हेंसल की लेम्मा: Difference between revisions
No edit summary |
|||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
गणित में, हेंसल की लेम्मा, जिसे हेंसल की लिफ्टिंग लेम्मा के रूप में भी जाना जाता है, [[कर्ट हेन्सेल]] के नाम पर, [[मॉड्यूलर अंकगणित]] में परिणाम है, जिसमें कहा गया है कि यदि अविभाजित बहुपद में साधारण मूल मॉड्यूल [[अभाज्य संख्या]] {{math|''p''}} है, तो इस मूल को अद्वितीय तक उपयोग किया जा सकता है। मूल मोडुलो {{math|''p''}} की कोई उच्च शक्ति है। सामान्यतः, यदि बहुपद दो सह-अभाज्य बहुपदों में मॉड्यूलो {{math|''p''}} को कारक बनाता है, तो इस कारककरण को {{math|''p''}} की किसी भी उच्च शक्ति के कारककरण मोडुलो तक उपयोग किया जा सकता है (मूल की स्थिति कारकों के लिए डिग्री {{math|1}} की स्थिति से युग्मित होती है)। | गणित में, '''हेंसल की लेम्मा''', जिसे हेंसल की लिफ्टिंग लेम्मा के रूप में भी जाना जाता है, [[कर्ट हेन्सेल]] के नाम पर, [[मॉड्यूलर अंकगणित]] में परिणाम है, जिसमें कहा गया है कि यदि अविभाजित बहुपद में साधारण मूल मॉड्यूल [[अभाज्य संख्या]] {{math|''p''}} है, तो इस मूल को अद्वितीय तक उपयोग किया जा सकता है। मूल मोडुलो {{math|''p''}} की कोई उच्च शक्ति है। सामान्यतः, यदि बहुपद दो सह-अभाज्य बहुपदों में मॉड्यूलो {{math|''p''}} को कारक बनाता है, तो इस कारककरण को {{math|''p''}} की किसी भी उच्च शक्ति के कारककरण मोडुलो तक उपयोग किया जा सकता है (मूल की स्थिति कारकों के लिए डिग्री {{math|1}} की स्थिति से युग्मित होती है)। | ||
सीमा (वास्तव में यह [[उलटा सीमा|व्युत्क्रम सीमा]] है) से निकलते हुए जब {{mvar|p}} की शक्ति अनंत तक जाती है, तो यह इस प्रकार होता है कि मूल या गुणन मॉड्यूलो {{mvar|p}} को मूल तक उपयोग किया जा सकता है या p-एडिक पूर्णांक पर गुणनखंड किया जा सकता है। | सीमा (वास्तव में यह [[उलटा सीमा|व्युत्क्रम सीमा]] है) से निकलते हुए जब {{mvar|p}} की शक्ति अनंत तक जाती है, तो यह इस प्रकार होता है कि मूल या गुणन मॉड्यूलो {{mvar|p}} को मूल तक उपयोग किया जा सकता है या p-एडिक पूर्णांक पर गुणनखंड किया जा सकता है। | ||
Line 353: | Line 353: | ||
* {{Citation | last=Eisenbud | first=David | authorlink=David Eisenbud | title=Commutative algebra | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Graduate Texts in Mathematics | isbn=978-0-387-94269-8 |mr=1322960 | year=1995 | volume=150 | doi=10.1007/978-1-4612-5350-1}} | * {{Citation | last=Eisenbud | first=David | authorlink=David Eisenbud | title=Commutative algebra | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Graduate Texts in Mathematics | isbn=978-0-387-94269-8 |mr=1322960 | year=1995 | volume=150 | doi=10.1007/978-1-4612-5350-1}} | ||
* {{Citation | last=Milne | first=J. G. | title=Étale cohomology | publisher=[[Princeton University Press]] | isbn=978-0-691-08238-7 | year=1980 | url-access=registration | url=https://archive.org/details/etalecohomology00miln }} | * {{Citation | last=Milne | first=J. G. | title=Étale cohomology | publisher=[[Princeton University Press]] | isbn=978-0-691-08238-7 | year=1980 | url-access=registration | url=https://archive.org/details/etalecohomology00miln }} | ||
[[Category:All articles with unsourced statements]] | |||
[[Category:Articles with unsourced statements from July 2021]] | |||
[[Category: | [[Category:CS1 maint]] | ||
[[Category:Created On 18/05/2023]] | [[Category:Created On 18/05/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with maths render errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:क्रमविनिमेय बीजगणित]] | |||
[[Category:बीजगणित में नींबू]] | |||
[[Category:मॉड्यूलर अंकगणित]] |
Latest revision as of 16:26, 30 October 2023
गणित में, हेंसल की लेम्मा, जिसे हेंसल की लिफ्टिंग लेम्मा के रूप में भी जाना जाता है, कर्ट हेन्सेल के नाम पर, मॉड्यूलर अंकगणित में परिणाम है, जिसमें कहा गया है कि यदि अविभाजित बहुपद में साधारण मूल मॉड्यूल अभाज्य संख्या p है, तो इस मूल को अद्वितीय तक उपयोग किया जा सकता है। मूल मोडुलो p की कोई उच्च शक्ति है। सामान्यतः, यदि बहुपद दो सह-अभाज्य बहुपदों में मॉड्यूलो p को कारक बनाता है, तो इस कारककरण को p की किसी भी उच्च शक्ति के कारककरण मोडुलो तक उपयोग किया जा सकता है (मूल की स्थिति कारकों के लिए डिग्री 1 की स्थिति से युग्मित होती है)।
सीमा (वास्तव में यह व्युत्क्रम सीमा है) से निकलते हुए जब p की शक्ति अनंत तक जाती है, तो यह इस प्रकार होता है कि मूल या गुणन मॉड्यूलो p को मूल तक उपयोग किया जा सकता है या p-एडिक पूर्णांक पर गुणनखंड किया जा सकता है।
इन परिणामों को व्यापक रूप से सामान्यीकृत किया गया है, एक ही नाम के अनुसार, बहुपदों की स्थिति में इच्छानुसार रूप से क्रमविनिमेय वलय पर, जहां p को आदर्श द्वारा प्रतिस्थापित किया जाता है, और सहअभाज्य बहुपद का तात्पर्य बहुपद होता है जो आदर्श युक्त 1 उत्पन्न करते हैं।
हेंसल लेम्मा p-ऐडिक विश्लेषण में मौलिक है, विश्लेषणात्मक संख्या सिद्धांत की शाखा है।
हेन्सेल के लेम्मा का प्रमाण रचनात्मक है, और हेन्सेल भारोत्तोलन के लिए कुशल एल्गोरिदम की ओर जाता है, जो बहुपद कारककरण के लिए मौलिक है, और तर्कसंगत संख्याओं पर त्रुटिहीन रैखिक बीजगणित के लिए सबसे कुशल ज्ञात एल्गोरिदम देता है।
मॉड्यूलर अल्पता और भारोत्तोलन
हेन्सेल की मूल लेम्मा पूर्णांकों पर बहुपद गुणनखंडन और पूर्णांक मॉड्यूलो पर अभाज्य संख्या p और इसकी शक्तियों के मध्य संबंध से संबंधित है। इसे सामान्यतः उस स्थिति तक बढ़ाया जा सकता है जहां पूर्णांकों को किसी क्रमविनिमेय वलय द्वारा प्रतिस्थापित किया जाता है, और p को किसी भी अधिकतम आदर्श द्वारा प्रतिस्थापित किया जाता है (वास्तव में, अधिकतम आदर्श , का रूप है, जहाँ p अभाज्य संख्या है)।
इसे त्रुटिहीन बनाने के लिए सामान्य मॉड्यूलर अंकगणित के सामान्यीकरण की आवश्यकता होती है, और इसलिए इस संदर्भ में सामान्यतः उपयोग की जाने वाली शब्दावली को त्रुटिहीन रूप से परिभाषित करना उपयोगी होता है।
मान लीजिये R क्रमविनिमेय वलय है, और I, R आदर्श है। न्यूनीकरण मॉड्यूल I, के प्रत्येक तत्व को विहित मानचित्र के अंतर्गत इसकी छवि द्वारा प्रतिस्थापित करने के लिए संदर्भित करता है R उदाहरण के लिए, यदि में गुणांकों वाला बहुपद R है, इसका अल्पता मोडुलो I, निरूपित में बहुपद है। f के गुणांकों को उनकी छवि प्रतिस्थापित करके प्राप्त किया गया। दो बहुपद f और g में सर्वांगसम मॉड्यूल I हैं, जिन्हें द्वारा निरूपित किया गया है यदि उनके गुणांक मॉड्यूल I समान हैं, अर्थात यदि है। यदि का गुणनखंडन h मापांक I में दो (या अधिक) बहुपद f, g होते हैं जैसे कि हैं।
लिफ्टिंग की प्रक्रिया अल्पता के विपरीत है। अर्थात्, दी गई गणितीय वस्तु के तत्वों पर निर्भर करती है लिफ्टिंग की प्रक्रिया इन तत्वों को तत्वों द्वारा प्रतिस्थापित करती है (या का कुछ के लिए k > 1) जो उन्हें इस प्रकार से मानचित्र करता है जो वस्तुओं के गुणों को बनाए रखता है।
उदाहरण के लिए, बहुपद दिया और गुणनखंड मॉड्यूल I इसके रूप में बताया गया इस गुणनखंड मॉड्यूल को उठाना बहुपद शोध करने के लिए होते हैं ऐसा है कि और हेंसल की लेम्मा का प्रमाणित है कि हल्की परिस्थितियों में इस प्रकार की लिफ्टिंग सदैव संभव है; अगला भाग देखें।
कथन
मूल रूप से, हेन्सेल की लेम्मा को पूर्णांकों पर बहुपद की अभाज्य संख्या p को p की किसी भी शक्ति p-एडिक पूर्णांकों पर गुणनखंडन के लिए गुणन मॉड्यूल को उठाने के लिए (और सिद्ध किया गया) कहा गया था। इसे सरलता से सामान्यीकृत किया जा सकता है, उसी प्रमाण के साथ जहां पूर्णांक को किसी भी क्रमविनिमेय वलय द्वारा प्रतिस्थापित किया जाता है, अभाज्य संख्या को अधिकतम आदर्श द्वारा प्रतिस्थापित किया जाता है, और p-ऐडिक पूर्णांकों को अधिकतम आदर्श के संबंध में पूर्णता द्वारा प्रतिस्थापित किया जाता है। यह सामान्यीकरण है, जिसका व्यापक रूप से उपयोग भी किया जाता है, जिसे यहां प्रस्तुत किया गया है।
मान लीजिये क्रमविनिमेय वलय R का उच्चिष्ठ आदर्श हो, और
में बहुपद हो। अग्रणी गुणांक के साथ के अंदर नही है।
तब से अधिकतम आदर्श, भागफल वलय है क्षेत्र है, और प्रमुख आदर्श डोमेन है, और, विशेष रूप से, अद्वितीय गुणनखंड डोमेन, जिसका अर्थ है कि प्रत्येक शून्येतर बहुपद के अशून्य तत्व के उत्पाद के रूप में विभिन्न प्रकार से गुणनखंडित किया जा सकता है और अलघुकरणीय बहुपद जो एकात्मक बहुपद हैं (अर्थात, उनके प्रमुख गुणांक 1 हैं)।
हेंसल की लेम्मा प्रमाणित करती है कि h मोडुलो का प्रत्येक गुणनखंड सहअभाज्य बहुपदों में विभिन्न प्रकार से गुणनखंड मॉड्यूल में उपयोग किया जा सकता है। प्रत्येक के लिए k है।
अधिक त्रुटिहीन रूप से, उपरोक्त परिकल्पनाओं के साथ, यदि जहाँ f और g मोनिक और सहअभाज्य बहुपद मोडुलो हैं, तो प्रत्येक सकारात्मक पूर्णांक k के लिए मोनिक बहुपद होते हैं और ऐसा है कि:
और और अद्वितीय हैं (इन गुणों के साथ) मोडुलो होता है।
सरल मूल भारोत्तोलन
महत्वपूर्ण विशेष स्थिति है जब होता है। इस स्थिति में कोप्रिमेलिटी परिकल्पना का अर्थ है कि r सरल मूल है। यह हेन्सेल की लेम्मा की निम्नलिखित विशेष स्थिति है, जिसे प्रायः हेन्सेल की लेम्मा भी कहा जाता है।
उपरोक्त परिकल्पनाओं और नोटेशन के साथ, यदि r सरल मूल है। तब r का विभिन्न प्रकार से सरल मूल तक उपयोग किया जा सकता है। प्रत्येक सकारात्मक पूर्णांक n के लिए होता है। स्पष्ट रूप से, प्रत्येक सकारात्मक पूर्णांक n के लिए, अद्वितीय होता है ऐसा है कि और का सरल मूल होता है।
आदि पूर्णता के लिए भारोत्तोलन
तथ्य यह है कि कोई उपयोग किया जा सकता है। प्रत्येक सकारात्मक पूर्णांक के लिए n सीमा तक जाने का सुझाव देता है जब n अनंत की ओर जाता है। यह p-एडिक पूर्णांक को प्रस्तुत करने के लिए मुख्य प्रेरणाओं में से था।
अधिकतम आदर्श क्रमविनिमेय वलय R का की घात , R पर सांस्थिति के लिए मुक्त निकट का आधार बनाता है, जिसे -एडिक सांस्थिति कहा जाता है। इस सांस्थिति के पूर्ण होने की पहचान स्थानीय वलय के पूर्ण होने से की जा सकती है। और व्युत्क्रम सीमा के साथ है। यह पूर्णता पूर्ण स्थानीय वलय है, जिसे सामान्यतः द्वारा निरूपित किया जाता है। जब R पूर्णांकों का वलय है, और जहां p अभाज्य संख्या है, यह पूर्णता p-ऐडिक पूर्णांकों का वलय है। व्युत्क्रम सीमा के रूप में पूर्णता की परिभाषा, और हेन्सेल लेम्मा के उपरोक्त कथन का अर्थ है कि सहयोगी सहअभाज्य बहुपद मॉड्यूलो में प्रत्येक गुणनखंड बहुपद की छवि के गुणनखंड के लिए विशिष्ट रूप से उपयोग किया जा सकता है। इसी प्रकार, h मॉड्यूलो के प्रत्येक साधारण मूल को h की छवि के सरल मूल h में तक उपयोग किया जा सकता है।
प्रमाण
हेन्सेल की लेम्मा सामान्यतः कारककरण को ऊपर उठाकर वृद्धिशील रूप से सिद्ध होती है या तो गुणनखंड समाप्त करने के लिए (रेखीय भारोत्तोलन) या गुणनखंड खत्म (द्विघात भारोत्तोलन) होता है।
प्रमाण का मुख्य घटक यह है कि क्षेत्र पर सह प्रमुख बहुपद बेज़ाउट की पहचान को संतुष्ट करते हैं। अर्थात यदि f और g क्षेत्र पर सहप्रमुख अविभाज्य बहुपद हैं (यहाँ ), बहुपद हैं a और b ऐसा है कि और
बेज़ाउट की पहचान सहअभाज्य बहुपदों को परिभाषित करने और हेंसल के लेम्मा को प्रमाणित करने की अनुमति देता है, भले ही आदर्श अधिकतम नहीं है। इसलिए, निम्नलिखित उपपत्तियों में, क्रमविनिमेय वलय R आदर्श I, बहुपद से प्रारंभ होता है, जिसमें प्रमुख गुणांक है जो विपरीत मॉड्यूलो I है (जो कि इसकी छवि है में इकाई है), और h मॉड्यूलो I या मॉड्यूलो की शक्ति I का गुणनखंडन, जैसे कि कारक बेज़ाउट की पहचान मॉड्यूल I को संतुष्ट करते हैं। इन प्रमाणों में, का तात्पर्य है।
रैखिक भारोत्तोलन
मान लीजिये I क्रमविनिमेय वलय R का आदर्श है, और R में गुणांकों के साथ अविभाजित बहुपद हो जिसका प्रमुख गुणांक है जो विपरीत मॉड्यूलो I है(अर्थात, छवि में इकाई है ).
मान लीजिए कि किसी सकारात्मक पूर्णांक के लिए k गुणनखंड है:
- ऐसा है कि f और g मोनिक बहुपद हैं जो सहअभाज्य मोडुलो I हैं, इस अर्थ में कि वहाँ उपस्थित है जैसे कि तब, बहुपद हैं, जैसे कि और
इन नियमों के अंर्तगत, और अद्वितीय मॉड्यूलो हैं, इसके अतिरिक्त, और बेज़ाउट की पहचान f और g को संतुष्ट करते हैं, वह है,
निम्नलिखित प्रमाण कंप्यूटिंग के लिए लिखा गया है और में गुणांक वाले केवल बहुपदों का उपयोग करके या है। जब और यह केवल पूर्णांक मॉड्यूलो p में परिवर्तन करने की अनुमति देता है।
प्रमाण: परिकल्पना द्वारा, विपरीत मॉड्यूलो I है। इसका तात्पर्य है कि और उपस्थित है, जैसे कि है।
मान लीजिये डिग्री से अल्प है कि
- (कोई चयन कर सकता है, किन्तु अन्य विकल्पों से सरल संगणनाएँ हो सकती हैं। उदाहरण के लिए, यदि और यह संभव है और चयन करना उत्तम है जहां के गुणांक अंतराल में पूर्णांक हैं।)
जैसा g मोनिक है, बहुपदों का यूक्लिडियन विभाजन द्वारा g परिभाषित है, और q और c प्रदान करता है जैसे कि और है, इसके अतिरिक्त दोनों q और c में हैं। इसी प्रकार, मान लीजिये साथ और किसी के निकट वास्तव में है:
जैसा मोनिक है, डिग्री मोडुलो का से अल्प हो सकता है केवल यदि है।
इस प्रकार, सर्वांगसमता मॉड्यूल पर विचार करते हुए किसी के निकट है।
तो, अस्तित्व के प्रमाण के साथ सत्यापित किया गया है:
विशिष्टता
मान लीजिये R, I, h और पूर्व खंड में के रूप में है। मान लीजिये
सहअभाज्य बहुपदों (उपरोक्त अर्थों में) में गुणनखंड हो, जैसे के लिए रैखिक उठाने का आवेदन का अस्तित्व दर्शाता है और ऐसा है कि और
बहुपद और विशिष्ट रूप से परिभाषित मॉड्यूलो हैं। इसका तात्पर्य यह है कि, यदि एक और युग्म उन्हीं नियमों को पूर्ण करता है, तो उसके निकट है
उपपत्ति: चूंकि सर्वांगसमता मॉड्यूल है समान समरूपता मॉड्यूलो का तात्पर्य है कोई भी गणितीय प्रेरण द्वारा आगे बढ़ सकता है और मान सकता है कि अद्वितीयता n − 1 के लिए सिद्ध हो गई है, स्थिति n = 0 अल्प है। अर्थात ऐसा माना जा सकता है:
परिकल्पना द्वारा, है
और इस प्रकार है:
प्रेरण परिकल्पना द्वारा, पश्चात के योग का दूसरा पद संबंधित है, और इस प्रकार पूर्व कार्यकाल के लिए भी यही सत्य है। जैसा विपरीत मॉड्यूलो I है, वहां और है ऐसा है कि इस प्रकार
प्रेरण परिकल्पना का पुनः उपयोग करना।
कोप्रिमेलिटी मॉड्यूलो I के अस्तित्व का तात्पर्य है ऐसा है कि आगमन परिकल्पना का फिर प्रयोग करने पर, प्राप्त होता है:
इस प्रकार किसी के पास डिग्री से अल्प का बहुपद है वह सर्वांगसम मॉड्यूल है मोनिक बहुपद के उत्पाद के लिए g और दूसरा बहुपद w है यह तभी संभव है जब और तात्पर्य है इसी प्रकार, में भी है और यह विशिष्टता प्रमाणित करता है।
द्विघात भारोत्तोलन
रैखिक भारोत्तोलन गुणनखंड मॉड्यूल को उठाने की अनुमति देता है गुणनखंड के लिए द्विघात भारोत्तोलन सीधे गुणनखंड मोडुलो को उठाने की अनुमति देता है बेज़ाउट की पहचान और कंप्यूटिंग मोडुलो को उठाने की कीमत पर भी मॉड्यूलो के अतिरिक्त I है (यदि कोई रैखिक उठाने के उपरोक्त विवरण का उपयोग करता है)।
मॉड्यूलो तक उठाने के लिए बड़े के लिए N कोई भी विधि का उपयोग कर सकता है। यदि, गुणनखंड मॉड्यूल आवश्यक है N − 1 रैखिक उठाने के चरण या केवल k − 1 द्विघात भारोत्तोलन के चरण है। चूँकि, अंत की स्थिति में गणना के समय परिवर्तन किए जाने वाले गुणांक के आकार में वृद्धि हुई है। इसका तात्पर्य है कि सबसे अच्छा उठाने का प्रकार संदर्भ पर निर्भर करता है (के मूल्य N, इसकी प्रकृति R, गुणन एल्गोरिथम जिसका उपयोग किया जाता है, कंप्यूटर हार्डवेयर विशिष्टताएं, आदि)।[citation needed]
द्विघात भारोत्तोलन निम्नलिखित संपत्ति पर आधारित है।
मान लीजिए कि किसी सकारात्मक पूर्णांक के लिए k गुणनखंड है
- ऐसा है कि f और g मोनिक बहुपद हैं जो सहअभाज्य मोडुलो हैं I, इस अर्थ में कि वहाँ उपस्थित है ऐसा है कि फिर, बहुपद हैं ऐसा है कि और
इसके अतिरिक्त, और बेज़ाउट के रूप की पहचान को संतुष्ट करें:
- (यह द्विघात भारोत्तोलन की पुनरावृत्तियों की अनुमति देने के लिए आवश्यक है।)
प्रमाण: प्रथम अभिकथन वास्तव में आदर्श के लिए k = 1 के साथ प्रस्तावित रैखिक उत्तोलन होता है I के अतिरिक्त है।
मान लीजिये होता है। किसी के निकट है।
जहाँ
सेटिंग और मिलता है।
जो दूसरे कथन को सिद्ध करता है।
स्पष्ट उदाहरण
मान लीजिये होता है।
मॉडुलो 2, हेंसल की लेम्मा को अल्प करने के पश्चात से प्रारम्भ नहीं किया जा सकता है मॉड्यूलो 2 है।[1]पृष्ठ 15-16
6 कारकों के साथ एक दूसरे के लिए अपेक्षाकृत प्रमुख नहीं है।आइज़ेंस्टीन के परिक्षण से चूँकि, यह निष्कर्ष निकाला जा सकता है कि बहुपद में अलघुकरणीय है:
ऊपर , दूसरी ओर है:
जहाँ 2 इंच का वर्गमूल है। क्योंकि 4 घन नहीं है ये दो कारक समाप्त हो गए हैं। इसलिए का पूर्ण गुणनखंड में और है।
जहाँ 2 इंच का वर्गमूल है, जिसे उपरोक्त गुणनखंड को विस्थापित करके प्राप्त किया जा सकता है।
अंत में, बहुपद विभाजित हो जाता है:
सभी कारकों के साथ एक दूसरे के लिए अपेक्षाकृत प्रमुख हैं, जिससे कि अंदर और 6 कारक हैं (गैर-तर्कसंगत) 727-एडिक पूर्णांकों के साथ है।
मूल भारोत्तोलन के लिए डेरिवेटिव का उपयोग करना
मान लीजिये पूर्णांक (या p-एडिक पूर्णांक) के साथ गुणांक बहुपद है, और मान लीजिए कि m, k सकारात्मक पूर्णांक हैं जैसे कि m ≤ k है। यदि r पूर्णांक है जैसे कि,
तब, प्रत्येक के लिए वहाँ पूर्णांक s उपस्थित है जैसे कि,
इसके अतिरिक्त, यह s अद्वितीय मॉड्यूलो pk+m है, और स्पष्ट रूप से पूर्णांक के रूप में गणना की जा सकती है:
जहाँ पूर्णांक संतोषजनक है:
ध्यान दें कि जिससे कि प्राप्त हुआ है। यदि , तब 0, 1, या कई s उपस्थित हो सकते हैं (नीचे हेन्सल लिफ्टिंग देखें)।
व्युत्पत्ति
हम लिखने के लिए r के चारों ओर f के टेलर विस्तार का उपयोग करते हैं:
हम देखते हैं कि s - r = tpk किसी पूर्णांक t के लिए होता है। मान लीजिये,
के लिए इस प्रकार है:
धारणा है कि p से विभाज्य नहीं है यह सुनिश्चित करता है विपरीत मोड है जो अनिवार्य रूप से अद्वितीय है। इसलिए t के लिए समाधान अद्वितीय रूप से उपस्थित है, और s विशिष्ट मॉड्यूलो अद्वितीय रूप से उपस्थित है।
अवलोकन
अलघुकरणीय बहुपदों के लिए मानदंड
उपरोक्त परिकल्पनाओं का उपयोग करते हुए, यदि हम अलघुकरणीय बहुपद पर विचार करते हैं:
ऐसा है कि , तब
विशेष रूप से, के लिए, हम प्राप्त करते है:
किन्तु , इसलिए बहुपद अलघुकरणीय नहीं हो सकता। जबकि में हमारे निकट दोनों मूल्य सहमत हैं, जिसका अर्थ है कि बहुपद अप्रासंगिक हो सकता है। इरेड्यूसबिलिटी निर्धारित करने के लिए, न्यूटन बहुभुज को नियोजित किया जाना चाहिए।[2]पृष्ठ 144
फ्रोबेनियस
ध्यान दें कि दिया गया है फ्रोबेनियस एंडोमोर्फिज्म बहुपद देता है जिसका सदैव शून्य व्युत्पन्न होता है:
इसलिए p-वें मूल में उपस्थित नहीं है के लिए है, यह संकेत करता है एकता का मूल नहीं हो सकता है।
एकता का मूल
चूँकि एकता -वें मूल में निहित नहीं हैं, के समाधान हैं, टिप्पणी
कभी भी शून्य नहीं होता है, इसलिए यदि कोई समाधान उपस्थित है, तो यह आवश्यक रूप से का उपयोग करता है। क्योंकि फ्रोबेनियस देता है, सभी गैर-शून्य तत्व समाधान हैं। वास्तव में एकता के यही मूल .[3] हैं।
हेन्सेल भारोत्तोलन
लेम्मा का उपयोग करके, बहुपद f मॉड्यूलो pk के मूल r को नए मूल s मॉड्यूलो pk+1 में "लिफ्ट" किया जा सकता है, जैसे कि r ≡ s मॉड pk है (m = 1 लेकर; बड़ा m लेकर प्रेरण द्वारा अनुसरण करता है)। वास्तव में, मूल मॉड्यूल pk+1 भी मूल मोडुलो pk है, इसलिए मूल मॉड्यूल pk+1 वास्तव में मूल मॉड्यूलो pk की लिफ्टिंग हैं। नया मूल s r मॉड्यूलो p के सर्वांगसम है, इसलिए नया मूल भी संतुष्ट करता है। तो उठाने को दोहराया जा सकता है, और समाधान rk से प्रारंभ होता है हम समाधान rk+1, rk+2, ... का अनुक्रम प्राप्त कर सकते हैं, जो p की उत्तरोत्तर उच्च घातों के लिए समान सर्वांगसमता प्रदान करता है प्रारंभिक मूल rk के लिए है, इससे यह भी ज्ञात होता है कि f में मॉड pk की मूल संख्या उतनी ही है जितनी मॉड pk+1 मॉड pk+2 या p की कोई अन्य उच्च शक्ति f मॉड pk के मूल सभी सरल हैं।इस प्रक्रिया का क्या होता है यदि r साधारण मूल मॉड p नहीं है?
तब का तात्पर्य है, वह सभी पूर्णांकों t के लिए है। इसलिए, हमारे निकट दो स्थिति हैं:
- यदि तब f(x) मॉडुलो pk+1 के मूल में r का कोई उत्थान नहीं है।
- यदि तब r से मॉडुलो pk+1 तक की प्रत्येक लिफ्टिंग f(x) मॉडुलो pk+1 का मूल है।
'उदाहरण'- दोनों स्थितियों को देखने के लिए हम p = 2 के साथ दो भिन्न-भिन्न बहुपदों का परिक्षण करते हैं:
और r = 1 तब और है। जिसका तात्पर्य है कि मॉड्यूल 4 में 1 की कोई लिफ्टिंग f(x) मॉड्यूलो 4 की मूल नहीं है।
और r = 1 तब और है। चूँकि, तब से हम अपने समाधान को मॉड्यूलस 4 तक उपयोग कर सकते हैं और दोनों लिफ्ट (अर्थात 1, 3) समाधान हैं। व्युत्पन्न अभी भी 0 मॉड्यूल 2 है, इसलिए प्राथमिकता हम नहीं जानते कि क्या हम उन्हें मॉड्यूल 8 तक उपयोग कर सकते हैं, किन्तु वास्तव में हम कर सकते हैं, क्योंकि g(1) 0 मॉड 8 है और g(3) 0 मॉड 8 है, 1, 3, 5, और 7 मॉड 8 पर समाधान दे रहे हैं। इनमें से केवल g(1) और g(7) 0 मॉड 16 हैं, हम केवल 1 और 7 को मॉडुलो 16 तक उपयोग कर सकते हैं, 1, 7, 9 और 15 मॉड 16 दे रहे हैं। इनमें से केवल 7 और 9 g(x) = 0 मॉड 32 देते हैं, इसलिए इन्हें 7, 9, 23, और 25 मॉड 32 देते हुए उपयोग किया जा सकता है। यह ज्ञात हुआ है कि प्रत्येक पूर्णांक k ≥ 3 के लिए है। वहाँ g(x) मॉड 2k की मूल में 1 मॉड 2 की चार लिफ्टिंग हैं।
p-एडिक संख्याओं के लिए हेन्सेल लेम्मा
p-ऐडिक संख्याओं में, जहाँ हम p की परिमेय संख्या मॉड्यूलो शक्तियों का बोध करा सकते हैं जब तक कि भाजक p का गुणज न हो, rk (मूल मॉड pk) से rk+1 (मूल मॉड pk+1) तक पुनरावर्तन अत्यधिक सरल प्रकार से व्यक्त किया जा सकता है। t को (y) पूर्णांक चयन करने के अतिरिक्त जो सर्वांगसमता का समाधान करता है:
मान लीजिए कि t परिमेय संख्या है (यहाँ pk वास्तव में भाजक नहीं है क्योंकि f(rk) p से विभाज्य है:
तब व्यवस्थित करें:
यह अंश पूर्णांक नहीं हो सकता है, किन्तु यह p-एडिक पूर्णांक है, और संख्याओं का क्रम rk p-ऐडिक पूर्णांक f(x) = 0 की मूल में परिवर्तित हो जाता है। इसके अतिरिक्त, rk के संदर्भ में (नई) संख्या rk+1 के लिए प्रदर्शित पुनरावर्ती सूत्र वास्तव में वास्तविक संख्या में समीकरणों के मूल ज्ञात करने के लिए त्रुटिहीन रूप से न्यूटन की विधि है।
p-एडिक्स में सीधे कार्य करके और पी-एडिक निरपेक्ष मान का उपयोग करके, हेन्सेल के लेम्मा का संस्करण है जिसे तब भी प्रारम्भ किया जा सकता है जब हम f(a) ≡ 0 मॉड p के समाधान से प्रारंभ करते हैं जैसे कि हमें केवल संख्या सुनिश्चित करने की आवश्यकता है बिल्कुल 0 नहीं है। यह अधिक सामान्य संस्करण इस प्रकार है: यदि कोई पूर्णांक a है जो संतुष्ट करता है:
तो अद्वितीय p-एडिक पूर्णांक b ऐसे f(b) = 0 और है। b का निर्माण यह दिखाने के समान है कि न्यूटन की विधि से प्रारंभिक मान के साथ पुनरावर्तन a में अभिसरित होता है p-एडिक और हम b को सीमा मानते हैं। नियम के अनुकूल मूल के रूप में b की विशिष्टता अतिरिक्त कार्य की आवश्यकता है।
ऊपर दिया गया हेंसल लेम्मा का कथन () इस अधिक सामान्य संस्करण की विशेष स्थिति है, क्योंकि नियम हैं कि f(a) ≡ 0 मॉड p और , और है।
उदाहरण
मान लीजिए कि p विषम अभाज्य संख्या है और a गैर-शून्य द्विघात अवशेष सापेक्ष p है। तब हेंसल की लेम्मा का अर्थ है कि a का p-ऐडिक पूर्णांक के वलय में वर्गमूल है। वास्तव में, मान लीजिये है। यदि r मॉड्यूल p का वर्ग मूल है तो:
जहां दूसरी स्थिति इस तथ्य पर निर्भर करती है कि p विषम है। हेंसल की लेम्मा का मूल संस्करण हमें बताता है कि r1 = r से प्रारंभ करके हम पुनरावर्ती रूप से पूर्णांकों के अनुक्रम का निर्माण कर सकते हैं, जैसे:
यह क्रम किसी p-ऐडिक पूर्णांक b में परिवर्तित होता है जो b2 = a को संतुष्ट करता है। वास्तव में, b, a का अद्वितीय वर्गमूल है, r1 मॉडुलो p के अनुरूप है। इसके विपरीत, यदि a का पूर्ण वर्ग है और यह p से विभाज्य नहीं है तो यह अशून्य द्विघात अवशेष मॉड p है। ध्यान दें कि द्विघात पारस्परिकता नियम किसी को सरलता से परीक्षण करने की अनुमति देता है कि क्या गैर-शून्य द्विघात अवशेष मॉड p है, इस प्रकार हमें यह निर्धारित करने का व्यावहारिक प्रकार मिलता है कि कौन सा p-एडिक संख्या (p विषम के लिए) में p-एडिक वर्गमूल है, और हेन्सल के लेम्मा के अधिक सामान्य संस्करण का उपयोग करके केस p = 2 को कवर करने के लिए इसे बढ़ाया जा सकता है (17 के 2-एडिक वर्गमूल के साथ उदाहरण अंत में दिया गया है)।
उपरोक्त वर्णन को और अधिक स्पष्ट करने के लिए, आइए हम 2 का वर्गमूल (इसका समाधान) ) 7-एडिक पूर्णांकों में ज्ञात करें। मोडुलो 7 समाधान 3 है (हम 4 भी ले सकते हैं), इसलिए हम व्यवस्थित करते हैं। हेन्सेल की लेम्मा तब हमें ज्ञात करने की अनुमति देती है, जब इस प्रकार है:
जिसके आधार पर अभिव्यक्ति,
में परिवर्तित हो जाती है:
जो दर्शाता है, अब:
और मान लीजिये होता है। (यदि हमने 7-एडिक्स में सीधे न्यूटन विधि पुनरावर्तन का उपयोग किया था, तब और होता है।)
हम निरंतर रख सकते हैं और ज्ञात कर सकते हैं, प्रत्येक बार जब हम गणना करते हैं (अर्थात, k के प्रत्येक क्रमिक मान के लिए), 7 की अगली उच्च शक्ति के लिए और आधार 7 अंक जोड़ा जाता है। 7-एडिक पूर्णांकों में यह क्रम अभिसरित होता है, और सीमा 2 इंच का वर्गमूल है। जिसमें प्रारंभिक 7-एडिक विस्तार है:
यदि हमने प्रारंभिक रूचि से प्रारंभ की है, तो हेन्सेल की लेम्मा 2 इंच का वर्गमूल उत्पन्न करेगी जो 3 (मॉड 7) के अतिरिक्त 4 (मॉड 7) के अनुरूप है और वास्तव में यह दूसरा वर्गमूल पूर्व वर्गमूल का ऋणात्मक होगा (जो 4 = −3 मॉड 7 के अनुरूप है)।
उदाहरण के रूप में जहां हेंसल के लेम्मा का मूल संस्करण मान्य नहीं है, किन्तु अधिक सामान्य है, मान लीजिये और होता है, तब और है, इसलिए:
जिसका अर्थ है कि अद्वितीय 2-एडिक पूर्णांक b संतोषजनक है:
अर्थात, b ≡ 1 मॉड 4. 2-एडिक पूर्णांकों में 17 के दो वर्गमूल हैं, जो चिह्न से भिन्न हैं, और चूँकि वे सर्वांगसम मॉड 2 हैं, वे सर्वांगसम मॉड 4 नहीं हैं। यह हेन्सेल के सामान्य संस्करण के अनुरूप है लेम्मा हमें केवल 17 का अद्वितीय 2-एडिक वर्गमूल दे रही है जो मॉड 2 के अतिरिक्त 1 मॉड 4 के अनुरूप है। यदि हमने प्रारंभिक अनुमानित मूल a = 3 के साथ प्रारंभ किया था तो हम खोजने के लिए अधिक सामान्य हेन्सेल लेम्मा को फिर से लागू कर सकते हैं। 17 का अनोखा 2-एडिक वर्गमूल जो 3 मॉड 4 के अनुरूप है। यह 17 का अन्य 2-एडिक वर्गमूल है।
मूलों की लिफ्टिंग की स्थिति में मापांक 2 सेk 2k+1 तक, मूल 1 मॉड 2 से प्रारंभ होने वाली लिफ्ट इस प्रकार हैं:
- 1 मॉड 2 → 1, 3 मॉड 4
- 1 मॉड 4 → 1, 5 मॉड 8 और 3 मॉड 4 → 3, 7 मॉड 8
- 1 मॉड 8 → 1, 9 मॉड 16 और 7 मॉड 8 → 7, 15 मॉड 16, जबकि 3 मॉड 8 और 5 मॉड 8 मूल मॉड 16 तक नहीं उठाते हैं
- 9 मॉड 16 → 9, 25 मॉड 32 और 7 मॉड 16 → 7, 23 मॉड 16, जबकि 1 मॉड 16 और 15 मॉड 16 मूल मॉड 32 तक नहीं उठाते हैं।
प्रत्येक k के लिए अल्प से अल्प 3, x2 − 17 मॉड 2k के चार मूल होते हैं, किन्तु यदि हम उनके 2-एडिक विस्तारों को देखें तो हम देख सकते हैं कि युग्मों में वे केवल दो 2-एडिक सीमाओं में अभिसरण कर रहे हैं। उदाहरण के लिए, चार जड़ें मॉड 32 दो युग्म मूल में विभक्त हो जाती हैं, जिनमें से प्रत्येक मॉड 16 दिखती है:
- 9 = 1 + 23 और 25 = 1 + 23 + 24
- 7 = 1 + 2 + 22 और 23 = 1 + 2 + 22 + 24
17 के 2-ऐडिक वर्गमूलों का विस्तार है:
और उदाहरण जहां हम हेंसल लेम्मा के अधिक सामान्य संस्करण का उपयोग कर सकते हैं, किन्तु मूल संस्करण का नहीं, यह प्रमाण है कि कोई भी 3-एडिक पूर्णांक c ≡ 1 मॉड 9 घन है।मान लीजिये और प्रारंभिक सन्निकटन a = 1 लें। मूलभूत हेन्सेल लेम्मा का उपयोग f(x) के मूलों का शोध करने के लिए नहीं किया जा सकता है क्योंकि प्रत्येक r के लिए हैं। हेंसल के लेम्मा के सामान्य संस्करण को प्रस्तावित करने के लिए हम चाहते हैं तात्पर्य अर्थात, यदि c ≡ 1 मॉड 27 है तो सामान्य हेन्सेल की लेम्मा हमें बताती है कि f(x) में 3-एडिक मूल है, इसलिए c 3-एडिक क्यूब है। चूँकि , हम इस परिणाम को कमजोर स्थिति के तहत चाहते थे कि c ≡ 1 मॉड 9 यदि c ≡ 1 मॉड 9 तो c ≡ 1, 10, या 19 मॉड 27 है। हम मूल्य के आधार पर सामान्य हेन्सेल के लेम्मा को तीन बार प्रस्तावित कर सकते हैं। c मॉड 27 : यदि c ≡ 1 मॉड 27 तो a = 1 का उपयोग करें, यदि c ≡ 10 मॉड 27 तो a = 4 का उपयोग करें (चूंकि 4 f(x) मॉड 27 की मूल है), और यदि c ≡ 19 मॉड 27 फिर a = 7 का उपयोग करें। (यह सत्य नहीं है कि प्रत्येक c ≡ 1 मॉड 3 3-एडिक क्यूब है, उदाहरण के लिए, 4 3-एडिक क्यूब नहीं है क्योंकि यह क्यूब मॉड 9 नहीं है।)
इसी प्रकार, कुछ प्रारंभिक कार्य के पश्चात, हेंसल की लेम्मा का उपयोग यह दिखाने के लिए किया जा सकता है कि किसी भी विषम अभाज्य संख्या p के लिए, कोई भी p-एडिक पूर्णांक c 1 मॉडुलो p2 के सर्वांगसम है p-वें घात है। (यह p = 2 के लिए असत्य है।)
सामान्यीकरण
मान लीजिए A क्रमविनिमेय वलय है, जो आदर्श के संबंध में पूर्ण है, और होता है, a ∈ A को f का अनुमानित मूल कहा जाता है, यदि
यदि f का अनुमानित मूल है तो इसका त्रुटिहीन मूल b ∈ A है जो a के निकट है; वह है,
इसके अतिरिक्त, यदि शून्य-भाजक नहीं है तो b अद्वितीय है।
इस परिणाम को निम्नानुसार अनेक चरों के लिए सामान्यीकृत किया जा सकता है:
- 'प्रमेय' मान लीजिए A क्रमविनिमेय वलय है जो आदर्श के संबंध में पूर्ण है, मान लीजिये A पर n चर में n बहुपदों की प्रणाली हो। देखें An से स्वयं के मानचित्रण के रूप में, और मान लीजिए इसके जैकबियन आव्यूह को दर्शाता है। मान लीजिए a = (a1, ..., an) ∈ An, 'f' = '0' का अनुमानित समाधान इस अर्थ में है:
- तो कुछ b = (b1, ..., bn) ∈ An संतोषजनक 'f'('b') = '0' है, अर्थात,
- इसके अतिरिक्त यह समाधान इस अर्थ में है कि,
विशेष स्थिति के रूप में, यदि सभी i के लिए A में इकाई है तो 'f'('b') = '0' के साथ समाधान है, सभी i के लिए होता है।
जब n = 1, 'a' = a, A का अवयव होता है और है। इस बहुभिन्नरूपी हेन्सेल के लेम्मा की परिकल्पना उन लोगों को अल्प करती है जो एक-चर हेन्सेल के लेम्मा में बताए गए थे।
संबंधित अवधारणाएं
हेन्सेलियन संपत्ति होने के लिए वलय का पूर्ण होना आवश्यक नियम नहीं है: 1950 में गोरो अज़ुमाया ने हेंसेलियन वलय होने के लिए अधिकतम आदर्श m के लिए हेन्सेलियन संपत्ति को संतुष्ट करने वाले क्रमविनिमेय स्थानीय वलय को परिभाषित किया।
मासायोशी नगाटा ने 1950 के दशक में प्रमाणित किया कि अधिकतम आदर्श m के साथ किसी भी क्रमविनिमेय स्थानीय वलय A के लिए सदैव छोटा वलय Ah होता है जिसमें A होता है जैसे कि Ah mAh के संबंध में हेन्सेलियन है। यदि A नोथेरियन है।
यह भी देखें
- हस्से-मिन्कोव्स्की प्रमेय
- न्यूटन बहुभुज
- स्थानीय रूप से सघन क्षेत्र
- लिफ्टिंग-द-एक्सपोनेंट लेम्मा
संदर्भ
- ↑ Gras, Georges (2003). Class field theory : from theory to practice. Berlin. ISBN 978-3-662-11323-3. OCLC 883382066.
{{cite book}}
: CS1 maint: location missing publisher (link) - ↑ Neukirch, Jürgen (1999). बीजगणितीय संख्या सिद्धांत. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-662-03983-0. OCLC 851391469.
- ↑ Conrad, Keith. "Hensel's Lemma" (PDF). p. 4.
{{cite web}}
: CS1 maint: url-status (link)
- Eisenbud, David (1995), Commutative algebra, Graduate Texts in Mathematics, vol. 150, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-5350-1, ISBN 978-0-387-94269-8, MR 1322960
- Milne, J. G. (1980), Étale cohomology, Princeton University Press, ISBN 978-0-691-08238-7