डिरिचलेट श्रृंखला: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Mathematical series}} गणित में, एक डिरिचलेट श्रृंखला किसी भी प्रकार की श...")
 
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Mathematical series}}
{{Short description|Mathematical series}}
गणित में, एक डिरिचलेट श्रृंखला किसी भी प्रकार की [[श्रृंखला (गणित)]] है
गणित में, एक डिरिचलेट श्रृंखला किसी भी एक प्रकार की [[श्रृंखला (गणित)]] है।<math display="block">\sum_{n=1}^\infty \frac{a_n}{n^s},</math>जहां s [[जटिल संख्या]] है, और <math>a_n</math> जटिल क्रम है। यह [[सामान्य डिरिचलेट श्रृंखला]] का एक विशेष स्थिति है।
<math display="block">\sum_{n=1}^\infty \frac{a_n}{n^s},</math>
जहां एस [[जटिल संख्या]] है, और <math>a_n</math> जटिल क्रम है। यह [[सामान्य डिरिचलेट श्रृंखला]] का एक विशेष मामला है।


डिरिचलेट श्रृंखला [[विश्लेषणात्मक संख्या सिद्धांत]] में विभिन्न प्रकार की महत्वपूर्ण भूमिकाएँ निभाती है। [[रीमैन जीटा फ़ंक्शन]] की सबसे आम तौर पर देखी जाने वाली परिभाषा एक डिरिचलेट श्रृंखला है, जैसा कि [[डिरिचलेट एल-फंक्शन]] हैं। यह अनुमान लगाया गया है कि श्रृंखला का [[सेलबर्ग वर्ग]] [[सामान्यीकृत रीमैन परिकल्पना]] का पालन करता है। श्रृंखला का नाम [[पीटर गुस्ताव लेज्यून डिरिचलेट]] के सम्मान में रखा गया है।
डिरिचलेट श्रृंखला [[विश्लेषणात्मक संख्या सिद्धांत]] में विभिन्न प्रकार की महत्वपूर्ण भूमिकाएँ निभाती है। [[रीमैन जीटा फ़ंक्शन]] की सबसे सामान्यतः देखी जाने वाली परिभाषा एक डिरिचलेट श्रृंखला है, जैसा कि [[डिरिचलेट एल-फंक्शन]] हैं। यह अनुमान लगाया गया है कि श्रृंखला का [[सेलबर्ग वर्ग]] [[सामान्यीकृत रीमैन परिकल्पना]] का पालन करता है। श्रृंखला का नाम [[पीटर गुस्ताव लेज्यून डिरिचलेट]] के सम्मान में रखा गया है।


== मिश्रित महत्व ==
== मिश्रित महत्व ==
डिरिचलेट श्रृंखला का उपयोग भार के संबंध में वस्तुओं के भारित सेटों की गणना के लिए उत्पन्न श्रृंखला के रूप में किया जा सकता है जो कार्टेशियन उत्पादों को लेते समय गुणक रूप से संयुक्त होता है।
डिरिचलेट श्रृंखला का उपयोग भार के संबंध में वस्तुओं के भारित समुच्चयों की गणना के लिए उत्पन्न श्रृंखला के रूप में किया जा सकता है जो कार्टेशियन उत्पादों को लेते समय गुणक रूप से संयुक्त होता है।


मान लीजिए कि A एक फ़ंक्शन w: A → 'N' के साथ एक सेट है, जो A के प्रत्येक तत्व को भार प्रदान करता है, और इसके अतिरिक्त मान लीजिए कि उस वजन के तहत किसी भी प्राकृतिक संख्या पर [[फाइबर (गणित)]] एक परिमित सेट है। (हम इस तरह की व्यवस्था (, डब्ल्यू) को एक भारित सेट कहते हैं।) अतिरिक्त रूप से मान लीजिए कि <sub>n</sub>भार n के साथ A के तत्वों की संख्या है। फिर हम डब्ल्यू के संबंध में के लिए औपचारिक डिरिचलेट जनरेटिंग श्रृंखला को निम्नानुसार परिभाषित करते हैं:
मान लीजिए कि A एक फ़ंक्शन w: A → 'N' के साथ एक समुच्चय है, जो A के प्रत्येक तत्व को भार प्रदान करता है, और इसके अतिरिक्त मान लीजिए कि उस वजन के अनुसार किसी भी प्राकृतिक संख्या पर [[फाइबर (गणित)]] एक परिमित समुच्चय है। (हम इस प्रकार की व्यवस्था (A, w) को एक भारित समुच्चय कहते हैं।) इसके अतिरिक्त रूप से मान लीजिए कि A<sub>n</sub> तथा भार n के साथ A के तत्वों की संख्या है। फिर हम w के संबंध में A के लिए औपचारिक डिरिचलेट जनरेटिंग श्रृंखला को निम्नानुसार परिभाषित करते हैं:


:<math>\mathfrak{D}^A_w(s) = \sum_{a \in A} \frac 1 {w(a)^s} = \sum_{n=1}^\infty \frac{a_n}{n^s}</math>
:<math>\mathfrak{D}^A_w(s) = \sum_{a \in A} \frac 1 {w(a)^s} = \sum_{n=1}^\infty \frac{a_n}{n^s}</math>
ध्यान दें कि यदि A और B कुछ भारित सेट (U, w) के असंयुक्त उपसमुच्चय हैं, तो उनके (असंयुक्त) संघ के लिए डिरिचलेट श्रृंखला उनकी डिरिचलेट श्रृंखला के योग के बराबर है:
ध्यान दें कि यदि A और B कुछ भारित समुच्चय (U, w) के असंयुक्त उपसमुच्चय हैं, तो उनके (असंयुक्त) संघ के लिए डिरिचलेट श्रृंखला उनकी डिरिचलेट श्रृंखला के योग के समतुल्य है:


:<math>\mathfrak{D}^{A\uplus B}_w(s) = \mathfrak{D}^A_w(s) + \mathfrak{D}^B_w(s).</math>
:<math>\mathfrak{D}^{A\uplus B}_w(s) = \mathfrak{D}^A_w(s) + \mathfrak{D}^B_w(s).</math>
इसके अलावा, अगर (, यू) और (बी, वी) दो भारित सेट हैं, और हम एक वजन समारोह को परिभाषित करते हैं {{nowrap|''w'': ''A'' × ''B'' → '''N'''}} द्वारा
इसके अतिरिक्त, यदि (A, u) और (B, v) दो भारित समुच्चय हैं, और हम एक वजन फ़ंक्शन को परिभाषित करते हैं {{nowrap|''w'': ''A'' × ''B'' → '''N'''}} द्वारा


:<math>w(a,b) = u(a) v(b),</math>
:<math>w(a,b) = u(a) v(b),</math>
में सभी और बी में बी के लिए, फिर हमारे पास कार्टेशियन उत्पाद की डिरिचलेट श्रृंखला के लिए निम्नलिखित अपघटन है:
A में सभी a और B में b के लिए, फिर हमारे पास कार्टेशियन उत्पाद की डिरिचलेट श्रृंखला के लिए निम्नलिखित अपघटन है:


:<math>\mathfrak{D}^{A\times B}_w(s) = \mathfrak{D}^{A}_u(s) \cdot \mathfrak{D}^{B}_v(s).</math>
:<math>\mathfrak{D}^{A\times B}_w(s) = \mathfrak{D}^{A}_u(s) \cdot \mathfrak{D}^{B}_v(s).</math>
यह अंततः साधारण तथ्य से अनुसरण करता है कि <math>n^{-s} \cdot m^{-s} = (nm)^{-s}.</math>
यह अंततः साधारण <math>n^{-s} \cdot m^{-s} = (nm)^{-s}.</math> तथ्य से अनुसरण करता है।
 
 
== उदाहरण ==
== उदाहरण ==
डिरिक्लेट श्रृंखला का सबसे प्रसिद्ध उदाहरण है
डिरिक्लेट श्रृंखला का सबसे प्रसिद्ध उदाहरण है


:<math>\zeta(s)=\sum_{n=1}^\infty \frac 1 {n^s},</math>
:<math>\zeta(s)=\sum_{n=1}^\infty \frac 1 {n^s},</math>
जिसकी विश्लेषणात्मक निरंतरता <math>\Complex</math> (एक साधारण पोल के अलावा <math>s = 1</math>) रीमैन जीटा फ़ंक्शन है।
जिसकी विश्लेषणात्मक निरंतरता <math>\Complex</math> (एक साधारण ध्रुव के अतिरिक्त <math>s = 1</math>) रीमैन जीटा फ़ंक्शन है।


उसे उपलब्ध कराया {{mvar|f}} सभी प्राकृतिक संख्याओं पर वास्तविक-मूल्यवान है {{mvar|n}}, डिरिचलेट श्रृंखला के संबंधित वास्तविक और काल्पनिक भाग {{mvar|F}} ज्ञात सूत्र हैं जहाँ हम लिखते हैं <math>s \equiv \sigma + i t</math>:  
उसे उपलब्ध कराया {{mvar|f}} सभी प्राकृतिक संख्याओं पर वास्तविक-मूल्यवान है {{mvar|n}}, डिरिचलेट श्रृंखला के संबंधित वास्तविक और काल्पनिक भाग {{mvar|F}} ज्ञात सूत्र हैं जहाँ हम लिखते हैं <math>s \equiv \sigma + i t</math>:  
Line 36: Line 32:
\Im[F(s)] & = \sum_{n \geq 1} \frac{~f(n)\,\sin(t \log n)~}{n^{\sigma}}\,.
\Im[F(s)] & = \sum_{n \geq 1} \frac{~f(n)\,\sin(t \log n)~}{n^{\sigma}}\,.
\end{align}</math>
\end{align}</math>
अभिसरण के मामलों को अनदेखा करने में सक्षम होने के लिए कुछ समय के लिए इन्हें औपचारिक डिरिचलेट श्रृंखला के रूप में मानते हुए, ध्यान दें कि हमारे पास:
अभिसरण के स्थितियों को अनदेखा करने में सक्षम होने के लिए कुछ समय के लिए इन्हें औपचारिक डिरिचलेट श्रृंखला के रूप में मानते हुए, ध्यान दें कि हमारे पास:


:<math>\begin{align}
:<math>\begin{align}
Line 47: Line 43:


:<math>\frac{1}{\zeta(s)}=\sum_{n=1}^\infty \frac{\mu(n)}{n^s}</math>
:<math>\frac{1}{\zeta(s)}=\sum_{n=1}^\infty \frac{\mu(n)}{n^s}</math>
कहाँ {{math|''μ''(''n'')}} मोबियस फ़ंक्शन है। यह और निम्न में से कई श्रृंखलाएं ज्ञात श्रृंखलाओं में मोबियस उलटा और [[डिरिचलेट कनवल्शन]] लागू करके प्राप्त की जा सकती हैं। उदाहरण के लिए, एक [[डिरिचलेट चरित्र]] दिया गया {{math|''χ''(''n'')}} किसी के पास
जहाँ {{math|''μ''(''n'')}} मोबियस फ़ंक्शन है। यह और निम्न में से कई श्रृंखलाएं ज्ञात श्रृंखलाओं में मोबियस इन्वर्ज़न और [[डिरिचलेट कनवल्शन]] लागू करके प्राप्त की जा सकती हैं। उदाहरण के लिए, एक [[डिरिचलेट चरित्र]] दिया गया {{math|''χ''(''n'')}} किसी के पास


:<math>\frac 1 {L(\chi,s)}=\sum_{n=1}^\infty \frac{\mu(n)\chi(n)}{n^s}</math>
:<math>\frac 1 {L(\chi,s)}=\sum_{n=1}^\infty \frac{\mu(n)\chi(n)}{n^s}</math>
कहाँ {{math|''L''(''χ'', ''s'')}} एक डिरिचलेट एल-फ़ंक्शन है।
जहाँ {{math|''L''(''χ'', ''s'')}} एक डिरिचलेट L-फ़ंक्शन है।


यदि अंकगणितीय कार्य {{math|''f''}} में एक डिरिचलेट कनवल्शन फंक्शन है <math>f^{-1}(n)</math>, अर्थात, यदि कोई व्युत्क्रम फलन मौजूद है जैसे कि इसके व्युत्क्रम के साथ f का डिरिचलेट कनवल्शन गुणात्मक पहचान देता है
यदि अंकगणितीय कार्य {{math|''f''}} में एक डिरिचलेट कनवल्शन फंक्शन है <math>f^{-1}(n)</math>, अर्थात, यदि कोई व्युत्क्रम फलन उपलब्ध है जैसे कि इसके व्युत्क्रम के साथ f का डिरिचलेट कनवल्शन गुणात्मक पहचान देता है।
<math display="inline">\sum_{d|n} f(d) f^{-1}(n/d) = \delta_{n,1}</math>, तो व्युत्क्रम फलन का Generating_function#Dirichlet_series_generating_functions_(DGFs) F के व्युत्क्रम द्वारा दिया जाता है:


<math display="inline">\sum_{d|n} f(d) f^{-1}(n/d) = \delta_{n,1}</math>,
तो व्युत्क्रम फलन का जनन फलन डिरिचलेट शृंखला जनक फलन_(डीजीएफ) F के व्युत्क्रम द्वारा दिया जाता है:
:<math>\sum_{n \geq 1} \frac{f^{-1}(n)}{n^s} = \left(\sum_{n \geq 1} \frac{f(n)}{n^s}\right)^{-1}.</math>
:<math>\sum_{n \geq 1} \frac{f^{-1}(n)}{n^s} = \left(\sum_{n \geq 1} \frac{f(n)}{n^s}\right)^{-1}.</math>
अन्य पहचान शामिल हैं
अन्य पहचान सम्मलित हैं


:<math>\frac{\zeta(s-1)}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\varphi(n)}{n^s}</math>
:<math>\frac{\zeta(s-1)}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\varphi(n)}{n^s}</math>
कहाँ <math>\varphi(n)</math> कुल कार्य है,
जहाँ <math>\varphi(n)</math> कुल कार्य है,


:<math>\frac{\zeta(s-k)}{\zeta(s)} = \sum_{n=1}^\infty \frac{J_k(n)}{n^s}</math>
:<math>\frac{\zeta(s-k)}{\zeta(s)} = \sum_{n=1}^\infty \frac{J_k(n)}{n^s}</math>
जहां जे<sub>k</sub>जॉर्डन का संपूर्ण कार्य है, और
जहां J<sub>k</sub>जॉर्डन का संपूर्ण कार्य है, और


: : : : : : : : : : : : : : : : : : : : : : : : :<math>\begin{align}
<math>\begin{align}
& \zeta(s) \zeta(s-a)=\sum_{n=1}^\infty \frac{\sigma_{a}(n)}{n^s} \\[6pt]
& \zeta(s) \zeta(s-a)=\sum_{n=1}^\infty \frac{\sigma_{a}(n)}{n^s} \\[6pt]
& \frac{\zeta(s)\zeta(s-a)\zeta(s-2a)}{\zeta(2s-2a)} = \sum_{n=1}^\infty \frac{\sigma_a(n^2)}{n^s} \\[6pt]
& \frac{\zeta(s)\zeta(s-a)\zeta(s-2a)}{\zeta(2s-2a)} = \sum_{n=1}^\infty \frac{\sigma_a(n^2)}{n^s} \\[6pt]
& \frac{\zeta(s)\zeta(s-a)\zeta(s-b)\zeta(s-a-b)}{\zeta(2s-a-b)} = \sum_{n=1}^\infty \frac{\sigma_a(n)\sigma_b(n)}{n^s}
& \frac{\zeta(s)\zeta(s-a)\zeta(s-b)\zeta(s-a-b)}{\zeta(2s-a-b)} = \sum_{n=1}^\infty \frac{\sigma_a(n)\sigma_b(n)}{n^s}
\end{align}</math>
\end{align}</math>
जहां <sub>''a''</sub>(एन) विभाजक कार्य है। विभाजक फलन d = σ के लिए विशेषज्ञता द्वारा<sub>0</sub> अपने पास
 
जहां σ<sub>a</sub>(n) भाजक फलन है। विभाजक फलन d = σ<sub>0</sub> में विशेषज्ञता के द्वारा हमारे पास है


:<math>\begin{align}
:<math>\begin{align}
Line 79: Line 78:


:<math>\log \zeta(s)=\sum_{n=2}^\infty \frac{\Lambda(n)}{\log(n)}\frac{1}{n^s}, \qquad \Re(s) > 1.</math>
:<math>\log \zeta(s)=\sum_{n=2}^\infty \frac{\Lambda(n)}{\log(n)}\frac{1}{n^s}, \qquad \Re(s) > 1.</math>
इसी तरह, हमारे पास है
इसी प्रकार, हमारे पास है


:<math>-\zeta'(s) = \sum_{n=2}^{\infty} \frac{\log(n)}{n^s}, \qquad \Re(s) > 1.</math>
:<math>-\zeta'(s) = \sum_{n=2}^{\infty} \frac{\log(n)}{n^s}, \qquad \Re(s) > 1.</math>
यहाँ, Λ(n) [[मैंगोल्ड्ट फ़ंक्शन द्वारा]] है। लॉगरिदमिक व्युत्पन्न तब है
यहाँ, Λ(n) [[मैंगोल्ड्ट फ़ंक्शन द्वारा]] है। लघुगणक व्युत्पन्न तब है


:<math>\frac{\zeta'(s)}{\zeta(s)} = -\sum_{n=1}^\infty \frac{\Lambda(n)}{n^s}.</math>
:<math>\frac{\zeta'(s)}{\zeta(s)} = -\sum_{n=1}^\infty \frac{\Lambda(n)}{n^s}.</math>
ये अंतिम तीन डिरिचलेट श्रृंखला के डेरिवेटिव के लिए अधिक सामान्य संबंध के विशेष मामले हैं, जो नीचे दिए गए हैं।
ये अंतिम तीन डिरिचलेट श्रृंखला के यौगिक के लिए अधिक सामान्य संबंध के विशेष स्थितियाँ हैं, जो नीचे दिए गए हैं।


[[लिउविल समारोह]] λ(n) दिया गया है, किसी के पास है
[[लिउविल समारोह|लिउविल फ़ंक्शन]] λ(n) दिया गया है, किसी के पास है


:<math>\frac{\zeta(2s)}{\zeta(s)} = \sum_{n=1}^\infty \frac{\lambda(n)}{n^s}.</math>
:<math>\frac{\zeta(2s)}{\zeta(s)} = \sum_{n=1}^\infty \frac{\lambda(n)}{n^s}.</math>
फिर भी एक अन्य उदाहरण में रामानुजन का योग शामिल है:
फिर भी एक अन्य उदाहरण में रामानुजन का योग सम्मलित है:


:<math>\frac{\sigma_{1-s}(m)}{\zeta(s)}=\sum_{n=1}^\infty\frac{c_n(m)}{n^s}.</math>
:<math>\frac{\sigma_{1-s}(m)}{\zeta(s)}=\sum_{n=1}^\infty\frac{c_n(m)}{n^s}.</math>
उदाहरणों की एक और जोड़ी में मोबियस फ़ंक्शन और [[प्राइम ओमेगा फ़ंक्शन]] शामिल हैं:<ref>The formulas for both series are given in Section 27.4 of the [https://dlmf.nist.gov/27.4  NIST Handbook of Mathematical Functions]/</ref>
उदाहरणों की एक और जोड़ी में मोबियस फ़ंक्शन और [[प्राइम ओमेगा फ़ंक्शन]] सम्मलित हैं:<ref>The formulas for both series are given in Section 27.4 of the [https://dlmf.nist.gov/27.4  NIST Handbook of Mathematical Functions]/</ref>
:<math>\frac{\zeta(s)}{\zeta(2s)} = \sum_{n=1}^\infty \frac{|\mu(n)|}{n^s} \equiv \sum_{n=1}^\infty \frac{\mu^2(n)}{n^s}.</math>
:<math>\frac{\zeta(s)}{\zeta(2s)} = \sum_{n=1}^\infty \frac{|\mu(n)|}{n^s} \equiv \sum_{n=1}^\infty \frac{\mu^2(n)}{n^s}.</math>
:<math>\frac{\zeta^2(s)}{\zeta(2s)} = \sum_{n=1}^\infty \frac{2^{\omega(n)}}{n^s}.</math>
:<math>\frac{\zeta^2(s)}{\zeta(2s)} = \sum_{n=1}^\infty \frac{2^{\omega(n)}}{n^s}.</math>
<!--
हमारे पास यह है कि [[प्रधान जीटा समारोह|प्राइम जीटा फ़ंक्शन]] के लिए डिरिचलेट सीरीज़, जो कि रीमैन ज़ेटा फ़ंक्शन का एनालॉग है, जो मात्र सूचकांक n पर आधारित है, जो कि प्राइम हैं, [[मोएबियस समारोह|मोएबियस फ़ंक्शन]] और ज़ेटा फ़ंक्शन के लघुगणक के योग द्वारा दिया जाता है:
('''Possible error:  It seems that these last 2 examples cannot both be correct?''' No these look correct to me. Observe that the Dirichlet series of a Dirichlet convolution is the product of Dirichlet series, and that the Dirichlet series of <math>(f \ast 1)(n)</math> is the Dirichlet series product <math> \zeta(s) \sum_{n \geq 1} \frac{f(n)}{n^s}.</math> Then since <math>2^{\omega(n)} = (|\mu| \ast 1)(n)</math>, these two Dirichlet series identities should make sense.)
-->
हमारे पास यह है कि [[प्रधान जीटा समारोह]] के लिए डिरिचलेट सीरीज़, जो कि रीमैन ज़ेटा फ़ंक्शन का एनालॉग है, जो केवल सूचकांक n पर आधारित है, जो कि प्राइम हैं, [[मोएबियस समारोह]] और ज़ेटा फ़ंक्शन के लघुगणक के योग द्वारा दिया जाता है:


:<math>P(s) := \sum_{p\text{ prime}} p^{-s} = \sum_{n \geq 1} \frac{\mu(n)}{n} \log \zeta(ns).</math>
:<math>P(s) := \sum_{p\text{ prime}} p^{-s} = \sum_{n \geq 1} \frac{\mu(n)}{n} \log \zeta(ns).</math>
ज्ञात डिरिचलेट श्रृंखला अभ्यावेदन के अनुरूप राशियों के अन्य उदाहरणों की एक बड़ी सारणीबद्ध सूची [https://projecteuclid.org/euclid.mjms/1316032830 यहां] पाई जाती है।
ज्ञात डिरिचलेट श्रृंखला अभ्यावेदन के अनुरूप राशियों के अन्य उदाहरणों की एक बड़ी सारणीबद्ध सूची [https://projecteuclid.org/euclid.mjms/1316032830 यहां] पाई जाती है।


[[ योजक समारोह ]] (गुणक के बजाय) f के अनुरूप डिरिचलेट श्रृंखला DGFs के उदाहरण प्राइम_ओमेगा_फंक्शन # डिरिचलेट_सीरीज़ प्राइम ओमेगा फ़ंक्शंस के लिए दिए गए हैं <math>\omega(n)</math> और <math>\Omega(n)</math>, जो क्रमशः n (बहुलता के साथ या नहीं) के अलग-अलग अभाज्य कारकों की संख्या की गणना करते हैं। उदाहरण के लिए, इन कार्यों में से पहले के डीजीएफ को रीमैन जेटा फ़ंक्शन के उत्पाद के रूप में व्यक्त किया गया है और किसी भी जटिल एस के लिए प्राइम जेटा फ़ंक्शन के रूप में व्यक्त किया गया है <math>\Re(s) > 1</math>:
[[ योजक समारोह |योजक फ़ंक्शन]] (गुणक के अतिरिक्त) f के अनुरूप डिरिचलेट श्रृंखला डीजीएफ के उदाहरण प्राइम_ओमेगा_फंक्शन डिरिचलेट_सीरीज़ प्राइम ओमेगा फ़ंक्शंस के लिए दिए गए हैं, <math>\omega(n)</math> और <math>\Omega(n)</math>, जो क्रमशः n (बहुलता के साथ या नहीं) के भिन्न-भिन्न अभाज्य कारकों की संख्या की गणना करते हैं। उदाहरण के लिए, इन कार्यों में से पहले के डीजीएफ को रीमैन जेटा फ़ंक्शन के उत्पाद के रूप में व्यक्त किया गया है और किसी भी जटिल एस के लिए प्राइम जेटा फ़ंक्शन के रूप में <math>\Re(s) > 1</math> व्यक्त किया गया है:


:<math>\sum_{n \geq 1} \frac{\omega(n)}{n^s} = \zeta(s) \cdot P(s), \Re(s) > 1.</math>
:<math>\sum_{n \geq 1} \frac{\omega(n)}{n^s} = \zeta(s) \cdot P(s), \Re(s) > 1.</math>
यदि f एक गुणक फलन है जैसे कि इसका DGF F सभी के लिए बिल्कुल अभिसरण करता है <math>\Re(s) > \sigma_{a,f}</math>, और यदि p कोई [[अभाज्य संख्या]] है, तो हमारे पास वह है
यदि f एक गुणक फलन है जैसे कि इसका डीजीएफ F सभी के लिए बिल्कुल अभिसरण करता है <math>\Re(s) > \sigma_{a,f}</math>, और यदि p कोई [[अभाज्य संख्या]] है, तो हमारे पास यह है।


:<math>\left(1+f(p) p^{-s}\right) \times \sum_{n \geq 1} \frac{f(n) \mu(n)}{n^s} = \left(1-f(p) p^{-s}\right) \times \sum_{n \geq 1} \frac{f(n) \mu(n) \mu(\gcd(p, n))}{n^s}, \forall \Re(s) > \sigma_{a,f},</math>
:<math>\left(1+f(p) p^{-s}\right) \times \sum_{n \geq 1} \frac{f(n) \mu(n)}{n^s} = \left(1-f(p) p^{-s}\right) \times \sum_{n \geq 1} \frac{f(n) \mu(n) \mu(\gcd(p, n))}{n^s}, \forall \Re(s) > \sigma_{a,f},</math>
कहाँ <math>\mu(n)</math> मोबियस फ़ंक्शन है। एक अन्य अद्वितीय डिरिचलेट श्रृंखला पहचान द्वारा दिए गए सबसे बड़े सामान्य विभाजक इनपुट पर मूल्यांकन किए गए कुछ अंकगणितीय f के सारांश कार्य को उत्पन्न करता है
जहाँ <math>\mu(n)</math> मोबियस फ़ंक्शन है। एक अन्य अद्वितीय डिरिचलेट श्रृंखला पहचान द्वारा दिए गए सबसे बड़े सामान्य विभाजक इनपुट पर मूल्यांकन किए गए कुछ अंकगणितीय f के सारांश कार्य को उत्पन्न करता है।


:<math>\sum_{n \geq 1} \left(\sum_{k=1}^n f(\gcd(k, n))\right) \frac{1}{n^s} = \frac{\zeta(s-1)}{\zeta(s)} \times \sum_{n \geq 1} \frac{f(n)}{n^s}, \forall \Re(s) > \sigma_{a,f} + 1.</math>
:<math>\sum_{n \geq 1} \left(\sum_{k=1}^n f(\gcd(k, n))\right) \frac{1}{n^s} = \frac{\zeta(s-1)}{\zeta(s)} \times \sum_{n \geq 1} \frac{f(n)}{n^s}, \forall \Re(s) > \sigma_{a,f} + 1.</math>
हमारे पास Moebius उलटा द्वारा संबंधित दो अंकगणितीय कार्यों f और g के DGF के बीच एक सूत्र भी है। विशेष रूप से, अगर <math>g(n) = (f \ast 1)(n)</math>, फिर मोएबियस उलटा द्वारा हमारे पास वह है <math>f(n) = (g \ast \mu)(n)</math>. इसलिए, यदि F और G, f और g के दो संबंधित DGF हैं, तो हम इन दोनों DGF को सूत्र द्वारा संबंधित कर सकते हैं:
हमारे पास मोबियस इन्वर्ज़न द्वारा संबंधित दो अंकगणितीय कार्यों f और g के डीजीएफ के बीच एक सूत्र भी है। विशेष रूप से, यदि <math>g(n) = (f \ast 1)(n)</math>, फिर मोएबियस इन्वर्ज़न द्वारा हमारे पास यह है <math>f(n) = (g \ast \mu)(n)</math>, इसलिए, यदि F और G, f और g के दो संबंधित डीजीएफ हैं, तो हम इन दोनों डीजीएफ को सूत्र द्वारा संबंधित कर सकते हैं:


:<math>F(s) = \frac{G(s)}{\zeta(s)}, \Re(s) > \max(\sigma_{a,f}, \sigma_{a,g}).</math>
:<math>F(s) = \frac{G(s)}{\zeta(s)}, \Re(s) > \max(\sigma_{a,f}, \sigma_{a,g}).</math>
डिरिचलेट श्रृंखला के घातांक के लिए एक ज्ञात सूत्र है। अगर <math>F(s) = \exp(G(s))</math> कुछ अंकगणितीय f का DGF है <math>f(1) \neq 0</math>, तो DGF G को योग द्वारा व्यक्त किया जाता है
डिरिचलेट श्रृंखला के घातांक के लिए एक ज्ञात सूत्र है। यदि <math>F(s) = \exp(G(s))</math> कुछ अंकगणितीय f का डीजीएफ है <math>f(1) \neq 0</math>, तो डीजीएफ G को योग द्वारा व्यक्त किया जाता है।


:<math>G(s) = \log(f(1)) + \sum_{n \geq 2} \frac{(f^{\prime} \ast f^{-1})(n)}{\log(n) \cdot n^s}, </math> कहाँ <math>f^{-1}(n)</math> f का डिरिक्लेट व्युत्क्रम है और जहाँ f का अंकगणितीय फलन सूत्र द्वारा दिया गया है <math>f^{\prime}(n) = \log(n) \cdot f(n)</math> सभी प्राकृतिक संख्याओं के लिए <math>n \geq 2</math>.
:<math>G(s) = \log(f(1)) + \sum_{n \geq 2} \frac{(f^{\prime} \ast f^{-1})(n)}{\log(n) \cdot n^s}, </math> जहाँ <math>f^{-1}(n)</math> f का डिरिक्लेट व्युत्क्रम है और जहाँ f का सभी प्राकृतिक संख्याओं के लिए <math>n \geq 2</math>, अंकगणितीय फलन सूत्र <math>f^{\prime}(n) = \log(n) \cdot f(n)</math> द्वारा दिया गया है।


== विश्लेषणात्मक गुण ==
== विश्लेषणात्मक गुण ==
Line 124: Line 120:


:<math> f(s) = \sum_{n=1}^\infty \frac{a_n}{n^s} </math>
:<math> f(s) = \sum_{n=1}^\infty \frac{a_n}{n^s} </math>
सम्मिश्र संख्या चर s के फलन के रूप में। इसे समझने के लिए, हमें उपरोक्त अनंत श्रृंखला के अभिसरण गुणों पर विचार करने की आवश्यकता है:
सम्मिश्र संख्या चर s के फलन के रूप में इसे समझने के लिए, हमें उपरोक्त अनंत श्रृंखला के अभिसरण गुणों पर विचार करने की आवश्यकता है:


अगर <math>\{a_n\}_{n\in \N}</math> सम्मिश्र संख्याओं का एक परिबद्ध अनुक्रम है, तो संगत डिरिचलेट श्रेणी f खुले अर्ध-तल Re(s) > 1 पर निरपेक्ष अभिसरण को अभिसरित करती है। सामान्य तौर पर, यदि a<sub>n</sub>= (एन<sup>k</sup>), शृंखला पूरी तरह से अर्ध समतल Re(s) > k + 1 में अभिसरित होती है।
यदि <math>\{a_n\}_{n\in \N}</math> सम्मिश्र संख्याओं का एक परिबद्ध अनुक्रम है, तो संगत डिरिचलेट श्रेणी f खुले अर्ध-तल Re(s) > 1 पर निरपेक्ष अभिसरण को अभिसरित करती है। सामान्यतः, यदि a<sub>n</sub>= O(n<sup>k</sup>), शृंखला पूरे प्रकार से अर्ध समतल Re(s) > k + 1 में अभिसरित होती है।


यदि रकम का सेट
यदि जोड़ का समुच्चय


:<math>a_n + a_{n+1} +\cdots + a_{n+k}</math>
:<math>a_n + a_{n+1} +\cdots + a_{n+k}</math>
n और k ≥ 0 के लिए परिबद्ध है, तो उपरोक्त अनंत श्रृंखला s के खुले अर्ध-तल पर इस प्रकार अभिसरित होती है कि Re(s) > 0।
n और k ≥ 0 के लिए परिबद्ध है, तो उपरोक्त अनंत श्रृंखला s के खुले अर्ध-तल पर इस प्रकार अभिसरित होती है कि Re(s) > 0,


दोनों ही मामलों में f इसी खुले आधे विमान पर एक [[विश्लेषणात्मक कार्य]] है।
दोनों ही स्थितियों में f इसी खुले आधे विमान पर एक [[विश्लेषणात्मक कार्य]] है।


सामान्य रूप में <math>\sigma</math> डिरिचलेट श्रृंखला के अभिसरण का भुज है यदि यह के लिए अभिसरण करता है <math>\Re(s) > \sigma</math> और के लिए विचलन करता है <math>\Re(s) < \sigma.</math> यह घात श्रेणी के [[अभिसरण की त्रिज्या]] की डिरिचलेट श्रेणी का अनुरूप है। डिरिचलेट श्रृंखला का मामला अधिक जटिल है, हालांकि: पूर्ण अभिसरण और समान अभिसरण अलग-अलग अर्ध-विमानों में हो सकते हैं।
सामान्य रूप में <math>\sigma</math> डिरिचलेट श्रृंखला के अभिसरण का भुज है यदि यह के लिए अभिसरण करता है <math>\Re(s) > \sigma</math> और के लिए विचलन करता है <math>\Re(s) < \sigma.</math> यह घात श्रेणी के [[अभिसरण की त्रिज्या]] की डिरिचलेट श्रेणी का अनुरूप है। डिरिचलेट श्रृंखला का स्थिति अधिक जटिल है, चूंकि: पूर्ण अभिसरण और समान अभिसरण भिन्न-भिन्न अर्ध-सतह में हो सकते हैं।


कई मामलों में, डिरिचलेट श्रृंखला से जुड़े विश्लेषणात्मक कार्य का एक बड़े डोमेन के लिए एक विश्लेषणात्मक विस्तार होता है।
कई स्थितियों में, डिरिचलेट श्रृंखला से जुड़े विश्लेषणात्मक कार्य का एक बड़े डोमेन के लिए एक विश्लेषणात्मक विस्तार होता है।


=== अभिसरण का भुज ===
=== अभिसरण का भुज ===


कल्पना करना
यह कल्पना करना


:<math>\sum_{n=1}^\infty \frac{a_n}{n^{s_0}}</math> कुछ के लिए अभिसरण करता है <math>s_0 \in \Complex, \Re(s_0) > 0.</math> : प्रस्ताव 1। <math>A(N) := \sum_{n=1}^N a_n = o(N^{s_0}).</math>
:<math>\sum_{n=1}^\infty \frac{a_n}{n^{s_0}}</math> कुछ के लिए अभिसरण करता है <math>s_0 \in \Complex, \Re(s_0) > 0.</math> : प्रस्ताव 1 <math>A(N) := \sum_{n=1}^N a_n = o(N^{s_0}).</math>
सबूत। ध्यान दें कि:
प्रमाण,ध्यान दें कि:


:<math>(n+1)^s-n^s =\int_n^{n+1} s x^{s-1} \, dx = \mathcal{O}(n^{s-1}).</math>
:<math>(n+1)^s-n^s =\int_n^{n+1} s x^{s-1} \, dx = \mathcal{O}(n^{s-1}).</math>
और परिभाषित करें
और परिभाषित करें


:<math>B(N) = \sum_{n=1}^N \frac{a_n}{n^{s_0}} = \ell+o(1)</math> कहाँ
:<math>B(N) = \sum_{n=1}^N \frac{a_n}{n^{s_0}} = \ell+o(1)</math> जहाँ


:<math>\ell=\sum_{n=1}^\infty \frac{a_n}{n^{s_0}}.</math>
:<math>\ell=\sum_{n=1}^\infty \frac{a_n}{n^{s_0}}.</math>
Line 161: Line 157:
&= o(N^{s_0})
&= o(N^{s_0})
\end{align}</math>
\end{align}</math>
: प्रस्ताव 2. परिभाषित करें
: प्रस्ताव 2 परिभाषित करें
::<math>L = \begin{cases} \sum_{n=1}^\infty a_n & \text{If convergent} \\ 0 & \text{otherwise} \end{cases}</math> :तब:
::<math>L = \begin{cases} \sum_{n=1}^\infty a_n & \text{If convergent} \\ 0 & \text{otherwise} \end{cases}</math> :तब:
::<math>\sigma = \lim \sup_{N \to \infty} \frac{\ln |A(N)-L|}{\ln N}= \inf_\sigma \left\{A(N)-L = \mathcal{O}(N^\sigma)\right\}</math> : डिरिचलेट श्रृंखला के अभिसरण का भुज है।
::<math>\sigma = \lim \sup_{N \to \infty} \frac{\ln |A(N)-L|}{\ln N}= \inf_\sigma \left\{A(N)-L = \mathcal{O}(N^\sigma)\right\}</math> : डिरिचलेट श्रृंखला के अभिसरण का भुज है।


सबूत। परिभाषा से
इस प्रमाण पर परिभाषा
 
:<math>\forall \varepsilon > 0 \qquad A(N)-L = \mathcal{O}(N^{\sigma+\varepsilon})</math> ताकि


:<math>\forall \varepsilon > 0 \qquad A(N)-L = \mathcal{O}(N^{\sigma+\varepsilon})</math>
:जिससे की,
:<math>\begin{align}
:<math>\begin{align}
\sum_{n=1}^N \frac{a_n}{n^s} &= A(N) N^{-s} + \sum_{n=1}^{N-1} A(n) (n^{-s} -(n+1)^{-s}) \\
\sum_{n=1}^N \frac{a_n}{n^s} &= A(N) N^{-s} + \sum_{n=1}^{N-1} A(n) (n^{-s} -(n+1)^{-s}) \\
Line 176: Line 172:
जो के रूप में अभिसरण करता है <math>N \to \infty</math> जब कभी भी <math>\Re(s) > \sigma.</math> इसलिए, प्रत्येक के लिए <math>s</math> ऐसा है कि <math display="inline">\sum_{n=1}^\infty a_n n^{-s}</math> विचलन, हमारे पास है <math>\sigma \ge \Re(s),</math> और यह प्रमाण को समाप्त करता है।
जो के रूप में अभिसरण करता है <math>N \to \infty</math> जब कभी भी <math>\Re(s) > \sigma.</math> इसलिए, प्रत्येक के लिए <math>s</math> ऐसा है कि <math display="inline">\sum_{n=1}^\infty a_n n^{-s}</math> विचलन, हमारे पास है <math>\sigma \ge \Re(s),</math> और यह प्रमाण को समाप्त करता है।


: प्रस्ताव 3. यदि <math>\sum_{n=1}^\infty a_n</math> तब जम जाता है <math>f(\sigma+it)= o\left(\tfrac{1}{\sigma}\right)</math> जैसा <math>\sigma \to 0^+</math> और जहां यह मेरोमोर्फिक है (<math>f(s)</math> कोई पोल नहीं लगा है <math>\Re(s) = 0</math>).
: प्रस्ताव 3. यदि <math>\sum_{n=1}^\infty a_n</math> अभिसरण करता है तो <math>f(\sigma+it)= o\left(\tfrac{1}{\sigma}\right)</math> को <math>\sigma \to 0^+</math> के रूप में और जहां यह meromorphic है <math>f(s)</math> में <math>\Re(s) = 0</math> पर कोई ध्रुव नहीं है)


सबूत। ध्यान दें कि
इस प्रमाण पर ध्यान दें कि


:<math>n^{-s} - (n+1)^{-s} = sn^{-s-1}+O(n^{-s-2})</math> और <math>A(N) - f(0) \to 0</math> हमारे पास भागों द्वारा संक्षेप में है, के लिए <math>\Re(s) > 0</math>
:<math>n^{-s} - (n+1)^{-s} = sn^{-s-1}+O(n^{-s-2})</math> और <math>A(N) - f(0) \to 0</math> हमारे पास भागों द्वारा संक्षेप में है, के लिए <math>\Re(s) > 0</math>
Line 186: Line 182:
&= s \sum_{n=1}^\infty A(n) n^{-s-1}+\underbrace{\mathcal{O} \left( \sum_{n=1}^\infty A(n) n^{-s-2} \right) }_{= \mathcal{O}(1)}  
&= s \sum_{n=1}^\infty A(n) n^{-s-1}+\underbrace{\mathcal{O} \left( \sum_{n=1}^\infty A(n) n^{-s-2} \right) }_{= \mathcal{O}(1)}  
\end{align}</math>
\end{align}</math>
अब N को ऐसे खोजें कि > N के लिए, <math>|A(n)-f(0)| < \varepsilon</math>
अब N को ऐसे खोजें कि n > N के लिए, <math>|A(n)-f(0)| < \varepsilon</math>
:<math>s\sum_{n=1}^\infty A(n) n^{-s-1} = \underbrace{sf(0) \zeta(s+1)+s\sum_{n=1}^N (A(n)-f(0)) n^{-s-1}}_{=\mathcal{O}(1)} + \underbrace{s \sum_{n=N+1}^\infty (A(n)-f(0)) n^{-s-1}}_{< \varepsilon |s| \int_N^\infty x^{-\Re(s)-1} \, dx}</math>
:<math>s\sum_{n=1}^\infty A(n) n^{-s-1} = \underbrace{sf(0) \zeta(s+1)+s\sum_{n=1}^N (A(n)-f(0)) n^{-s-1}}_{=\mathcal{O}(1)} + \underbrace{s \sum_{n=N+1}^\infty (A(n)-f(0)) n^{-s-1}}_{< \varepsilon |s| \int_N^\infty x^{-\Re(s)-1} \, dx}</math>
और इसलिए, प्रत्येक के लिए <math>\varepsilon >0</math> वहां एक है <math>C</math> ऐसा कि के लिए <math>\sigma > 0</math>:<ref>{{cite journal|author=Hardy|year=1914|title=डाइरिचलेट श्रृंखला का सामान्य सिद्धांत|url=http://www.plouffe.fr/simon/math/Dirichlet%20Series%20de%20Hardy.pdf}}</ref> :<math>|f(\sigma+it)| < C+\varepsilon |\sigma+it|\frac{1}{\sigma}.</math>
और इसलिए, प्रत्येक <math>\varepsilon >0</math> के लिए एक <math>C</math> है जैसे कि <math>\sigma > 0</math> के लिए:<ref>{{cite journal|author=Hardy|year=1914|title=डाइरिचलेट श्रृंखला का सामान्य सिद्धांत|url=http://www.plouffe.fr/simon/math/Dirichlet%20Series%20de%20Hardy.pdf}}</ref>
 


<math>|f(\sigma+it)| < C+\varepsilon |\sigma+it|\frac{1}{\sigma}.</math>
== औपचारिक डिरिचलेट श्रृंखला ==
== औपचारिक डिरिचलेट श्रृंखला ==
एक वलय R पर एक औपचारिक डिरिचलेट श्रृंखला धनात्मक पूर्णांकों से R तक एक फलन a से संबद्ध है
एक वलय R पर एक औपचारिक डिरिचलेट श्रृंखला धनात्मक पूर्णांकों से R तक एक फलन a से संबद्ध है


:<math> D(a,s) = \sum_{n=1}^\infty a(n) n^{-s} \  </math>
:<math> D(a,s) = \sum_{n=1}^\infty a(n) n^{-s} \  </math>
द्वारा परिभाषित जोड़ और गुणा के साथ
द्वारा परिभाषित जोड़ और गुणा के साथ,


:<math> D(a,s) + D(b,s) = \sum_{n=1}^\infty (a+b)(n) n^{-s} \  </math>
:<math> D(a,s) + D(b,s) = \sum_{n=1}^\infty (a+b)(n) n^{-s} \  </math>
:<math> D(a,s) \cdot D(b,s) = \sum_{n=1}^\infty (a*b)(n) n^{-s} \  </math>
:<math> D(a,s) \cdot D(b,s) = \sum_{n=1}^\infty (a*b)(n) n^{-s} \  </math>
कहाँ
जहाँ


:<math> (a+b)(n) = a(n)+b(n) \ </math>
:<math> (a+b)(n) = a(n)+b(n) \ </math>
Line 210: Line 206:


'C' के ऊपर औपचारिक डिरिचलेट श्रृंखला का वलय गणनीय रूप से कई चरों में औपचारिक शक्ति श्रृंखला के एक वलय के लिए समरूप है।<ref>{{cite journal | last1=Cashwell | first=E.D. | last2=Everett | first2=C.J. | title=संख्या-सैद्धांतिक कार्यों की अंगूठी| journal=Pacific J. Math. | volume=9 | pages=975–985 | year=1959 | issue=4 | issn=0030-8730 | url=http://projecteuclid.org/euclid.pjm/1103038878 | zbl=0092.04602 | mr=0108510 | doi=10.2140/pjm.1959.9.975| doi-access=free }}</ref>
'C' के ऊपर औपचारिक डिरिचलेट श्रृंखला का वलय गणनीय रूप से कई चरों में औपचारिक शक्ति श्रृंखला के एक वलय के लिए समरूप है।<ref>{{cite journal | last1=Cashwell | first=E.D. | last2=Everett | first2=C.J. | title=संख्या-सैद्धांतिक कार्यों की अंगूठी| journal=Pacific J. Math. | volume=9 | pages=975–985 | year=1959 | issue=4 | issn=0030-8730 | url=http://projecteuclid.org/euclid.pjm/1103038878 | zbl=0092.04602 | mr=0108510 | doi=10.2140/pjm.1959.9.975| doi-access=free }}</ref>
 
== यौगिक्स ==
 
== डेरिवेटिव्स ==
दिया गया
दिया गया


Line 219: Line 213:


:<math>F'(s) =-\sum_{n=1}^\infty \frac{f(n)\log(n)}{n^s}</math>
:<math>F'(s) =-\sum_{n=1}^\infty \frac{f(n)\log(n)}{n^s}</math>
दाहिने हाथ की ओर अभिसरण मानकर। पूरी तरह से गुणात्मक फ़ंक्शन ƒ(n) के लिए, और यह मानते हुए कि श्रृंखला Re(s) > σ के लिए अभिसरित होती है<sub>0</sub>, तो किसी के पास वह है
दाहिने हाथ की ओर अभिसरण मानकर, एक पूरे प्रकार से गुणात्मक फ़ंक्शन ƒ(n) के लिए, और यह मानते हुए कि श्रृंखला Re(s) > σ0 के लिए अभिसरित होती है, तो किसी के पास यह है,


:<math>\frac {F^\prime(s)}{F(s)} = - \sum_{n=1}^\infty \frac{f(n)\Lambda(n)}{n^s}</math>
:<math>\frac {F^\prime(s)}{F(s)} = - \sum_{n=1}^\infty \frac{f(n)\Lambda(n)}{n^s}</math>
Re(s) > σ के लिए अभिसरित होता है<sub>0</sub>... ... यहाँ, Λ(n) वॉन मैंगोल्ड फलन है।
Re(s) > σ0 के लिए अभिसरित होता है। यहाँ, Λ(n) वॉन मैंगोल्ड फलन है।


== उत्पाद ==
== उत्पाद ==
कल्पना करना
मान लेते है,


:<math> F(s)= \sum_{n=1}^\infty f(n)n^{-s} </math>
:<math> F(s)= \sum_{n=1}^\infty f(n)n^{-s} </math>
Line 231: Line 225:


:<math> G(s)= \sum_{n=1}^\infty g(n)n^{-s}. </math>
:<math> G(s)= \sum_{n=1}^\infty g(n)n^{-s}. </math>
अगर दोनों F(s) और G(s) s > a और s > b के लिए पूरी तरह अभिसरण हैं तो हमारे पास है
अगर दोनों F(s) और G(s) s > a और s > b के लिए पूरे प्रकार से अभिसरण हैं, तो हमारे पास है।


:<math> \frac 1 {2T}\int_{-T}^T \,F(a+it)G(b-it)\,dt= \sum_{n=1}^\infty f(n)g(n)n^{-a-b} \text{ as }T \sim \infty. </math>
:<math> \frac 1 {2T}\int_{-T}^T \,F(a+it)G(b-it)\,dt= \sum_{n=1}^\infty f(n)g(n)n^{-a-b} \text{ as }T \sim \infty. </math>
अगर a = b और ƒ(n) = g(n) हमारे पास है
यदि a = b और ƒ(n) = g(n) हमारे पास है।


: <math> \frac 1 {2T}\int_{-T}^T |F(a+it)|^2 \, dt= \sum_{n=1}^\infty [f(n)]^2 n^{-2a} \text{ as } T \sim \infty. </math>
: <math> \frac 1 {2T}\int_{-T}^T |F(a+it)|^2 \, dt= \sum_{n=1}^\infty [f(n)]^2 n^{-2a} \text{ as } T \sim \infty. </math>
== गुणांक इन्वर्ज़न (अभिन्न सूत्र) ==
{{main|डिरिचलेट श्रृंखला इन्वर्ज़न}}


 
सभी धनात्मक पूर्णांकों <math>x \geq 1</math> के लिए, x, <math>f(x)</math> पर फलन f, f के डाइरिचलेट जनरेटिंग फंक्शन (डीजीएफ) F से प्राप्त किया जा सकता है (या f के ऊपर डिरिचलेट श्रृंखला) निम्नलिखित अभिन्न सूत्र का उपयोग करके जब भी <math>\sigma > \sigma_{a,f}</math>, डीजीएफ F के पूर्ण अभिसरण का भुज यह है,<ref>Section 11.11 of Apostol's book proves this formula.</ref>
== गुणांक उलटा (अभिन्न सूत्र) ==
{{main|Dirichlet series inversion}}
 
सभी सकारात्मक पूर्णांकों के लिए <math>x \geq 1</math>, फलन f x पर, <math>f(x)</math>, जब भी निम्नलिखित अभिन्न सूत्र का उपयोग करके [[डिरिचलेट जनरेटिंग फंक्शन]] (डीजीएफ) एफ ऑफ एफ (या डीरिचलेट श्रृंखला एफ) से पुनर्प्राप्त किया जा सकता है <math>\sigma > \sigma_{a,f}</math>, डीजीएफ एफ के अभिसरण का फरसा <ref>Section 11.11 of Apostol's book proves this formula.</ref>
:<math>f(x) = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} x^{\sigma + i t} F(\sigma + i t) dt.</math>
:<math>f(x) = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} x^{\sigma + i t} F(\sigma + i t) dt.</math>
डीरिचलेट श्रृंखला के गुणांक प्राप्त करने के लिए एफ के डीजीएफ एफ को परिभाषित करने वाले एफ के सारांश समारोह के [[ मध्य परिवर्तन ]] को उलटना भी संभव है (नीचे अनुभाग देखें)। इस मामले में, हम पेरोन के प्रमेय से संबंधित एक जटिल समोच्च समाकल सूत्र पर पहुंचते हैं। व्यावहारिक रूप से, T के एक समारोह के रूप में उपरोक्त सूत्र के अभिसरण की दरें परिवर्तनशील हैं, और यदि डिरिचलेट श्रृंखला F धीरे-धीरे अभिसरण श्रृंखला के रूप में परिवर्तनों को चिन्हित करने के लिए संवेदनशील है, तो इसके उपयोग से F के गुणांकों को अनुमानित करने के लिए बहुत बड़े T की आवश्यकता हो सकती है। सूत्र औपचारिक सीमा लिए बिना।
डीरिचलेट श्रृंखला के गुणांक प्राप्त करने के लिए f के डीजीएफ F को परिभाषित करने वाले f के सारांश फ़ंक्शन के [[ मध्य परिवर्तन |मध्य परिवर्तन]] को इन्वर्ज़न भी संभव है (नीचे अनुभाग देखें)। इस स्थिति में, हम पेरोन के प्रमेय से संबंधित एक जटिल समोच्च समाकल सूत्र पर पहुंचते हैं। व्यावहारिक रूप से, T के एक समारोह के रूप में उपरोक्त सूत्र के अभिसरण की दरें परिवर्तनशील हैं, और यदि डिरिचलेट श्रृंखला F धीरे-धीरे अभिसरण श्रृंखला के रूप में परिवर्तनों को चिन्हित करने के लिए संवेदनशील है, सूत्र औपचारिक सीमा लिए बिना तो इसके उपयोग से F के गुणांकों को अनुमानित करने के लिए बहुत बड़े T की आवश्यकता हो सकती है।


एपोस्टोल की पुस्तक में बताए गए पिछले सूत्र का एक अन्य संस्करण निम्नलिखित रूप में एक वैकल्पिक योग के लिए एक अभिन्न सूत्र प्रदान करता है <math>c,x > 0</math> और कोई वास्तविक <math>\Re(s) \equiv \sigma > \sigma_{a,f}-c</math> जहां हम निरूपित करते हैं <math>\Re(s) := \sigma</math>:  
एपोस्टोल की पुस्तक में बताए गए पिछले सूत्र का एक अन्य संस्करण <math>c,x > 0</math> और किसी भी वास्तविक <math>\Re(s) \equiv \sigma > \sigma_{a,f}-c</math> के लिए निम्नलिखित रूप में एक वैकल्पिक योग के लिए एक अभिन्न सूत्र प्रदान करता है। जहां हम <math>\Re(s) := \sigma</math> को दर्शाते हैं:  


:<math>{\sum_{n \leq x}}^{\prime} \frac{f(n)}{n^s} = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} D_f(s+z) \frac{x^z}{z} dz.</math>
:<math>{\sum_{n \leq x}}^{\prime} \frac{f(n)}{n^s} = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} D_f(s+z) \frac{x^z}{z} dz.</math>
 
== अभिन्न और सीरीज़ ट्रांसफ़ॉर्मेशन ==
 
डिरिचलेट श्रृंखला का व्युत्क्रम मेलिन रूपांतरण, जिसे s से विभाजित किया जाता है, पेरोन के सूत्र द्वारा दिया जाता है। इसके अतिरिक्त, यदि <math display="inline">F(z) := \sum_{n \geq 0} f_n z^n</math>, <math>\{f_n\}_{n \geq 0}</math> फिर जेनरेटिंग फंक्शन सीक्वेंस की डिरिचलेट श्रृंखला के लिए एक अभिन्न प्रतिनिधित्व, <math>\{f_n z^n\}_{n \geq 0}</math>, द्वारा दिया गया है।<ref>{{cite journal|last1=Borwein, Borwein, and Girgensohn|title=यूलर राशियों का स्पष्ट मूल्यांकन|date=1994|url=http://docserver.carma.newcastle.edu.au/58/2/93_001-Borwein-Borwein-Girgensohn.pdf}}</ref>
== इंटीग्रल और सीरीज़ ट्रांसफ़ॉर्मेशन ==
डिरिचलेट श्रृंखला का मेलिन व्युत्क्रम प्रमेय, s से विभाजित, पेरोन के सूत्र द्वारा दिया गया है।
इसके अतिरिक्त, अगर <math display="inline">F(z) := \sum_{n \geq 0} f_n z^n</math> के अनुक्रम का (औपचारिक) सामान्य जनक फलन है <math>\{f_n\}_{n \geq 0}</math>, फिर जनरेटिंग फ़ंक्शन अनुक्रम की डिरिचलेट श्रृंखला के लिए एक अभिन्न प्रतिनिधित्व, <math>\{f_n z^n\}_{n \geq 0}</math>, द्वारा दिया गया है
<ref>{{cite journal|last1=Borwein, Borwein, and Girgensohn|title=यूलर राशियों का स्पष्ट मूल्यांकन|date=1994|url=http://docserver.carma.newcastle.edu.au/58/2/93_001-Borwein-Borwein-Girgensohn.pdf}}</ref>
:<math>\sum_{n \geq 0} \frac{f_n z^n}{(n+1)^s} = \frac{(-1)^{s-1}}{(s-1)!} \int_0^1 \log^{s-1}(t) F(tz) \, dt,\ s \geq 1. </math>
:<math>\sum_{n \geq 0} \frac{f_n z^n}{(n+1)^s} = \frac{(-1)^{s-1}}{(s-1)!} \int_0^1 \log^{s-1}(t) F(tz) \, dt,\ s \geq 1. </math>
संबंधित व्युत्पन्न और श्रृंखला-आधारित जनरेटिंग फ़ंक्शन ट्रांसफ़ॉर्मेशन का एक अन्य वर्ग अनुक्रम के साधारण जनरेटिंग फ़ंक्शन पर डेरिवेटिव ट्रांसफ़ॉर्मेशन जो पिछले समीकरण में बाएं हाथ के विस्तार को प्रभावी ढंग से उत्पन्न करता है, क्रमशः में परिभाषित किया गया है।<ref>{{cite journal|last1=Schmidt|first1=M. D.|title=जीटा श्रृंखला बहुलघुगणक कार्यों और के-क्रम हार्मोनिक संख्याओं से संबंधित फ़ंक्शन परिवर्तनों को उत्पन्न करती है|journal=Online Journal of Analytic Combinatorics|date=2017|issue=12|url=http://web.math.rochester.edu/misc/ojac/vol12/137.pdf}}</ref><ref>{{cite arXiv|last1=Schmidt|first1=M. D.|title=सामान्यीकृत स्टर्लिंग संख्याओं और हुरविट्ज़ जीटा फ़ंक्शन के आंशिक योग से संबंधित ज़ीटा सीरीज़ जनरेटिंग फ़ंक्शन ट्रांसफ़ॉर्मेशन|year=2016|class=math.CO|eprint=1611.00957}}</ref>
संबंधित व्युत्पन्न और श्रृंखला-आधारित जनरेटिंग फ़ंक्शन ट्रांसफ़ॉर्मेशन का एक अन्य वर्ग अनुक्रम के साधारण जनरेटिंग फ़ंक्शन पर यौगिक ट्रांसफ़ॉर्मेशन जो पिछले समीकरण में बाएं हाथ के विस्तार को प्रभावी ढंग से उत्पन्न करता है, क्रमशः में परिभाषित किया गया है।<ref>{{cite journal|last1=Schmidt|first1=M. D.|title=जीटा श्रृंखला बहुलघुगणक कार्यों और के-क्रम हार्मोनिक संख्याओं से संबंधित फ़ंक्शन परिवर्तनों को उत्पन्न करती है|journal=Online Journal of Analytic Combinatorics|date=2017|issue=12|url=http://web.math.rochester.edu/misc/ojac/vol12/137.pdf}}</ref><ref>{{cite arXiv|last1=Schmidt|first1=M. D.|title=सामान्यीकृत स्टर्लिंग संख्याओं और हुरविट्ज़ जीटा फ़ंक्शन के आंशिक योग से संबंधित ज़ीटा सीरीज़ जनरेटिंग फ़ंक्शन ट्रांसफ़ॉर्मेशन|year=2016|class=math.CO|eprint=1611.00957}}</ref>
 
 
== शक्ति श्रृंखला से संबंध ==
== शक्ति श्रृंखला से संबंध ==
अनुक्रम <sub>n</sub>एक डिरिचलेट श्रृंखला जनरेटिंग फ़ंक्शन द्वारा उत्पन्न होता है जो इसके अनुरूप होता है:
एक डिरिचलेट श्रृंखला जनरेटिंग फ़ंक्शन द्वारा उत्पन्न अनुक्रम A<sub>n</sub> जो इसके अनुरूप है:


:<math>\zeta(s)^m = \sum_{n=1}^\infty \frac{a_n}{n^s}</math>
:<math>\zeta(s)^m = \sum_{n=1}^\infty \frac{a_n}{n^s}</math>
Line 268: Line 254:




== मेलिन ट्रांसफॉर्म्स के माध्यम से एक अंकगणितीय फ़ंक्शन के सारांश समारोह से संबंध ==
== मेलिन परिवर्तन्स के माध्यम से एक अंकगणितीय फ़ंक्शन के सारांश फ़ंक्शन से संबंध ==


यदि f संबंधित DGF F के साथ एक अंकगणितीय फलन है, और f का योगात्मक फलन इसके द्वारा परिभाषित किया जाता है
यदि f संबंधित डीजीएफ F के साथ एक अंकगणितीय फलन है, और f का योगात्मक फलन इसके द्वारा परिभाषित किया जाता है।


: : : : : : : : : : : : : : : : : : : : : : : : :<math>S_f(x) := \begin{cases} \sum_{n \leq x} f(n), & x \geq 1; \\ 0, & 0 < x < 1, \end{cases}</math> तब हम एफ को सारांश समारोह के मेलिन परिवर्तन द्वारा व्यक्त कर सकते हैं <math>-s</math>. अर्थात्, हमारे पास वह है
: <math>S_f(x) := \begin{cases} \sum_{n \leq x} f(n), & x \geq 1; \\ 0, & 0 < x < 1, \end{cases}</math>  
:तब हम <math>-s</math> पर योगात्मक फलन के मेलिन रूपांतरण द्वारा F को व्यक्त कर सकते हैं। अर्थात यह हमारे पास है।


:<math>F(s) = s \cdot \int_1^{\infty} \frac{S_f(x)}{x^{s+1}} dx, \Re(s) > \sigma_{a,f}.</math> के लिए <math>\sigma := \Re(s) > 0</math> और कोई प्राकृतिक संख्या <math>N \geq 1</math>, हमारे द्वारा दिए गए f के DGF F का सन्निकटन भी है
:<math>F(s) = s \cdot \int_1^{\infty} \frac{S_f(x)}{x^{s+1}} dx, \Re(s) > \sigma_{a,f}.</math>  
:<math>\sigma := \Re(s) > 0</math> और किसी भी प्राकृत संख्या <math>N \geq 1</math> के लिए, हमारे पास f के डीजीएफ F का सन्निकटन भी है जो निम्न द्वारा दिया गया है।


:<math>F(s) = \sum_{n \leq N} f(n) n^{-s} - \frac{S_f(N)}{N^{s}} + s \cdot \int_N^{\infty} \frac{S_f(y)}{y^{s+1}} dy.</math>
:<math>F(s) = \sum_{n \leq N} f(n) n^{-s} - \frac{S_f(N)}{N^{s}} + s \cdot \int_N^{\infty} \frac{S_f(y)}{y^{s+1}} dy.</math>


== यह भी देखें ==
== यह भी देखें ==
* जनरल डिरिचलेट श्रृंखला
* जनरल डिरिचलेट श्रृंखला
* [[जीटा समारोह नियमितीकरण]]
* [[जीटा समारोह नियमितीकरण|जीटा फ़ंक्शन नियमितीकरण]]
* [[यूलर उत्पाद]]
* [[यूलर उत्पाद]]
* डिरिक्लेट कनवल्शन
* डिरिक्लेट कनवल्शन
Line 300: Line 287:
|year=1915
|year=1915
}}
}}
*[http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=01480002&seq=7 The general theory of Dirichlet's series ] by G. H. Hardy. Cornell University Library Historical Math Monographs.   {Reprinted by} [https://www.amazon.com/general-theory-Dirichlet-s-G-Hardy/dp/1429704527/ Cornell University Library Digital Collections]
*[http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=01480002&seq=7 The general theory of Dirichlet's series] by G. H. Hardy. Cornell University Library Historical Math Monographs. {Reprinted by} [https://www.amazon.com/general-theory-Dirichlet-s-G-Hardy/dp/1429704527/ Cornell University Library Digital Collections]
* {{cite journal
* {{cite journal
  |first1      = Henry W.
  |first1      = Henry W.
Line 330: Line 317:
{{Peter Gustav Lejeune Dirichlet}}
{{Peter Gustav Lejeune Dirichlet}}
{{Authority control}}
{{Authority control}}
[[Category: जीटा और एल-फ़ंक्शंस]] [[Category: गणितीय श्रृंखला]] [[Category: श्रृंखला विस्तार]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:CS1 errors]]
[[Category:CS1 maint]]
[[Category:Collapse templates]]
[[Category:Created On 20/05/2023]]
[[Category:Created On 20/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:गणितीय श्रृंखला]]
[[Category:जीटा और एल-फ़ंक्शंस]]
[[Category:श्रृंखला विस्तार]]

Latest revision as of 16:38, 14 June 2023

गणित में, एक डिरिचलेट श्रृंखला किसी भी एक प्रकार की श्रृंखला (गणित) है।

जहां s जटिल संख्या है, और जटिल क्रम है। यह सामान्य डिरिचलेट श्रृंखला का एक विशेष स्थिति है।

डिरिचलेट श्रृंखला विश्लेषणात्मक संख्या सिद्धांत में विभिन्न प्रकार की महत्वपूर्ण भूमिकाएँ निभाती है। रीमैन जीटा फ़ंक्शन की सबसे सामान्यतः देखी जाने वाली परिभाषा एक डिरिचलेट श्रृंखला है, जैसा कि डिरिचलेट एल-फंक्शन हैं। यह अनुमान लगाया गया है कि श्रृंखला का सेलबर्ग वर्ग सामान्यीकृत रीमैन परिकल्पना का पालन करता है। श्रृंखला का नाम पीटर गुस्ताव लेज्यून डिरिचलेट के सम्मान में रखा गया है।

मिश्रित महत्व

डिरिचलेट श्रृंखला का उपयोग भार के संबंध में वस्तुओं के भारित समुच्चयों की गणना के लिए उत्पन्न श्रृंखला के रूप में किया जा सकता है जो कार्टेशियन उत्पादों को लेते समय गुणक रूप से संयुक्त होता है।

मान लीजिए कि A एक फ़ंक्शन w: A → 'N' के साथ एक समुच्चय है, जो A के प्रत्येक तत्व को भार प्रदान करता है, और इसके अतिरिक्त मान लीजिए कि उस वजन के अनुसार किसी भी प्राकृतिक संख्या पर फाइबर (गणित) एक परिमित समुच्चय है। (हम इस प्रकार की व्यवस्था (A, w) को एक भारित समुच्चय कहते हैं।) इसके अतिरिक्त रूप से मान लीजिए कि An तथा भार n के साथ A के तत्वों की संख्या है। फिर हम w के संबंध में A के लिए औपचारिक डिरिचलेट जनरेटिंग श्रृंखला को निम्नानुसार परिभाषित करते हैं:

ध्यान दें कि यदि A और B कुछ भारित समुच्चय (U, w) के असंयुक्त उपसमुच्चय हैं, तो उनके (असंयुक्त) संघ के लिए डिरिचलेट श्रृंखला उनकी डिरिचलेट श्रृंखला के योग के समतुल्य है:

इसके अतिरिक्त, यदि (A, u) और (B, v) दो भारित समुच्चय हैं, और हम एक वजन फ़ंक्शन को परिभाषित करते हैं w: A × BN द्वारा

A में सभी a और B में b के लिए, फिर हमारे पास कार्टेशियन उत्पाद की डिरिचलेट श्रृंखला के लिए निम्नलिखित अपघटन है:

यह अंततः साधारण तथ्य से अनुसरण करता है।

उदाहरण

डिरिक्लेट श्रृंखला का सबसे प्रसिद्ध उदाहरण है

जिसकी विश्लेषणात्मक निरंतरता (एक साधारण ध्रुव के अतिरिक्त ) रीमैन जीटा फ़ंक्शन है।

उसे उपलब्ध कराया f सभी प्राकृतिक संख्याओं पर वास्तविक-मूल्यवान है n, डिरिचलेट श्रृंखला के संबंधित वास्तविक और काल्पनिक भाग F ज्ञात सूत्र हैं जहाँ हम लिखते हैं :

अभिसरण के स्थितियों को अनदेखा करने में सक्षम होने के लिए कुछ समय के लिए इन्हें औपचारिक डिरिचलेट श्रृंखला के रूप में मानते हुए, ध्यान दें कि हमारे पास:

जैसा कि प्रत्येक प्राकृतिक संख्या में प्राइम्स की शक्तियों में एक अद्वितीय गुणक अपघटन होता है। यह कॉम्बिनेटरिक्स का वह अंश है जो रीमैन जेटा फंक्शन#यूलर के उत्पाद सूत्र को प्रेरित करता है।

एक और है:

जहाँ μ(n) मोबियस फ़ंक्शन है। यह और निम्न में से कई श्रृंखलाएं ज्ञात श्रृंखलाओं में मोबियस इन्वर्ज़न और डिरिचलेट कनवल्शन लागू करके प्राप्त की जा सकती हैं। उदाहरण के लिए, एक डिरिचलेट चरित्र दिया गया χ(n) किसी के पास

जहाँ L(χ, s) एक डिरिचलेट L-फ़ंक्शन है।

यदि अंकगणितीय कार्य f में एक डिरिचलेट कनवल्शन फंक्शन है , अर्थात, यदि कोई व्युत्क्रम फलन उपलब्ध है जैसे कि इसके व्युत्क्रम के साथ f का डिरिचलेट कनवल्शन गुणात्मक पहचान देता है।

,

तो व्युत्क्रम फलन का जनन फलन डिरिचलेट शृंखला जनक फलन_(डीजीएफ) F के व्युत्क्रम द्वारा दिया जाता है:

अन्य पहचान सम्मलित हैं

जहाँ कुल कार्य है,

जहां Jkजॉर्डन का संपूर्ण कार्य है, और

जहां σa(n) भाजक फलन है। विभाजक फलन d = σ0 में विशेषज्ञता के द्वारा हमारे पास है

जीटा फलन का लघुगणक किसके द्वारा दिया जाता है

इसी प्रकार, हमारे पास है

यहाँ, Λ(n) मैंगोल्ड्ट फ़ंक्शन द्वारा है। लघुगणक व्युत्पन्न तब है

ये अंतिम तीन डिरिचलेट श्रृंखला के यौगिक के लिए अधिक सामान्य संबंध के विशेष स्थितियाँ हैं, जो नीचे दिए गए हैं।

लिउविल फ़ंक्शन λ(n) दिया गया है, किसी के पास है

फिर भी एक अन्य उदाहरण में रामानुजन का योग सम्मलित है:

उदाहरणों की एक और जोड़ी में मोबियस फ़ंक्शन और प्राइम ओमेगा फ़ंक्शन सम्मलित हैं:[1]

हमारे पास यह है कि प्राइम जीटा फ़ंक्शन के लिए डिरिचलेट सीरीज़, जो कि रीमैन ज़ेटा फ़ंक्शन का एनालॉग है, जो मात्र सूचकांक n पर आधारित है, जो कि प्राइम हैं, मोएबियस फ़ंक्शन और ज़ेटा फ़ंक्शन के लघुगणक के योग द्वारा दिया जाता है:

ज्ञात डिरिचलेट श्रृंखला अभ्यावेदन के अनुरूप राशियों के अन्य उदाहरणों की एक बड़ी सारणीबद्ध सूची यहां पाई जाती है।

योजक फ़ंक्शन (गुणक के अतिरिक्त) f के अनुरूप डिरिचलेट श्रृंखला डीजीएफ के उदाहरण प्राइम_ओमेगा_फंक्शन डिरिचलेट_सीरीज़ प्राइम ओमेगा फ़ंक्शंस के लिए दिए गए हैं, और , जो क्रमशः n (बहुलता के साथ या नहीं) के भिन्न-भिन्न अभाज्य कारकों की संख्या की गणना करते हैं। उदाहरण के लिए, इन कार्यों में से पहले के डीजीएफ को रीमैन जेटा फ़ंक्शन के उत्पाद के रूप में व्यक्त किया गया है और किसी भी जटिल एस के लिए प्राइम जेटा फ़ंक्शन के रूप में व्यक्त किया गया है:

यदि f एक गुणक फलन है जैसे कि इसका डीजीएफ F सभी के लिए बिल्कुल अभिसरण करता है , और यदि p कोई अभाज्य संख्या है, तो हमारे पास यह है।

जहाँ मोबियस फ़ंक्शन है। एक अन्य अद्वितीय डिरिचलेट श्रृंखला पहचान द्वारा दिए गए सबसे बड़े सामान्य विभाजक इनपुट पर मूल्यांकन किए गए कुछ अंकगणितीय f के सारांश कार्य को उत्पन्न करता है।

हमारे पास मोबियस इन्वर्ज़न द्वारा संबंधित दो अंकगणितीय कार्यों f और g के डीजीएफ के बीच एक सूत्र भी है। विशेष रूप से, यदि , फिर मोएबियस इन्वर्ज़न द्वारा हमारे पास यह है , इसलिए, यदि F और G, f और g के दो संबंधित डीजीएफ हैं, तो हम इन दोनों डीजीएफ को सूत्र द्वारा संबंधित कर सकते हैं:

डिरिचलेट श्रृंखला के घातांक के लिए एक ज्ञात सूत्र है। यदि कुछ अंकगणितीय f का डीजीएफ है , तो डीजीएफ G को योग द्वारा व्यक्त किया जाता है।

जहाँ f का डिरिक्लेट व्युत्क्रम है और जहाँ f का सभी प्राकृतिक संख्याओं के लिए , अंकगणितीय फलन सूत्र द्वारा दिया गया है।

विश्लेषणात्मक गुण

एक क्रम दिया हम सम्मिश्र संख्याओं के मान पर विचार करने का प्रयास करते हैं

सम्मिश्र संख्या चर s के फलन के रूप में इसे समझने के लिए, हमें उपरोक्त अनंत श्रृंखला के अभिसरण गुणों पर विचार करने की आवश्यकता है:

यदि सम्मिश्र संख्याओं का एक परिबद्ध अनुक्रम है, तो संगत डिरिचलेट श्रेणी f खुले अर्ध-तल Re(s) > 1 पर निरपेक्ष अभिसरण को अभिसरित करती है। सामान्यतः, यदि an= O(nk), शृंखला पूरे प्रकार से अर्ध समतल Re(s) > k + 1 में अभिसरित होती है।

यदि जोड़ का समुच्चय

n और k ≥ 0 के लिए परिबद्ध है, तो उपरोक्त अनंत श्रृंखला s के खुले अर्ध-तल पर इस प्रकार अभिसरित होती है कि Re(s) > 0,

दोनों ही स्थितियों में f इसी खुले आधे विमान पर एक विश्लेषणात्मक कार्य है।

सामान्य रूप में डिरिचलेट श्रृंखला के अभिसरण का भुज है यदि यह के लिए अभिसरण करता है और के लिए विचलन करता है यह घात श्रेणी के अभिसरण की त्रिज्या की डिरिचलेट श्रेणी का अनुरूप है। डिरिचलेट श्रृंखला का स्थिति अधिक जटिल है, चूंकि: पूर्ण अभिसरण और समान अभिसरण भिन्न-भिन्न अर्ध-सतह में हो सकते हैं।

कई स्थितियों में, डिरिचलेट श्रृंखला से जुड़े विश्लेषणात्मक कार्य का एक बड़े डोमेन के लिए एक विश्लेषणात्मक विस्तार होता है।

अभिसरण का भुज

यह कल्पना करना

कुछ के लिए अभिसरण करता है  : प्रस्ताव 1

प्रमाण,ध्यान दें कि:

और परिभाषित करें

जहाँ

हमारे पास भागों के योग से

प्रस्ताव 2 परिभाषित करें
:तब:
 : डिरिचलेट श्रृंखला के अभिसरण का भुज है।

इस प्रमाण पर परिभाषा

जिससे की,

जो के रूप में अभिसरण करता है जब कभी भी इसलिए, प्रत्येक के लिए ऐसा है कि विचलन, हमारे पास है और यह प्रमाण को समाप्त करता है।

प्रस्ताव 3. यदि अभिसरण करता है तो को के रूप में और जहां यह meromorphic है में पर कोई ध्रुव नहीं है)।

इस प्रमाण पर ध्यान दें कि

और हमारे पास भागों द्वारा संक्षेप में है, के लिए

अब N को ऐसे खोजें कि n > N के लिए,

और इसलिए, प्रत्येक के लिए एक है जैसे कि के लिए:[2]

औपचारिक डिरिचलेट श्रृंखला

एक वलय R पर एक औपचारिक डिरिचलेट श्रृंखला धनात्मक पूर्णांकों से R तक एक फलन a से संबद्ध है

द्वारा परिभाषित जोड़ और गुणा के साथ,

जहाँ

बिंदुवार योग है और

a और b का डिरिचलेट कनवल्शन है।

औपचारिक डिरिचलेट श्रृंखला एक वलय Ω, वास्तव में एक आर-बीजगणित बनाती है, जिसमें शून्य फ़ंक्शन योगात्मक शून्य तत्व के रूप में होता है और फ़ंक्शन δ को δ(1) = 1, δ(n) = 0 के लिए n > 1 गुणक पहचान के रूप में परिभाषित किया जाता है। इस वलय का एक अवयव व्युत्क्रमणीय है यदि a(1) R में व्युत्क्रमणीय है। यदि R क्रमविनिमेय है, तो Ω है; यदि R एक पूर्णांकीय प्रांत है, तो Ω भी है। गैर-शून्य गुणात्मक कार्य Ω की इकाइयों के समूह के एक उपसमूह का निर्माण करते हैं।

'C' के ऊपर औपचारिक डिरिचलेट श्रृंखला का वलय गणनीय रूप से कई चरों में औपचारिक शक्ति श्रृंखला के एक वलय के लिए समरूप है।[3]

यौगिक्स

दिया गया

यह दिखाना संभव है

दाहिने हाथ की ओर अभिसरण मानकर, एक पूरे प्रकार से गुणात्मक फ़ंक्शन ƒ(n) के लिए, और यह मानते हुए कि श्रृंखला Re(s) > σ0 के लिए अभिसरित होती है, तो किसी के पास यह है,

Re(s) > σ0 के लिए अभिसरित होता है। यहाँ, Λ(n) वॉन मैंगोल्ड फलन है।

उत्पाद

मान लेते है,

और

अगर दोनों F(s) और G(s) s > a और s > b के लिए पूरे प्रकार से अभिसरण हैं, तो हमारे पास है।

यदि a = b और ƒ(n) = g(n) हमारे पास है।

गुणांक इन्वर्ज़न (अभिन्न सूत्र)

सभी धनात्मक पूर्णांकों के लिए, x, पर फलन f, f के डाइरिचलेट जनरेटिंग फंक्शन (डीजीएफ) F से प्राप्त किया जा सकता है (या f के ऊपर डिरिचलेट श्रृंखला) निम्नलिखित अभिन्न सूत्र का उपयोग करके जब भी , डीजीएफ F के पूर्ण अभिसरण का भुज यह है,[4]

डीरिचलेट श्रृंखला के गुणांक प्राप्त करने के लिए f के डीजीएफ F को परिभाषित करने वाले f के सारांश फ़ंक्शन के मध्य परिवर्तन को इन्वर्ज़न भी संभव है (नीचे अनुभाग देखें)। इस स्थिति में, हम पेरोन के प्रमेय से संबंधित एक जटिल समोच्च समाकल सूत्र पर पहुंचते हैं। व्यावहारिक रूप से, T के एक समारोह के रूप में उपरोक्त सूत्र के अभिसरण की दरें परिवर्तनशील हैं, और यदि डिरिचलेट श्रृंखला F धीरे-धीरे अभिसरण श्रृंखला के रूप में परिवर्तनों को चिन्हित करने के लिए संवेदनशील है, सूत्र औपचारिक सीमा लिए बिना तो इसके उपयोग से F के गुणांकों को अनुमानित करने के लिए बहुत बड़े T की आवश्यकता हो सकती है।

एपोस्टोल की पुस्तक में बताए गए पिछले सूत्र का एक अन्य संस्करण और किसी भी वास्तविक के लिए निम्नलिखित रूप में एक वैकल्पिक योग के लिए एक अभिन्न सूत्र प्रदान करता है। जहां हम को दर्शाते हैं:

अभिन्न और सीरीज़ ट्रांसफ़ॉर्मेशन

डिरिचलेट श्रृंखला का व्युत्क्रम मेलिन रूपांतरण, जिसे s से विभाजित किया जाता है, पेरोन के सूत्र द्वारा दिया जाता है। इसके अतिरिक्त, यदि , फिर जेनरेटिंग फंक्शन सीक्वेंस की डिरिचलेट श्रृंखला के लिए एक अभिन्न प्रतिनिधित्व, , द्वारा दिया गया है।[5]

संबंधित व्युत्पन्न और श्रृंखला-आधारित जनरेटिंग फ़ंक्शन ट्रांसफ़ॉर्मेशन का एक अन्य वर्ग अनुक्रम के साधारण जनरेटिंग फ़ंक्शन पर यौगिक ट्रांसफ़ॉर्मेशन जो पिछले समीकरण में बाएं हाथ के विस्तार को प्रभावी ढंग से उत्पन्न करता है, क्रमशः में परिभाषित किया गया है।[6][7]

शक्ति श्रृंखला से संबंध

एक डिरिचलेट श्रृंखला जनरेटिंग फ़ंक्शन द्वारा उत्पन्न अनुक्रम An जो इसके अनुरूप है:

जहां ζ(s) रिमेंन जीटा फलन है, में सामान्य जनक फलन है:


मेलिन परिवर्तन्स के माध्यम से एक अंकगणितीय फ़ंक्शन के सारांश फ़ंक्शन से संबंध

यदि f संबंधित डीजीएफ F के साथ एक अंकगणितीय फलन है, और f का योगात्मक फलन इसके द्वारा परिभाषित किया जाता है।

तब हम पर योगात्मक फलन के मेलिन रूपांतरण द्वारा F को व्यक्त कर सकते हैं। अर्थात यह हमारे पास है।
और किसी भी प्राकृत संख्या के लिए, हमारे पास f के डीजीएफ F का सन्निकटन भी है जो निम्न द्वारा दिया गया है।

यह भी देखें

संदर्भ

  1. The formulas for both series are given in Section 27.4 of the NIST Handbook of Mathematical Functions/
  2. Hardy (1914). "डाइरिचलेट श्रृंखला का सामान्य सिद्धांत" (PDF). {{cite journal}}: Cite journal requires |journal= (help)
  3. Cashwell, E.D.; Everett, C.J. (1959). "संख्या-सैद्धांतिक कार्यों की अंगूठी". Pacific J. Math. 9 (4): 975–985. doi:10.2140/pjm.1959.9.975. ISSN 0030-8730. MR 0108510. Zbl 0092.04602.
  4. Section 11.11 of Apostol's book proves this formula.
  5. Borwein, Borwein, and Girgensohn (1994). "यूलर राशियों का स्पष्ट मूल्यांकन" (PDF). {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  6. Schmidt, M. D. (2017). "जीटा श्रृंखला बहुलघुगणक कार्यों और के-क्रम हार्मोनिक संख्याओं से संबंधित फ़ंक्शन परिवर्तनों को उत्पन्न करती है" (PDF). Online Journal of Analytic Combinatorics (12).
  7. Schmidt, M. D. (2016). "सामान्यीकृत स्टर्लिंग संख्याओं और हुरविट्ज़ जीटा फ़ंक्शन के आंशिक योग से संबंधित ज़ीटा सीरीज़ जनरेटिंग फ़ंक्शन ट्रांसफ़ॉर्मेशन". arXiv:1611.00957 [math.CO].