कणों द्वारा प्रकाश का प्रकीर्णन: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Process by which dust, particulates, etc. scatter light}} कणों द्वारा प्रकाश का प्रकीर्णन वह प...")
 
No edit summary
 
(10 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Process by which dust, particulates, etc. scatter light}}
{{short description|Process by which dust, particulates, etc. scatter light}}


कणों द्वारा प्रकाश का प्रकीर्णन वह प्रक्रिया है जिसके द्वारा छोटे कण (जैसे [[बर्फ के क्रिस्टल]], [[धूल]], वायुमंडलीय कण, ब्रह्मांडीय धूल और रक्त कोशिकाएं) प्रकाश का प्रकीर्णन प्रकाश प्रकीर्णन के कारण [[आकाश]] की [[[[प्रकाश बिखरना]]]] और [[हेलो (ऑप्टिकल घटना)]] जैसी [[ऑप्टिकल घटनाएं]] होती हैं।
कणों द्वारा प्रकाश का प्रकीर्णन वह प्रक्रिया है जिसके द्वारा छोटे कण प्रकाश को फैलाते हैं, जिससे [[आकाश]] के [[Index.php?title=नीले रंग|नीले रंग]] और [[Index.php?title=Index.php?title= आभामण्डल|आभामण्डल]] जैसी [[Index.php?title= प्रकाशीय घटनाएं|प्रकाशीय घटनाएं]] होती हैं।


मैक्सवेल के समीकरण प्रकाश प्रकीर्णन का वर्णन करने वाले सैद्धांतिक और कम्प्यूटेशनल तरीकों का आधार हैं, लेकिन चूंकि मैक्सवेल के समीकरणों के सटीक समाधान केवल चयनित कण ज्यामिति (जैसे गोलाकार) के लिए जाने जाते हैं, कणों द्वारा प्रकाश का प्रकीर्णन [[कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स]] की एक शाखा है जो इलेक्ट्रोमैग्नेटिक रेडिएशन [[ बिखरने ]] से संबंधित है और कणों द्वारा अवशोषण।
मैक्सवेल के समीकरण प्रकाश प्रकीर्णन का वर्णन करने वाले सैद्धांतिक और संगणनात्मक नियमों का आधार हैं, परंतु मैक्सवेल के समीकरणों के सटीक समाधान केवल चयनित कण ज्यामिति के लिए जाने जाते हैं, कणों द्वारा प्रकाश का प्रकीर्णन [[Index.php?title= संगणनात्मक विद्युत् चुम्बकिकी|संगणनात्मक विद्युत् चुम्बकिकी]] एक शाखा है जो विद्युत्चुंबकीय विकिरण [[Index.php?title=Index.php?title= प्रकीर्णन|प्रकीर्णन]] से संबंधित है और कणों द्वारा अवशोषण है।


[[आकार]] के मामले में जिसके लिए [[विश्लेषणात्मक समाधान]] ज्ञात हैं (जैसे गोले, गोले के समूह, अनंत [[सिलेंडर (ज्यामिति)]]), समाधानों की गणना आमतौर पर श्रृंखला (गणित) # अनंत श्रृंखला के संदर्भ में की जाती है। अधिक जटिल ज्यामिति और विषम कणों के मामले में मूल मैक्सवेल के समीकरण हैं [[विवेक]] और आंशिक अवकल समीकरण#विधि पीडीई को हल करने के लिए। कणों द्वारा प्रकाश के प्रकीर्णन के बहु-प्रकीर्णन प्रभावों का उपचार विकिरण अंतरण तकनीकों द्वारा किया जाता है (देखें, उदाहरण के लिए [[वायुमंडलीय विकिरण अंतरण कोड]])।
ज्यामिति की स्थिति में जिसके लिए [[विश्लेषणात्मक समाधान]] ज्ञात हैं, जहां पर समाधान सामान्यतः अनंत श्रृंखला के संदर्भ में गणना किए जाते हैं। अधिक जटिल ज्यामिति और विषम कणों की स्थिति में मूल मैक्सवेल के समीकरण हल किए जाते हैं। कणों द्वारा प्रकाश के प्रकीर्णन के बहु-प्रकीर्णन प्रभावों का उपचार विकिरण अंतरण उद्योग-कला द्वारा किया जाता है।


प्रकीर्णन कण के सापेक्ष आकार को उसके आकार पैरामीटर द्वारा परिभाषित किया जाता है {{mvar|x}}, जो इसके [[व्यास]] और इसकी [[तरंग दैर्ध्य]] का अनुपात है:
एक प्रकीर्णन कण के सापेक्ष आकार को उसके पैरामीटर {{mvar|x}} द्वारा परिभाषित किया जाता है, जो कि इसके [[तरंग दैर्ध्य]] के विशिष्ट आयाम का अनुपात होता है।
{{align|center|<math>x = \frac{2 \pi r} {\lambda}.</math>}}
{{align|center|<math>x = \frac{2 \pi r} {\lambda}.</math>}}


== सटीक कम्प्यूटेशनल तरीके ==
== सटीक संगणनात्मक नियम ==


=== परिमित-अंतर समय-डोमेन विधि ===
=== परिमित-अंतर समय-डोमेन विधि ===
{{main|Finite-difference time-domain method}}
{{main|परिमित-अंतर समय-डोमेन विधि}}
FDTD विधि ग्रिड-आधारित अंतर समय-डोमेन संख्यात्मक मॉडलिंग विधियों के सामान्य वर्ग से संबंधित है। समय-निर्भर मैक्सवेल के समीकरण (आंशिक अंतर रूप में) अंतरिक्ष और समय आंशिक डेरिवेटिव के केंद्रीय-अंतर सन्निकटन का उपयोग करके अलग-अलग होते हैं। परिणामी परिमित-अंतर समीकरणों को सॉफ़्टवेयर या हार्डवेयर में एक छलांग तरीके से हल किया जाता है: अंतरिक्ष की मात्रा में विद्युत क्षेत्र वेक्टर घटकों को एक निश्चित समय पर हल किया जाता है; फिर उसी स्थानिक आयतन में चुंबकीय क्षेत्र वेक्टर घटकों को अगले समय में हल किया जाता है; और प्रक्रिया को बार-बार दोहराया जाता है जब तक कि वांछित क्षणिक या स्थिर-स्थिति विद्युत चुम्बकीय क्षेत्र व्यवहार पूरी तरह से विकसित नहीं हो जाता।
FDTD विधि प्रजाल-आधारित अंतर समय-डोमेन संख्यात्मक मॉडलिंग विधियों के सामान्य वर्ग से संबंधित है। समय-निर्भर मैक्सवेल के समीकरण अंतरिक्ष और समय आंशिक व्युत्पन्न के केंद्रीय-अंतर सादृश्य का उपयोग करके अलग-अलग होते हैं। परिणामी परिमित-अंतर समीकरणों को सॉफ़्टवेयर या हार्डवेयर में एक मूल्य वृधि नियम से हल किये जाते है: अंतरिक्ष की मात्रा में विद्युत क्षेत्र संवाहक घटकों को एक निश्चित समय पर हल किये जाते है; फिर उसी स्थानिक आयतन में चुंबकीय क्षेत्र संवाहक घटकों को हल किये जाते है; और प्रक्रिया को बार-बार दोहराया जाता है जब तक कि वांछित क्षणिक या स्थिर-स्थिति विद्युत चुम्बकीय क्षेत्र व्यवहार पूरी तरह से विकसित नहीं हो जाती है।


=== टी-मैट्रिक्स ===
=== टी-मैट्रिक्स ===
{{main|T-matrix method}}
{{main|टी-मैट्रिक्स विधि}}
तकनीक को अशक्त क्षेत्र विधि और विस्तारित सीमा तकनीक विधि (EBCM) के रूप में भी जाना जाता है। मैक्सवेल समीकरणों के समाधान के लिए सीमा स्थितियों का मिलान करके मैट्रिक्स तत्व प्राप्त किए जाते हैं। घटना, संचरित और बिखरा हुआ क्षेत्र गोलाकार वेक्टर तरंग कार्यों में विस्तारित होता है।
उद्योग-कला को अशक्त क्षेत्र विधि और विस्तारित सीमा तकनीक विधि (EBCM) के रूप में भी जाना जाता है। मैक्सवेल समीकरणों के समाधान के लिए सीमा स्थितियों का मिलान करके मैट्रिक्स तत्व प्राप्त किए जाते हैं। घटना, संचरित और फैला हुआ क्षेत्र गोलाकार संवाहक तरंग कार्यों में विस्तारित होता है।


== कम्प्यूटेशनल सन्निकटन ==
== संगणनात्मक सन्निकटन ==


=== मी सन्निकटन ===
=== मी सन्निकटन ===
{{main|Mie theory}}
{{main|मी सिद्धांत}}
मनमाने आकार के पैरामीटर वाले किसी भी गोलाकार कणों से बिखरने को मी सिद्धांत द्वारा समझाया गया है। मी सिद्धांत, जिसे लॉरेंज-मी सिद्धांत या लॉरेंज-मी-डेबी सिद्धांत भी कहा जाता है, गोलाकार कणों (बोरेन और हफमैन, 1998) द्वारा विद्युत चुम्बकीय विकिरण के बिखरने के लिए मैक्सवेल के समीकरणों का एक पूर्ण विश्लेषणात्मक समाधान है।
एकतंत्र आकार के पैरामीटर वाले किसी भी गोलाकार कणों को मी सिद्धांत द्वारा समझाया गया है। मी सिद्धांत, जिसे लॉरेंज-मी सिद्धांत भी कहा जाता है, गोलाकार कणों द्वारा विद्युत चुम्बकीय विकिरण के लिए मैक्सवेल के समीकरणों का एक पूर्ण विश्लेषणात्मक समाधान है।


अधिक जटिल आकृतियों के लिए जैसे लेपित गोले, [[multispheres]], स्फेरोइड्स और अनंत सिलेंडरों में ऐसे विस्तार होते हैं जो समाधान को अनंत श्रृंखला के संदर्भ में व्यक्त करते हैं।
अधिक जटिल आकृतियों के लिए जैसे लेपित गोले, [[Index.php?title=Index.php?title=मल्टीस्पेयर|मल्टीस्पेयर]], गोलाभक और अनंत सिलेंडरों में ऐसे विस्तार होते हैं जो समाधान को अनंत श्रृंखला के संदर्भ में व्यक्त करते हैं। गोले, स्तरित गोले, और कई क्षेत्रों और सिलेंडरों के लिए Mi सन्निकटन में प्रकाश का अध्ययन करने के लिए कोड उपलब्ध हैं।
गोले द्वारा विद्युत चुम्बकीय बिखरने के लिए कोड के लिए Mi सन्निकटन में प्रकाश बिखरने का अध्ययन करने के लिए कोड उपलब्ध हैं। गोले, स्तरित गोले, और कई गोले और सिलेंडर द्वारा विद्युत चुम्बकीय बिखरने के लिए कोड।


=== असतत द्विध्रुवीय सन्निकटन ===
=== असतत द्विध्रुवीय सन्निकटन ===
{{main|Discrete dipole approximation}}
{{main|असतत द्विध्रुवीय सन्निकटन}}
मनमाने आकार के कणों द्वारा विकिरण के प्रकीर्णन की गणना के लिए कई तकनीकें हैं। [[असतत द्विध्रुवीय सन्निकटन]], ध्रुवीकरण योग्य बिंदुओं की एक परिमित सरणी द्वारा सातत्य लक्ष्य का एक सन्निकटन है। अंक स्थानीय विद्युत क्षेत्र की प्रतिक्रिया में द्विध्रुव आघूर्ण प्राप्त करते हैं। इन बिंदुओं के द्विध्रुव अपने विद्युत क्षेत्रों के माध्यम से एक दूसरे के साथ परस्पर क्रिया करते हैं।
डीडीए सन्निकटन में प्रकाश प्रकीर्णन गुणों की गणना करने के लिए असतत द्विध्रुव सन्निकटन कोड उपलब्ध हैं।


== अनुमानित तरीके ==
एकतंत्र आकार के कणों द्वारा विकिरण के प्रकीर्णन की गणना के लिए कई उद्योग-कला हैं। [[Index.php?title=Index.php?title=असतत द्विध्रुवीय सन्निकटन|असतत द्विध्रुवीय सन्निकटन]], ध्रुवीकरण योग्य बिंदुओं की एक परिमित सरणी द्वारा सातत्य लक्ष्य का एक सन्निकटन है। अंक स्थानीय विद्युत क्षेत्र की प्रतिक्रिया में द्विध्रुव आघूर्ण प्राप्त करते हैं। इन बिंदुओं के द्विध्रुव अपने विद्युत क्षेत्रों के माध्यम से एक दूसरे के साथ परस्पर क्रिया करते हैं। DDA सन्निकटन में प्रकाश प्रकीर्णन गुणों की गणना करने के लिए DDA कोड उपलब्ध हैं।
 
== अनुमानित नियम ==
{|class="wikitable"
{|class="wikitable"
|-
|-
|Approximation||[[Refractive index]] ||Size parameter||Phase shift
|अप्राक्समेशन
|[[Index.php?title=रफ्रैक्टिव इन्डेक्स|रफ्रैक्टिव इन्डेक्स]]||साइज़ परैमिटर||फैज़ शिफ्ट
|-
|-
||[[Rayleigh scattering]]|| abs(mx) very small || very small  ||
||[[Index.php?title=रैले स्कैटरिंग|रैले स्कैटरिंग]]|| abs(mx) वेरी स्मॉल ||वेरी स्मॉल
|
|-
|-
||[[Geometric optics]]|| || very large|| very large
||[[Index.php?title=जीअमेट्रिक आप्टिक्स|जीअमेट्रिक आप्टिक्स]]|| || वेरी लार्ज|| वेरी लार्ज
|-
|-
||[[Anomalous Diffraction Theory]]|| abs(m-1) very small|| x large ||
||[[Index.php?title=अनामलस डिफ्रैक्शन थीअरी|अनामलस डिफ्रैक्शन थीअरी]]|| abs(m-1) वेरी स्मॉल|| x लार्ज ||
|-
|-
||Complex Angular Momentum|| moderate m || large x ||
||काम्प्लेक्स ऐंगग्यलर मोमेन्टम|| माडरेट m || लार्ज x ||
|-
|-
|}
|}
Line 51: Line 52:


=== रेले स्कैटरिंग ===
=== रेले स्कैटरिंग ===
रेले स्कैटरिंग शासन प्रकाश की तरंग दैर्ध्य की तुलना में बहुत छोटे कणों द्वारा प्रकाश, या अन्य विद्युत चुम्बकीय विकिरण का प्रकीर्णन है। रेले स्कैटरिंग को छोटे आकार के पैरामीटर शासन में स्कैटरिंग के रूप में परिभाषित किया जा सकता है  <math> x \ll 1 </math>.
रैले प्रकीर्णन नियंत्रण प्रकाश की तरंग दैर्ध्य की तुलना में बहुत छोटे कणों द्वारा प्रकाश, या अन्य विद्युत चुम्बकीय विकिरण का प्रकीर्णन है। रैले प्रकीर्णन को छोटे आकार के पैरामीटर नियंत्रण में प्रकीर्णन के रूप में परिभाषित किया जा सकता है  <math> x \ll 1 </math>.


[[File:Rainbow single reflection.svg|right|250px|thumb|प्रकाश किरणें एक दिशा से वर्षा की बूंद में प्रवेश करती हैं (आमतौर पर सूर्य से एक सीधी रेखा), वर्षा की बूंद के पीछे से परावर्तित होती हैं, और जैसे ही वे वर्षा की बूंद को छोड़ती हैं बाहर फैल जाती हैं। बारिश की बूंदों से निकलने वाला प्रकाश एक विस्तृत कोण में फैला हुआ है, जिसकी अधिकतम तीव्रता 40.89–42° है।]]
[[File:Rainbow single reflection.svg|right|250px|thumb|प्रकाश किरणें एक दिशा से वर्षा की बूंद में प्रवेश करती हैं, वर्षा की बूंद के पीछे से परावर्तित होती हैं, और जैसे ही वे वर्षा की बूंद को छोड़ती हैं बाहर फैल जाती हैं। बारिश की बूंदों से निकलने वाला प्रकाश एक विस्तृत कोण में फैला हुआ है, जिसकी अधिकतम तीव्रता 40.89–42° है।]]


===ज्यामितीय प्रकाशिकी (किरण अनुरेखण)===
===ज्यामितीय प्रकाशिकी (किरण अनुरेखण)===
{{main|Geometric optics}}
{{main|ज्यामितीय प्रकाशिकी}}
रे ट्रेसिंग (भौतिकी) तकनीक न केवल गोलाकार कणों बल्कि किसी भी निर्दिष्ट आकार (और अभिविन्यास) के द्वारा प्रकाश के प्रकीर्णन का अनुमान लगा सकती है, जब तक कि किसी कण का आकार और महत्वपूर्ण आयाम प्रकाश की तरंग दैर्ध्य से बहुत बड़ा हो। प्रकाश को किरणों के संग्रह के रूप में माना जा सकता है जिनकी चौड़ाई तरंग दैर्ध्य की तुलना में बहुत बड़ी होती है लेकिन कण की तुलना में छोटी होती है। कण से टकराने वाली प्रत्येक किरण (आंशिक) परावर्तन और/या अपवर्तन से गुजर सकती है। ये किरणें दिशाओं में बाहर निकलती हैं जिससे उनकी पूरी शक्ति के साथ गणना की जाती है या (जब आंशिक प्रतिबिंब शामिल होता है) दो (या अधिक) निकलने वाली किरणों के बीच विभाजित घटना शक्ति के साथ। जैसे लेंस और अन्य ऑप्टिकल घटकों के साथ, किरण अनुरेखण एक एकल स्कैटर से निकलने वाले प्रकाश को निर्धारित करता है, और उस परिणाम को बड़ी संख्या में यादृच्छिक रूप से उन्मुख और स्थित स्कैटर के लिए सांख्यिकीय रूप से जोड़कर, पानी की बूंदों के कारण [[इंद्रधनुष]] जैसे वायुमंडलीय ऑप्टिकल घटनाओं का वर्णन कर सकता है और हेलो (ऑप्टिकल घटना) बर्फ के क्रिस्टल के कारण होता है। [[वायुमंडलीय प्रकाशिकी रे-ट्रेसिंग कोड]] उपलब्ध हैं।
 
रैले प्रकीर्णन उद्योग-कला न केवल गोलाकार कणों बल्कि किसी भी निर्दिष्ट आकार के द्वारा प्रकाश का अनुमान लगा सकती हैं, जब तक कि किसी कण का आकार और महत्वपूर्ण आयाम प्रकाश की तरंग दैर्ध्य से बहुत बड़ा हो। प्रकाश को किरणों के संग्रह के रूप में माना जा सकता है जिनकी चौड़ाई तरंग दैर्ध्य की तुलना में बहुत बड़ी होती है परंतु कण की तुलना में छोटी होती है। कण से टकराने वाली प्रत्येक किरण परावर्तन और अपवर्तन से अस्थायी हो सकती है। ये किरणें दिशाओं में बाहर निकलती हैं जिससे उनकी पूरी शक्ति के साथ गणना की जाती है या निकलने वाली किरणों के बीच विभाजित घटना शक्ति के साथ जैसे लेंस और अन्य प्रकाशीय घटकों के साथ, किरण अनुरेखण एक एकल प्रकीर्णन से निकलने वाले प्रकाश को निर्धारित करता है, और बड़ी संख्या में अनियमित ढंग से उन्मुख और स्थित प्रकीर्णन के लिए सांख्यिकीय रूप से उस परिणाम को जोड़कर, पानी की बूंदों के कारण [[इंद्रधनुष]] जैसे वायुमंडलीय प्रकाशीय घटनाओं का वर्णन कर सकता है और बर्फ के क्रिस्टल के कारण प्रभामंडल [[Index.php?title=वायुमंडलीय प्रकाशिकी किरण अनुरेखण कोड|वायुमंडलीय प्रकाशिकी किरण अनुरेखण कोड]] उपलब्ध हैं।


== यह भी देखें ==
== यह भी देखें ==
Line 74: Line 76:
*Stratton, Julius Adams, Electromagnetic theory, New York, London, McGraw-Hill book company, inc., 1941. 615 p.
*Stratton, Julius Adams, Electromagnetic theory, New York, London, McGraw-Hill book company, inc., 1941. 615 p.


{{DEFAULTSORT:Light Scattering By Particles}}[[Category: बिखराव, अवशोषण और विकिरण स्थानांतरण (प्रकाशिकी)]]
{{DEFAULTSORT:Light Scattering By Particles}}
 
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Light Scattering By Particles]]
[[Category:Created On 24/05/2023]]
[[Category:Created On 24/05/2023|Light Scattering By Particles]]
[[Category:Lua-based templates|Light Scattering By Particles]]
[[Category:Machine Translated Page|Light Scattering By Particles]]
[[Category:Pages with script errors|Light Scattering By Particles]]
[[Category:Templates Vigyan Ready|Light Scattering By Particles]]
[[Category:Templates that add a tracking category|Light Scattering By Particles]]
[[Category:Templates that generate short descriptions|Light Scattering By Particles]]
[[Category:Templates using TemplateData|Light Scattering By Particles]]
[[Category:बिखराव, अवशोषण और विकिरण स्थानांतरण (प्रकाशिकी)|Light Scattering By Particles]]

Latest revision as of 15:02, 13 June 2023

कणों द्वारा प्रकाश का प्रकीर्णन वह प्रक्रिया है जिसके द्वारा छोटे कण प्रकाश को फैलाते हैं, जिससे आकाश के नीले रंग और आभामण्डल जैसी प्रकाशीय घटनाएं होती हैं।

मैक्सवेल के समीकरण प्रकाश प्रकीर्णन का वर्णन करने वाले सैद्धांतिक और संगणनात्मक नियमों का आधार हैं, परंतु मैक्सवेल के समीकरणों के सटीक समाधान केवल चयनित कण ज्यामिति के लिए जाने जाते हैं, कणों द्वारा प्रकाश का प्रकीर्णन संगणनात्मक विद्युत् चुम्बकिकी एक शाखा है जो विद्युत्चुंबकीय विकिरण प्रकीर्णन से संबंधित है और कणों द्वारा अवशोषण है।

ज्यामिति की स्थिति में जिसके लिए विश्लेषणात्मक समाधान ज्ञात हैं, जहां पर समाधान सामान्यतः अनंत श्रृंखला के संदर्भ में गणना किए जाते हैं। अधिक जटिल ज्यामिति और विषम कणों की स्थिति में मूल मैक्सवेल के समीकरण हल किए जाते हैं। कणों द्वारा प्रकाश के प्रकीर्णन के बहु-प्रकीर्णन प्रभावों का उपचार विकिरण अंतरण उद्योग-कला द्वारा किया जाता है।

एक प्रकीर्णन कण के सापेक्ष आकार को उसके पैरामीटर x द्वारा परिभाषित किया जाता है, जो कि इसके तरंग दैर्ध्य के विशिष्ट आयाम का अनुपात होता है।

सटीक संगणनात्मक नियम

परिमित-अंतर समय-डोमेन विधि

FDTD विधि प्रजाल-आधारित अंतर समय-डोमेन संख्यात्मक मॉडलिंग विधियों के सामान्य वर्ग से संबंधित है। समय-निर्भर मैक्सवेल के समीकरण अंतरिक्ष और समय आंशिक व्युत्पन्न के केंद्रीय-अंतर सादृश्य का उपयोग करके अलग-अलग होते हैं। परिणामी परिमित-अंतर समीकरणों को सॉफ़्टवेयर या हार्डवेयर में एक मूल्य वृधि नियम से हल किये जाते है: अंतरिक्ष की मात्रा में विद्युत क्षेत्र संवाहक घटकों को एक निश्चित समय पर हल किये जाते है; फिर उसी स्थानिक आयतन में चुंबकीय क्षेत्र संवाहक घटकों को हल किये जाते है; और प्रक्रिया को बार-बार दोहराया जाता है जब तक कि वांछित क्षणिक या स्थिर-स्थिति विद्युत चुम्बकीय क्षेत्र व्यवहार पूरी तरह से विकसित नहीं हो जाती है।

टी-मैट्रिक्स

उद्योग-कला को अशक्त क्षेत्र विधि और विस्तारित सीमा तकनीक विधि (EBCM) के रूप में भी जाना जाता है। मैक्सवेल समीकरणों के समाधान के लिए सीमा स्थितियों का मिलान करके मैट्रिक्स तत्व प्राप्त किए जाते हैं। घटना, संचरित और फैला हुआ क्षेत्र गोलाकार संवाहक तरंग कार्यों में विस्तारित होता है।

संगणनात्मक सन्निकटन

मी सन्निकटन

एकतंत्र आकार के पैरामीटर वाले किसी भी गोलाकार कणों को मी सिद्धांत द्वारा समझाया गया है। मी सिद्धांत, जिसे लॉरेंज-मी सिद्धांत भी कहा जाता है, गोलाकार कणों द्वारा विद्युत चुम्बकीय विकिरण के लिए मैक्सवेल के समीकरणों का एक पूर्ण विश्लेषणात्मक समाधान है।

अधिक जटिल आकृतियों के लिए जैसे लेपित गोले, मल्टीस्पेयर, गोलाभक और अनंत सिलेंडरों में ऐसे विस्तार होते हैं जो समाधान को अनंत श्रृंखला के संदर्भ में व्यक्त करते हैं। गोले, स्तरित गोले, और कई क्षेत्रों और सिलेंडरों के लिए Mi सन्निकटन में प्रकाश का अध्ययन करने के लिए कोड उपलब्ध हैं।

असतत द्विध्रुवीय सन्निकटन

एकतंत्र आकार के कणों द्वारा विकिरण के प्रकीर्णन की गणना के लिए कई उद्योग-कला हैं। असतत द्विध्रुवीय सन्निकटन, ध्रुवीकरण योग्य बिंदुओं की एक परिमित सरणी द्वारा सातत्य लक्ष्य का एक सन्निकटन है। अंक स्थानीय विद्युत क्षेत्र की प्रतिक्रिया में द्विध्रुव आघूर्ण प्राप्त करते हैं। इन बिंदुओं के द्विध्रुव अपने विद्युत क्षेत्रों के माध्यम से एक दूसरे के साथ परस्पर क्रिया करते हैं। DDA सन्निकटन में प्रकाश प्रकीर्णन गुणों की गणना करने के लिए DDA कोड उपलब्ध हैं।

अनुमानित नियम

अप्राक्समेशन रफ्रैक्टिव इन्डेक्स साइज़ परैमिटर फैज़ शिफ्ट
रैले स्कैटरिंग abs(mx) वेरी स्मॉल वेरी स्मॉल
जीअमेट्रिक आप्टिक्स वेरी लार्ज वेरी लार्ज
अनामलस डिफ्रैक्शन थीअरी abs(m-1) वेरी स्मॉल x लार्ज
काम्प्लेक्स ऐंगग्यलर मोमेन्टम माडरेट m लार्ज x


रेले स्कैटरिंग

रैले प्रकीर्णन नियंत्रण प्रकाश की तरंग दैर्ध्य की तुलना में बहुत छोटे कणों द्वारा प्रकाश, या अन्य विद्युत चुम्बकीय विकिरण का प्रकीर्णन है। रैले प्रकीर्णन को छोटे आकार के पैरामीटर नियंत्रण में प्रकीर्णन के रूप में परिभाषित किया जा सकता है .

प्रकाश किरणें एक दिशा से वर्षा की बूंद में प्रवेश करती हैं, वर्षा की बूंद के पीछे से परावर्तित होती हैं, और जैसे ही वे वर्षा की बूंद को छोड़ती हैं बाहर फैल जाती हैं। बारिश की बूंदों से निकलने वाला प्रकाश एक विस्तृत कोण में फैला हुआ है, जिसकी अधिकतम तीव्रता 40.89–42° है।

ज्यामितीय प्रकाशिकी (किरण अनुरेखण)

रैले प्रकीर्णन उद्योग-कला न केवल गोलाकार कणों बल्कि किसी भी निर्दिष्ट आकार के द्वारा प्रकाश का अनुमान लगा सकती हैं, जब तक कि किसी कण का आकार और महत्वपूर्ण आयाम प्रकाश की तरंग दैर्ध्य से बहुत बड़ा न हो। प्रकाश को किरणों के संग्रह के रूप में माना जा सकता है जिनकी चौड़ाई तरंग दैर्ध्य की तुलना में बहुत बड़ी होती है परंतु कण की तुलना में छोटी होती है। कण से टकराने वाली प्रत्येक किरण परावर्तन और अपवर्तन से अस्थायी हो सकती है। ये किरणें दिशाओं में बाहर निकलती हैं जिससे उनकी पूरी शक्ति के साथ गणना की जाती है या निकलने वाली किरणों के बीच विभाजित घटना शक्ति के साथ जैसे लेंस और अन्य प्रकाशीय घटकों के साथ, किरण अनुरेखण एक एकल प्रकीर्णन से निकलने वाले प्रकाश को निर्धारित करता है, और बड़ी संख्या में अनियमित ढंग से उन्मुख और स्थित प्रकीर्णन के लिए सांख्यिकीय रूप से उस परिणाम को जोड़कर, पानी की बूंदों के कारण इंद्रधनुष जैसे वायुमंडलीय प्रकाशीय घटनाओं का वर्णन कर सकता है और बर्फ के क्रिस्टल के कारण प्रभामंडल वायुमंडलीय प्रकाशिकी किरण अनुरेखण कोड उपलब्ध हैं।

यह भी देखें

  • गोले द्वारा इलेक्ट्रोमैग्नेटिक स्कैटरिंग के लिए कोड
  • सिलेंडरों द्वारा इलेक्ट्रोमैग्नेटिक स्कैटरिंग के लिए कोड
  • असतत द्विध्रुवीय सन्निकटन कोड
  • परिमित-अंतर समय-डोमेन विधि
  • बिखराव

संदर्भ

  • Barber,P.W. and S.C. Hill, Light scattering by particles : computational methods, Singapore ; Teaneck, N.J., World Scientific, c1990, 261 p.+ 2 computer disks (3½ in.), ISBN 9971-5-0813-3, ISBN 9971-5-0832-X (pbk.)
  • Bohren, Craig F. and Donald R. Huffman, Title Absorption and scattering of light by small particles, New York : Wiley, 1998, 530 p., ISBN 0-471-29340-7, ISBN 978-0-471-29340-8
  • Hulst, H. C. van de, Light scattering by small particles, New York, Dover Publications, 1981, 470 p., ISBN 0-486-64228-3.
  • Kerker, Milton, The scattering of light, and other electromagnetic radiation, New York, Academic Press, 1969, 666 p.
  • Mishchenko, Michael I., Joop W. Hovenier, Larry D. Travis, Light scattering by nonspherical particles: theory, measurements, and applications, San Diego : Academic Press, 2000, 690 p., ISBN 0-12-498660-9.
  • Stratton, Julius Adams, Electromagnetic theory, New York, London, McGraw-Hill book company, inc., 1941. 615 p.