मध्यम क्षारीय 7.9–8.4 प्रबल क्षारीय 8.5–9.0 बहुत तेज क्षारीय 9.0–10.5 अति क्षारीय > 10.5 यूरोप में, टॉपसॉइल pH मिट्टी की मूल सामग्री, अपरदन प्रभाव, जलवायु और वनस्पति से प्रभावित होता है। हाल का नक्शा[26] यूरोप में ऊपरी मिट्टी का pH भूमध्यसागरीय, हंगरी, पूर्वी रोमानिया, उत्तरी फ्रांस में क्षारीय मिट्टी को दर्शाता है। स्कैंडिनेवियाई देशों, पुर्तगाल, पोलैंड और उत्तरी जर्मनी में अधिक अम्लीय मिट्टी है।
मिट्टी का pH मापना
क्षेत्र में मिट्टी विषम कोलाइडल प्रणाली है जिसमें रेत, गाद, मिट्टी, सूक्ष्मजीव, पौधों की जड़ें, और असंख्य अन्य जीवित कोशिकाएं और सड़ने वाले कार्बनिक पदार्थ सम्मलित हैं। मृदा pH एक मास्टर चर है जो असंख्य प्रक्रियाओं और मिट्टी और पर्यावरण वैज्ञानिकों, किसानों और इंजीनियरों के हित के गुणों को प्रभावित करता है।[27] H+ की सांद्रता की मात्रा निर्धारित करने के लिए इस तरह की जटिल प्रणाली में, किसी दिए गए मिट्टी के क्षितिज से मिट्टी के नमूने प्रयोगशाला में लाए जाते हैं, जहां उन्हें विश्लेषण से पहले समरूप, छलनी और कभी-कभी सुखाया जाता है। मिट्टी का एक द्रव्यमान (उदाहरण के लिए, 5 ग्राम क्षेत्र-नम क्षेत्र की स्थितियों का सर्वोत्तम प्रतिनिधित्व करने के लिए) को आसुत जल या 0.01 M CaCl के घोल में मिलाया जाता है।2 (उदाहरण के लिए, 10 एमएल)। अच्छी तरह से मिलाने के बाद, निलंबन को जोर से हिलाया जाता है और 15-20 मिनट तक खड़े रहने दिया जाता है, इस दौरान, रेत और गाद के कण बाहर निकल जाते हैं और मिट्टी और अन्य कोलाइड पानी में निलंबित रहते हैं, जिसे जलीय चरण के रूप में जाना जाता है। pH मीटर से जुड़े एक pH इलेक्ट्रोड को जलीय चरण के ऊपरी हिस्से में डालने से पहले ज्ञात pH (उदाहरण के लिए, pH 4 और 7) के बफ़र्ड विलयनों के साथ कैलिब्रेट किया जाता है और pH को मापा जाता है। एक संयोजन pH इलेक्ट्रोड दोनों H+ को सम्मलित करता है, सेंसिंग इलेक्ट्रोड (ग्लास इलेक्ट्रोड) और एक संदर्भ इलेक्ट्रोड जो pH-असंवेदनशील संदर्भ वोल्टेज और हाइड्रोजन इलेक्ट्रोड को एक नमक पुल प्रदान करता है। अन्य विन्यासों में, कांच और संदर्भ इलेक्ट्रोड अलग-अलग होते हैं और दो बंदरगाहों में pH मीटर से जुड़े होते हैं। pH मीटर दो इलेक्ट्रोड के बीच संभावित (वोल्टेज) अंतर को मापता है और इसे pH में परिवर्तित करता है। अलग संदर्भ इलेक्ट्रोड सामान्यतः कैलोमेल इलेक्ट्रोड होता है, संयोजन इलेक्ट्रोड में सिल्वर-सिल्वर क्लोराइड इलेक्ट्रोड का उपयोग किया जाता है।[27]
उपरोक्त तरीके से मिट्टी के pH को परिचालन रूप से परिभाषित करने में कई अनिश्चितताएं हैं। चूंकि कांच और संदर्भ इलेक्ट्रोड के बीच एक विद्युत संभावित अंतर मापा जाता है, H+ की गतिविधि वास्तव में सांद्रता के अतिरिक्त परिमाणित किया जा रहा है। H+ गतिविधि को कभी-कभी प्रभावी H+ कहा जाता है, सांद्रता और सीधे प्रोटॉन की रासायनिक क्षमता और ठोस चरणों के साथ संतुलन में मिट्टी के घोल में रासायनिक और विद्युत कार्य करने की क्षमता से संबंधित है।[28] मिट्टी और कार्बनिक पदार्थ के कण अपनी सतहों पर ऋणात्मक आवेश रखते हैं, और H+ इनकी ओर आकर्षित आयन H+ के साथ साम्यावस्था में होते हैं, मिट्टी के घोल में आयन हैं। परिभाषा के अनुसार, मापा pH केवल जलीय चरण में निर्धारित किया जाता है, लेकिन प्राप्त मूल्य मिट्टी के कोलाइड्स की उपस्थिति और प्रकृति और जलीय चरण की आयनिक शक्ति से प्रभावित होता है। घोल में पानी-से-मिट्टी के अनुपात को बदलने से पानी-कोलाइड संतुलन, विशेष रूप से आयनिक शक्ति को परेशान करके pH को बदल सकते हैं। 0.01 M CaCl2 का उपयोग पानी के अतिरिक्त पानी से मिट्टी के अनुपात के इस प्रभाव को कम करता है और मिट्टी के pH का अधिक सुसंगत सन्निकटन देता है जो पौधे की जड़ वृद्धि, राइजोस्फीयर और माइक्रोबियल गतिविधि, जल निकासी जल अम्लता और मिट्टी में रासायनिक प्रक्रियाओं से संबंधित है। 0.01 M CaCl2 का उपयोग करना सभी घुलनशील आयनों को जलीय चरण में कोलाइडयन सतहों के करीब लाता है, और H+ की अनुमति देता है उनके करीब मापी जाने वाली गतिविधि। 0.01 M CaCl2 का उपयोग करना विलयन जिससे H+ गतिविधि के अधिक सुसंगत, मात्रात्मक अनुमान की अनुमति मिलती है, खासकर यदि विविध मिट्टी के नमूनों की तुलना स्थान और समय में की जा रही हो।
प्रकृति में pH
pH-निर्भर पौधे रंजक जिनका उपयोग pH संकेतक के रूप में किया जा सकता है, कई पौधों में पाए जाते हैं, जिनमें हिबिस्कुस, लाल गोभी (एंथोसायनिन) और अंगूर (लाल शराब) सम्मलित हैं। खट्टे फलों का रस मुख्य रूप से अम्लीय होता है क्योंकि इसमें साइट्रस एसिड होता है। अन्य कार्बोज़ाइलिक तेजाब कई जीवित प्रणालियों में पाए जाते हैं। उदाहरण के लिए, दुग्धाम्ल मांसपेशियों की गतिविधि द्वारा निर्मित होता है। एडेनोसाइन ट्राइ फास्फेट जैसे फॉस्फेट डेरिवेटिव्स के प्रोटोनेशन की स्थिति pH-निर्भर है। ऑक्सीजन-परिवहन एंजाइम हीमोग्लोबिन की कार्यप्रणाली pH द्वारा रूट प्रभाव के रूप में जानी जाने वाली प्रक्रिया से प्रभावित होती है।
समुद्री जल
समुद्री जल का pH सामान्यतः 7.4 और 8.5 के बीच की सीमा तक सीमित होता है।[29] यह महासागर के कार्बन चक्र महासागर में एक महत्वपूर्ण भूमिका निभाता है, और कार्बन डाइऑक्साइड उत्सर्जन ग्रीनहाउस गैस उत्सर्जन के कारण चल रहे महासागर अम्लीकरण के प्रमाण हैं।[30] यद्यपि, pH माप समुद्री जल की रासायनिक संपत्ति से जटिल है, और रासायनिक समुद्री विज्ञान में कई अलग pH पैमाने उपस्थित हैं।[31]
समुद्र विज्ञान में तीन pH पैमाने
pH पैमाने की अपनी परिचालन परिभाषा के हिस्से के रूप में, आईयूपीएसी pH मानों की एक श्रृंखला में बफर विलयनों की एक श्रृंखला को परिभाषित करता है (प्रायः राष्ट्रीय मानक ब्यूरो (एनबीएस) या राष्ट्रीय मानक और प्रौद्योगिकी संस्थान (एनआईएसटी) पदनाम के साथ चिह्नित)। समुद्री जल (≈0.7) की तुलना में इन विलयनों में अपेक्षाकृत कम आयनिक शक्ति (≈0.1) होती है, और परिणामस्वरूप, समुद्री जल के pH को चिह्नित करने में उपयोग के लिए अनुशंसित नहीं किया जाता है, क्योंकि आयनिक शक्ति के अंतर मानक इलेक्ट्रोड में परिवर्तन का कारण बनते हैं। इस समस्या को हल करने के लिए कृत्रिम समुद्री जल पर आधारित बफ़र्स की एक वैकल्पिक श्रृंखला विकसित की गई थी।[32] यह नई श्रृंखला नमूनों और बफ़र्स के बीच आयनिक शक्ति के अंतर की समस्या को हल करती है, और नए pH पैमाने को 'कुल पैमाने' के रूप में संदर्भित किया जाता है, जिसे प्रायः pHT के रूप में दर्शाया जाता है। सल्फेट आयनों वाले माध्यम का उपयोग करके कुल पैमाने को परिभाषित किया गया था। ये आयन प्रोटोनेशन का अनुभव करते हैं, H+ + SO2−
4↔ HSO−
4, जैसे कि कुल पैमाने में दोनों प्रोटॉन (मुक्त हाइड्रोजन आयन) और हाइड्रोजन सल्फेट आयनों का प्रभाव सम्मलित है:
- [H+]T = [H+]F + [HSO−
4]एक वैकल्पिक पैमाना, 'फ्री स्केल', जिसे प्रायः 'pHF' कहा जाता है, इस विचार को छोड़ देता है और केवल [H+]F, सिद्धांत रूप में इसे हाइड्रोजन आयन सांद्रता का एक सरल प्रतिनिधित्व बनाते हैं। केवल [H+]T निर्धारित किया जा सकता है,[33] इसलिए [H+]F का उपयोग करके [SO2−
4] और HSO−
4, K*
S की स्थिरता स्थिरांक अनुमान लगाया जाना चाहिए
- [H+]F = [H+]T − [HSO−
4] = [H+]T ( 1 + [SO2−
4] / K *
S )−1यद्यपि, K *
S का अनुमान लगाना कठिन है समुद्री जल में, अन्यथा अधिक सीधे मुक्त पैमाने की उपयोगिता को सीमित करना है।एक अन्य पैमाना, जिसे 'समुद्री जल पैमाना' के रूप में जाना जाता है, प्रायः 'pHSWS' को दर्शाता है, हाइड्रोजन आयनों और फ्लोराइड आयनों के बीच एक और प्रोटोनेशन संबंध को ध्यान में रखता है, H+ + F− ⇌ HF के लिए [H+]SWS निम्नलिखित अभिव्यक्ति में परिणाम है:
- [H+]SWS = [H+]F + [HSO−
4] + [HF]यद्यपि, इसके अतिरिक्त जटिलता पर विचार करने का लाभ माध्यम में फ्लोराइड की प्रचुरता पर निर्भर है। समुद्री जल में, उदाहरण के लिए, सल्फेट आयन फ्लोराइड की तुलना में बहुत अधिक सांद्रता (>400 गुना) पर होते हैं। नतीजतन, अधिकांश व्यावहारिक उद्देश्यों के लिए, कुल और समुद्री जल के पैमाने के बीच का अंतर बहुत छोटा है।
निम्नलिखित तीन समीकरण pH के तीन पैमानों को संक्षेप में प्रस्तुत करते हैं:
- pHF = −log [H+]F
- pHT = −log([H+]F + [HSO−4]) = −log[H+]T
- pHSWS = −log(H+]F + [HSO−4] + [HF]) = −log[v]SWS
व्यावहारिक रूप से, तीन समुद्री जल pH स्केल उनके मूल्यों में 0.10 pH इकाइयों तक भिन्न होते हैं, अंतर जो सामान्यतः आवश्यक pH माप की सटीकता से बहुत अधिक होते हैं, विशेष रूप से, महासागर के कुल अकार्बनिक कार्बन के संबंध में हैं।[31] चूंकि यह सल्फेट और फ्लोराइड आयनों के विचार को छोड़ देता है, मुक्त पैमाना कुल और समुद्री जल दोनों पैमानों से काफी अलग है। फ्लोराइड आयन के सापेक्ष महत्वहीन होने के कारण, कुल और समुद्री जल के पैमाने में बहुत कम अंतर होता है।
लिविंग सिस्टम
जीवित प्रणालियों में pH[34] Compartment pH गैस्ट्रिक अम्ल 1.5–3.5[35] लाइसोसोम 4.5[34] मानव त्वचा 4.7[36] क्रोमैफिन कोशिकाओं के दाने 5.5 युरिन 6.0 साइटोसोल 7.2 रक्त (साधारण pH) 7.34–7.45[34] मस्तिष्कमेरु द्रव (CSF) 7.5 माइटोकॉन्ड्रियल मैट्रिक्स 7.5 अग्न्याशय स्राव 8.1 विभिन्न सेलुलर डिब्बों, शरीर के तरल पदार्थ और अंगों के pH को सामान्यतः एसिड-बेस समस्थिति नामक प्रक्रिया में कसकर नियंत्रित किया जाता है। एसिड-बेस होमियोस्टेसिस में सबसे समान्य विकार अम्लरक्तता है, जिसका मतलब है कि शरीर में एसिड अधिभार, सामान्यतः pH 7.35 से नीचे गिरने से परिभाषित होता है। इसके विपरीत, क्षारता की विशेषता अत्यधिक उच्च रक्त pH है।
रक्त का pH सामान्यतः pH 7.365 के मान के साथ थोड़ा बुनियादी होता है। जीव विज्ञान और चिकित्सा में इस मान को प्रायः शारीरिक pH के रूप में जाना जाता है। दांतों की मैल एक स्थानीय अम्लीय वातावरण बना सकती है जिसके परिणामस्वरूप अखनिजीकरण द्वारा दंत क्षय हो सकता है। एनजाइम और अन्य प्रोटीन में इष्टतम pH रेंज होती है और इस सीमा के बाहर निष्क्रिय या विकृतीकरण (जैव रसायन) हो सकता है।
pH की गणना
अम्ल और/या क्षार युक्त विलयन के pH की गणना संतुलन स्थिरांकों के निर्धारण का एक उदाहरण है। प्रजातीकरण गणना, अर्थात, विलयन में उपस्थित सभी रासायनिक प्रजातियों की सांद्रता की गणना के लिए गणितीय प्रक्रिया है। प्रक्रिया की जटिलता विलयन की प्रकृति पर निर्भर करती है। कठोर अम्ल और क्षार के लिए चरम स्थितियों को छोड़कर कोई गणना आवश्यक नहीं है। एक अशक्त एसिड वाले विलयन के pH को द्विघात समीकरण के विलयन की आवश्यकता होती है। अशक्त आधार वाले विलयन के pH को घन समीकरण के विलयन की आवश्यकता हो सकती है। सामान्य स्थितियों में गैर-रैखिक एक साथ समीकरणों के एक सेट के विलयन की आवश्यकता होती है।
एक जटिल कारक यह है कि पानी स्वयं एक अशक्त अम्ल और एक अशक्त आधार है (देखें उभयधर्मिता)। यह संतुलन के अनुसार पानी का स्व-आयनीकरण करता है
- 2 H2O ⇌ H3O+ (aq) + OH− (aq)
एक अम्ल पृथक्करण स्थिरांक के साथ, Kw के रूप में परिभाषित किया गया है
जहां [H+] जलीय हाइड्रोनियम आयन और [OH की सांद्रता के लिए खड़ा है−] हाइड्रोक्साइड आयन की सांद्रता का प्रतिनिधित्व करता है। इस संतुलन को उच्च pH पर ध्यान में रखा जाना चाहिए और जब विलेय की सघनता बेहद कम हो।
प्रबल अम्ल और क्षार
प्रबल अम्ल और प्रबल क्षार ऐसे यौगिक हैं जो व्यावहारिक उद्देश्यों के लिए जल में पूर्णतया वियोजित होते हैं। सामान्य परिस्थितियों में इसका अर्थ है कि अम्लीय विलयन में हाइड्रोजन आयनों की सांद्रता अम्ल की सांद्रता के बराबर ली जा सकती है। pH तब सांद्रता मूल्य के लघुगणक के बराबर होता है। हाइड्रोक्लोरिक अम्ल (HCl) प्रबल अम्ल का एक उदाहरण है। HCl के 0.01M विलयन का 2 (pH = −log10(0.01)) के बराबर होता है। सोडियम हाइड्रोक्साइड, NaOH, एक प्रबल आधार का उदाहरण है। NaOH के 0.01M विलयन का 2 (pOH = −log10(0.01)) के बराबर है। उपरोक्त pOH खंड में pOH की परिभाषा से, इसका मतलब है कि pH लगभग 12 के बराबर है। उच्च सांद्रता पर सोडियम हाइड्रॉक्साइड के विलयन के लिए स्व- आयनीकरण संतुलन को ध्यान में रखा जाना चाहिए।
सांद्रता बेहद कम होने पर स्व-आयनीकरण पर भी विचार किया जाना चाहिए। उदाहरण के लिए, 5×10−8M की सांद्रता पर हाइड्रोक्लोरिक अम्ल के विलयन पर विचार करें। ऊपर दी गई सरल प्रक्रिया से पता चलता है कि इसका pH 7.3 है। यह स्पष्ट रूप से गलत है क्योंकि एक एसिड विलयन का pH 7 से कम होना चाहिए। सिस्टम को हाइड्रोक्लोरिक एसिड और उभयधर्मी पदार्थ पानी के मिश्रण के रूप में मानने पर 6.89 का pH परिणाम मिलता है।[37]
अशक्त अम्ल और क्षार
एक अशक्त एसिड या एक अशक्त आधार के संयुग्मित एसिड को उसी औपचारिकता का उपयोग करके इलाज किया जा सकता है।
- अम्ल HA: HA ⇌ H+ + A−
- बेस A: HA+ ⇌ H+ + A
सबसे पहले, एक अम्ल पृथक्करण स्थिरांक को निम्नानुसार परिभाषित किया गया है। व्यापकता के लिए बाद के समीकरणों से विद्युत आवेशों को छोड़ दिया जाता है
और इसका मूल्य प्रयोग द्वारा निर्धारित किया गया माना जाता है। ऐसा होने पर, [HA], [H+] और [A−] गणना द्वारा निर्धारित करने के लिए, तीन अज्ञात सांद्रताएं हैं। दो अतिरिक्त समीकरणों की जरूरत है। उन्हें प्रदान करने का एक तरीका दो अभिकर्मकों H और A के संदर्भ में बड़े पैमाने पर संरक्षण के कानून को लागू करना है।
C, विश्लेषणात्मक सांद्रता के लिए खड़ा है। कुछ पाठों में, एक द्रव्यमान संतुलन समीकरण को आवेश संतुलन के समीकरण से बदल दिया जाता है। यह इस तरह के साधारण स्थितियो के लिए संतोषजनक है, लेकिन नीचे दिए गए अधिक जटिल स्थितियो पर लागू करना अधिक कठिन है। K को परिभाषित करने वाले समीकरण के साथa, अब तीन अज्ञात में तीन समीकरण हैं। जब अम्ल CA = CH = Ca को जल में घोला जाता है, इसलिए [A] = [H] अम्ल की सघनता होती है। कुछ और बीजगणितीय हेरफेर के बाद हाइड्रोजन आयन सांद्रता में एक समीकरण प्राप्त किया जा सकता है।
इस द्विघात समीकरण का विलयन हाइड्रोजन आयन सांद्रता देता है और इसलिए p[H] या अधिक अशुद्ध pH है। इस प्रक्रिया को एक आइस टेबल में चित्रित किया गया है, जिसका उपयोग pH की गणना करने के लिए भी किया जा सकता है जब सिस्टम में कुछ अतिरिक्त (प्रबल) एसिड या क्षारीय अर्थात, जब CA ≠ CH को जोड़ा गया है।
उदाहरण के लिए, बेंज़ोइक अम्ल , pKa = 4.19 के 0.01M घोल का pH क्या है?
- चरण 1:
- चरण 2: द्विघात समीकरण स्थापित करें।
- चरण 3: द्विघात समीकरण को हल करें।
क्षारीय विलयनों के लिए हाइड्रोजन के द्रव्यमान-संतुलन समीकरण में एक अतिरिक्त शब्द जोड़ा जाता है। चूँकि हाइड्रॉक्साइड के अतिरिक्त हाइड्रोजन आयन सांद्रता को कम करता है, और हाइड्रॉक्साइड आयन सांद्रता स्व-आयनीकरण संतुलन के बराबर होने के लिए विवश है
इस स्थिति में [H] में परिणामी घन समीकरण है।
सामान्य विधि
कुछ प्रणालियाँ, जैसे कि पॉलीप्रोटिक एसिड के साथ, स्प्रेडशीट गणनाओं के लिए उत्तरदायी हैं।[38] तीन या अधिक अभिकर्मकों के साथ या जब सामान्य सूत्रों जैसे ApBqHr के साथ कई परिसर बनते हैं, किसी विलयन के pH की गणना करने के लिए निम्नलिखित सामान्य विधि का उपयोग किया जा सकता है। उदाहरण के लिए, तीन अभिकर्मकों के साथ, प्रत्येक संतुलन की विशेषता एक संतुलन स्थिरांक, β होती है।
अगला, प्रत्येक अभिकर्मक के लिए जन-संतुलन समीकरण लिखें:
ध्यान दें कि इन समीकरणों में कोई सन्निकटन सम्मलित नहीं है, अतिरिक्त इसके कि प्रत्येक स्थिरता स्थिरांक को सांद्रता के भागफल के रूप में परिभाषित किया जाता है, गतिविधियों के रूप में नहीं। यदि गतिविधियों का उपयोग किया जाना है तो बहुत अधिक जटिल अभिव्यक्तियों की आवश्यकता होती है।
तीन अज्ञात, [ए], [बी] और [एच] में 3 गैर-रैखिक एक साथ समीकरण हैं। क्योंकि समीकरण गैर-रैखिक हैं, और क्योंकि सांद्रता 10 की कई शक्तियों पर हो सकती है, इन समीकरणों का विलयन सीधा नहीं है। यद्यपि, कई कंप्यूटर प्रोग्राम उपलब्ध हैं जिनका उपयोग इन गणनाओं को करने के लिए किया जा सकता है। तीन से अधिक अभिकर्मक हो सकते हैं। हाइड्रोजन आयन सांद्रता की गणना, इस औपचारिकता का उपयोग करते हुए, पोटेंशियोमेट्रिक अनुमापन द्वारा संतुलन स्थिरांक के निर्धारण में प्रमुख तत्व है।
यह भी देखें
- pH संकेतक
- धमनी रक्त गैस
- रासायनिक संतुलन
- pCO2
- pKa
संदर्भ
- ↑ Jensen, William B. (2004). "The Symbol for pH" (PDF). Journal of Chemical Education. 81 (1): 21. Bibcode:2004JChEd..81...21J. doi:10.1021/ed081p21. Archived (PDF) from the original on 14 December 2019. Retrieved 15 July 2020.
- ↑ Bates, Roger G. Determination of pH: theory and practice. Wiley, 1973.
- ↑ Lim, Kieran F. (2006). "Negative pH Does Exist". Journal of Chemical Education. 83 (10): 1465. Bibcode:2006JChEd..83.1465L. doi:10.1021/ed083p1465.
- ↑ 4.0 4.1 4.2 4.3 Covington, A. K.; Bates, R. G.; Durst, R. A. (1985). "Definitions of pH scales, standard reference values, measurement of pH, and related terminology" (PDF). Pure Appl. Chem. 57 (3): 531–542. doi:10.1351/pac198557030531. S2CID 14182410. Archived (PDF) from the original on 24 September 2007.
- ↑ 5.0 5.1 Sørensen, S. P. L. (1909). "माप और एंजाइमी प्रक्रियाओं में हाइड्रोजन आयन एकाग्रता के महत्व के बारे में" (PDF). Biochem. Z. 21: 131–304. Archived (PDF) from the original on 15 April 2021. Retrieved 22 March 2021.
मूल जर्मन: नंबर p के लिए मैं हाइड्रोजन आयन एक्सपोनेंट नाम और संकेतन pH• सुझाता हूं। किसी विलयन के हाइड्रोजन आयन घातांक (pH•) को हाइड्रोजन आयनों से संबंधित विलयन के सामान्यता कारक के पारस्परिक मूल्य के ब्रिग के लघुगणक के रूप में समझा जाता है।1909 में दो अन्य प्रकाशन प्रकाशित हुए, एक फ्रेंच में और एक डेनिश में।- ↑ Francl, Michelle (August 2010). "Urban legends of chemistry". Nature Chemistry. 2 (8): 600–601. Bibcode:2010NatCh...2..600F. doi:10.1038/nchem.750. ISSN 1755-4330. PMID 20651711. Archived from the original on 6 August 2020. Retrieved 21 July 2019.
- ↑ Myers, Rollie J. (2010). "One-Hundred Years of pH". Journal of Chemical Education. 87 (1): 30–32. Bibcode:2010JChEd..87...30M. doi:10.1021/ed800002c.
- ↑ Otterson, David W. (2015). "Tech Talk: (11) pH Measurement and Control Basics". Measurement and Control. 48 (10): 309–312. doi:10.1177/0020294015600474. S2CID 110716297. Retrieved 16 June 2022.
- ↑ Lian, Ying; Zhang, Wei; Ding, Longjiang; Zhang, Xiaoai; Zhang, Yinglu; Wang, Xu-dong (2019). "Nanomaterials for Intracellular pH Sensing and Imaging". Novel Nanomaterials for Biomedical, Environmental and Energy Applications. Micro and Nano Technologies: 241–273. doi:10.1016/B978-0-12-814497-8.00008-4. ISBN 9780128144978. S2CID 104410918. Retrieved 16 June 2022.
- ↑ Bradley, David (21 February 2018). "When it comes to caustic wit and an acid tongue, mind your Ps and Qs". Materials Today. Retrieved 16 June 2022.
- ↑ Nørby, Jens (2000). "The origin and the meaning of the little p in pH". Trends in Biochemical Sciences. 25 (1): 36–37. doi:10.1016/S0968-0004(99)01517-0. PMID 10637613.
- ↑ 12.0 12.1 Evans, Alice C. (1963). "Memoirs" (PDF). NIH Office of History. National Institutes of Health Office of History. Archived from the original (PDF) on 15 December 2017. Retrieved 2018-03-27.
- ↑ "Origins: Birth of the pH Meter". Caltech Engineering & Science Magazine. Archived from the original on 6 November 2018. Retrieved 11 March 2018.
- ↑ Tetrault, Sharon (June 2002). "The Beckmans". Orange Coast. Orange Coast Magazine. Archived from the original on 15 April 2021. Retrieved 11 March 2018.
- ↑ Quantities and units – Part 8: Physical chemistry and molecular physics, Annex C (normative): pH. International Organization for Standardization, 1992.
- ↑ "Carlsberg Group Company History Page". Carlsberggroup.com. Archived from the original on 18 January 2014. Retrieved 7 May 2013.
- ↑ Rossotti, F.J.C.; Rossotti, H. (1965). "Potentiometric titrations solution containing the background electrolyte". J. Chem. Educ. 42. doi:10.1021/ed042p375.
- ↑ Mendham, J.; Denney, R. C.; Barnes, J. D.; Thomas, M. J. K. (2000), Vogel's Quantitative Chemical Analysis (6th ed.), New York: Prentice Hall, ISBN 0-582-22628-7, Section 13.23, "Determination of pH"
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "activity (relative activity), a". doi:10.1351/goldbook.A00115
- ↑ International Union of Pure and Applied Chemistry (1993). Quantities, Units and Symbols in Physical Chemistry, 2nd edition, Oxford: Blackwell Science. ISBN 0-632-03583-8. pp. 49–50. Electronic version.
- ↑ Himmel, Daniel; Goll, Sascha K.; Leito, Ivo; Krossing, Ingo (2010-08-16). "A Unified pH Scale for All Phases". Angewandte Chemie International Edition. 49 (38): 6885–6888. doi:10.1002/anie.201000252. ISSN 1433-7851. PMID 20715223.
- ↑ Feldman, Isaac (1956). "Use and Abuse of pH measurements". Analytical Chemistry. 28 (12): 1859–1866. doi:10.1021/ac60120a014.
- ↑ Mendham, J.; Denney, R. C.; Barnes, J. D.; Thomas, M. J. K. (2000), Vogel's Quantitative Chemical Analysis (6th ed.), New York: Prentice Hall, ISBN 0-582-22628-7, Section 13.19 The glass electrode
- ↑ Nordstrom, D. Kirk; Alpers, Charles N. (March 1999). "Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California". Proceedings of the National Academy of Sciences of the United States of America. 96 (7): 3455–62. Bibcode:1999PNAS...96.3455N. doi:10.1073/pnas.96.7.3455. PMC 34288. PMID 10097057. Archived from the original on 23 September 2017. Retrieved 4 November 2018.
- ↑ Soil Survey Division Staff. "Soil survey manual.1993. Chapter 3, selected chemical properties". Soil Conservation Service. U.S. Department of Agriculture Handbook 18. Archived from the original on 14 May 2011. Retrieved 2011-03-12.
- ↑ Ballabio, Cristiano; Lugato, Emanuele; Fernández-Ugalde, Oihane; Orgiazzi, Alberto; Jones, Arwyn; Borrelli, Pasquale; Montanarella, Luca; Panagos, Panos (2019). "Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression". Geoderma (in English). 355: 113912. Bibcode:2019Geode.355k3912B. doi:10.1016/j.geoderma.2019.113912. PMC 6743211. PMID 31798185.
- ↑ 27.0 27.1 McBride, Murray (1994). Environmental chemistry of soils. New York: Oxford University Press. pp. 169–174. ISBN 0-19-507011-9.
- ↑ Essington, Michael E. (2004). Soil and Water Chemistry. Boca Raton, Florida: CRC Press. pp. 474–482. ISBN 0-8493-1258-2.
- ↑ Chester, Jickells, Roy, Tim (2012). Marine Geochemistry. Blackwell Publishing. ISBN 978-1-118-34907-6.
{{cite book}}
: CS1 maint: multiple names: authors list (link)- ↑ Royal Society (2005). Ocean acidification due to increasing atmospheric carbon dioxide (PDF). ISBN 978-0-85403-617-2. Archived (PDF) from the original on 16 July 2010.
- ↑ 31.0 31.1 Zeebe, R. E. and Wolf-Gladrow, D. (2001) CO2 in seawater: equilibrium, kinetics, isotopes, Elsevier Science B.V., Amsterdam, Netherlands ISBN 0-444-50946-1
- ↑ Hansson, I. (1973). "A new set of pH-scales and standard buffers for seawater". Deep-Sea Research. 20 (5): 479–491. Bibcode:1973DSRA...20..479H. doi:10.1016/0011-7471(73)90101-0.
- ↑ Dickson, A. G. (1984). "pH scales and proton-transfer reactions in saline media such as sea water". Geochim. Cosmochim. Acta. 48 (11): 2299–2308. Bibcode:1984GeCoA..48.2299D. doi:10.1016/0016-7037(84)90225-4.
- ↑ 34.0 34.1 34.2 Boron, Walter, F.; Boulpaep, Emile L. (13 January 2012). Medical Physiology: A Cellular And Molecular Approach (2nd ed.). Elsevier Health Sciences, Saunders. pp. 652–671. ISBN 9781455711819. OCLC 1017876653. Archived from the original on 8 May 2022. Retrieved 8 May 2022.
{{cite book}}
: CS1 maint: multiple names: authors list (link)- ↑ Marieb, Elaine N.; Mitchell, Susan J. (30 June 2011). Human anatomy & physiology. San Francisco: Benjamin Cummings. ISBN 9780321735287. Archived from the original on 8 May 2022. Retrieved 8 May 2022.
- ↑ Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. (2006-10-01). "Natural skin surface pH is on average below 5, which is beneficial for its resident flora". International Journal of Cosmetic Science. 28 (5): 359–370. doi:10.1111/j.1467-2494.2006.00344.x. ISSN 1468-2494. PMID 18489300. S2CID 25191984. Archived from the original on 21 March 2022. Retrieved 8 May 2022.
- ↑ Maloney, Chris. "pH calculation of a very small concentration of a strong acid". Archived from the original on 8 July 2011. Retrieved 13 March 2011.
- ↑ Billo, E.J. (2011). EXCEL for Chemists (3rd ed.). Wiley-VCH. ISBN 978-0-470-38123-6.
बाहरी कड़ियाँ