समुच्चय सिद्धांत विरोधाभास: Difference between revisions
(Created page with "{{Short description|none}} इस लेख में समुच्चय सिद्धांत के [[विरोधाभास]]ों की चर्चा...") |
No edit summary |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
इस लेख में '''समुच्चय सिद्धांत के [[विरोधाभास]]''' की चर्चा है। अधिकांश गणितीय विरोधाभासों के साथ, वे सामान्यतः आधुनिक [[स्वयंसिद्ध सेट सिद्धांत|स्वयंसिद्ध समुच्चय सिद्धांत]] के भीतर वास्तविक तार्किक विरोधाभासों के अतिरिक्त आश्चर्यजनक और प्रति-सहज गणितीय परिणाम प्रकट करते हैं। | |||
इस लेख में समुच्चय सिद्धांत के | |||
== मूल बातें == | == मूल बातें == | ||
=== [[ बुनियादी संख्या ]] === | === [[ बुनियादी संख्या | प्राकृतिक संख्या]] === | ||
[[जॉर्ज कैंटर]] द्वारा परिकल्पित | [[जॉर्ज कैंटर]] द्वारा परिकल्पित समुच्चय सिद्धांत अनंत समुच्चयों के अस्तित्व को मानता है। जैसा कि इस धारणा को पहले सिद्धांतों से सिद्ध नहीं किया जा सकता है, इसे अनंतता के स्वयंसिद्ध द्वारा स्वयंसिद्ध समुच्चय सिद्धांत में प्रस्तुत किया गया है, जो प्राकृतिक संख्याओं के समुच्चय N के अस्तित्व पर बल देता है। इस प्रकार प्रत्येक के अनंत समुच्चय जिसे प्राकृतिक संख्याओं द्वारा गिना जा सकता है, उन्हें N के समान आकार कार्डिनैलिटी द्वारा प्रदर्शित होता है, और इसे गणितीय कहा जाता है। इस प्रकार गणितीय रूप से अनंत समुच्चय के उदाहरण हैं, इस प्रकार प्राकृतिक संख्याएँ, सम संख्याएँ, [[अभाज्य संख्या]]एँ और साथ ही सभी परिमेय संख्याएँ, अर्ताथ भिन्न। इन समुच्चयों में कार्डिनल संख्या साधारण है, जिसके आधार पर | N | = <math>\aleph_0</math> (एलेफ-नॉट), प्रत्येक प्राकृतिक संख्या से बड़ी संख्या को प्रदर्शित करती हैं। | ||
कार्डिनल नंबरों को निम्नानुसार परिभाषित किया जा सकता है। दो | कार्डिनल नंबरों को निम्नानुसार परिभाषित किया जा सकता है। दो समुच्चयों को समान आकार के लिए परिभाषित करें: दो समुच्चयों के बीच आपत्ति सम्मिलित है, जो इन तत्वों के बीच एक-से-एक पत्राचार को प्रदर्शित करती हैं। इस प्रकार इस परिभाषा के अनुसार कार्डिनल नंबर वर्ग है जिसमें ही आकार के सभी समुच्चय होते हैं। इस प्रकार इसके समान आकार का होना [[तुल्यता संबंध]] है, और कार्डिनल संख्याएँ [[तुल्यता वर्ग]] हैं। | ||
=== [[क्रमसूचक संख्या]] === | === [[क्रमसूचक संख्या]] === | ||
कार्डिनैलिटी के | कार्डिनैलिटी के अतिरिक्त, जो समुच्चय के आकार का वर्णन करता है, ऑर्डर किए गए समुच्चय भी समुच्चय सिद्धांत का विषय बनाते हैं। इस प्रकार यह गारंटी देता है कि प्रत्येक समुच्चय को अच्छी तरह से क्रमबद्ध किया जा सकता है, जिसका अर्थ है कि इसके तत्वों पर कुल आदेश लगाया जा सकता है जैसे कि प्रत्येक गैर-रिक्त सबसमुच्चय में उस आदेश के संबंध में पहला तत्व होता है। [[सुव्यवस्थित]] समुच्चय का क्रम क्रमिक संख्या द्वारा वर्णित किया गया है। इस प्रकार उदाहरण के लिए, 3 समुच्चय {0, 1, 2} की क्रमिक संख्या है जिसका सामान्य क्रम 0 < 1 < 2 है, और ω सामान्य तरीके से आदेशित सभी प्राकृतिक संख्याओं के समुच्चय की क्रमिक संख्या है। आदेश की अवहेलना करते हुए, हमारे पास मुख्य संख्या |N|= |ω| =<math> \aleph_0</math> रह जाती है। | ||
क्रमिक संख्याओं को कार्डिनल संख्याओं के लिए उपयोग की जाने वाली उसी विधि से परिभाषित किया जा सकता है। | क्रमिक संख्याओं को कार्डिनल संख्याओं के लिए उपयोग की जाने वाली उसी विधि से परिभाषित किया जा सकता है। इस प्रकार इस क्रम के लिए दो सुव्यवस्थित समुच्चयों को परिभाषित करें: क्रम के संबंध में दो समुच्चयों के बीच आक्षेप सम्मिलित है: छोटे तत्वों को छोटे तत्वों के लिए मैप किया जाता है। तब क्रमसूचक संख्या, परिभाषा के अनुसार, वर्ग है जिसमें ही क्रम प्रकार के सभी सुव्यवस्थित समुच्चय होते हैं। इस प्रकार के समान क्रम वाले विभिन्न प्रकारों का होना सुव्यवस्थित समुच्चयों के वर्ग पर तुल्यता से संबंधित है, और क्रमिक संख्याएँ तुल्यता वर्ग हैं। | ||
समान क्रम प्रकार के दो | समान क्रम प्रकार के दो समुच्चयों में समान कार्डिनैलिटी होती है। सामान्यतः अनंत समुच्चयों के लिए उलटा सच नहीं है: इस प्रकार प्राकृतिक संख्याओं के समुच्चय पर अलग-अलग सुव्यवस्थित संख्याओं को लागू करना संभव है जो अलग-अलग क्रमिक संख्याओं को जन्म देते हैं। | ||
अध्यादेशों पर | इस प्रकार के अध्यादेशों पर प्राकृतिक आदेश इस प्रकार है कि जो स्वयं अच्छी व्यवस्था को प्रदर्शित करता है। किसी भी क्रमिक α को देखते हुए, α से कम सभी अध्यादेशों के समुच्चय पर विचार किया जा सकता है। यह समुच्चय क्रमिक संख्या α निकला है। इस अवलोकन का उपयोग ऑर्डिनल्स को प्रस्तुत करने के अलग तरीके के लिए किया जाता है, जिसमें ऑर्डिनल को सभी छोटे ऑर्डिनल्स के समुच्चय के बराबर किया जाता है। क्रमिक संख्या का यह रूप इस प्रकार तुल्यता वर्ग के पहले के रूप का विहित प्रतिनिधि है। | ||
=== पावर [[सबसेट]] === | === पावर [[सबसेट|सबसमुच्चय]] === | ||
समुच्चय S के सभी उपसमुच्चय (उसके अवयवों के सभी संभावित विकल्प) बनाकर, हम घात समुच्चय P(S) प्राप्त करते हैं। जॉर्ज कैंटर ने | समुच्चय S के सभी उपसमुच्चय (उसके अवयवों के सभी संभावित विकल्प) बनाकर, हम घात समुच्चय P(S) प्राप्त करते हैं। इस प्रकार जॉर्ज कैंटर ने प्रमाणित किया कि [[ सत्ता स्थापित |सत्ता स्थापित]] सदैव समुच्चय से बड़ा होता है, अर्ताथ |P(s)| > |s| के लिए कैंटर के प्रमेय का विशेष स्थिति यह प्रमाणित करता है कि सभी वास्तविक संख्याओं के समुच्चय 'R' की गणना प्राकृतिक संख्याओं द्वारा नहीं की जा सकती है। इस प्रकार 'R' का मान |'R'| > |'N'| अधिक है। | ||
== [[अनंत सेट]] | == [[अनंत सेट|अनंत]] समुच्चयों के विरोधाभास == | ||
अस्पष्ट विवरणों पर | अस्पष्ट विवरणों पर विश्वास करने के अतिरिक्त, जैसे कि जो बढ़ाया नहीं जा सकता है या बाध्य किए बिना बढ़ रहा है, समुच्चय सिद्धांत अनंत शब्द के लिए परिभाषा प्रदान करता है जिससे कि वाक्यांशों को स्पष्ट अर्थ दिया जा सके जैसे कि सभी प्राकृतिक संख्याओं का समुच्चय अनंत है। इस प्रकार परिमित समुच्चयों के समान, सिद्धांत आगे की परिभाषाएँ बनाता है जो हमें निरंतर दो अनंत समुच्चयों की तुलना करने की अनुमति देता है कि क्या समुच्चय से बड़ा है, से छोटा है, या दूसरे के समान आकार का है। अपितु इस प्रकार [[परिमित सेट|परिमित समुच्चय]] के आकार के बारे में हर अंतर्ज्ञान अनंत समुच्चय के आकार पर लागू नहीं होता है, जिससे गणना, आकार, माप और क्रम के संबंध में विभिन्न विरोधाभासी परिणाम सामने आते हैं। | ||
=== गणना के विरोधाभास === | === गणना के विरोधाभास === | ||
समुच्चय सिद्धांत प्रस्तुत किए जाने से पहले, समुच्चय के आकार की धारणा समस्याग्रस्त रही थी। इस पर [[गैलीलियो गैलीली]] और [[बर्नार्ड बोलजानो]] ने चर्चा की थी। क्या गणना की विधि द्वारा मापे जाने पर प्राकृतिक संख्याओं के वर्ग के रूप में कई प्राकृतिक संख्याएँ होती हैं? | |||
* उत्तर हाँ है, क्योंकि प्रत्येक प्राकृतिक संख्या n के लिए | * उत्तर हाँ है, क्योंकि प्रत्येक प्राकृतिक संख्या n के लिए वर्ग संख्या n<sup>2</sup> होती है, और इसी प्रकार इसके विपरीत। | ||
* उत्तर नहीं है, क्योंकि वर्ग प्राकृतिक का | * उत्तर नहीं है, क्योंकि वर्ग प्राकृतिक का उचित उपसमुच्चय है: प्रत्येक वर्ग प्राकृतिक संख्या है अपितु कुछ प्राकृतिक संख्याएँ हैं, जैसे 2, जो प्राकृतिक संख्याओं के वर्ग नहीं हैं। | ||
एक | एक समुच्चय के आकार की धारणा को उसकी प्रमुखता के संदर्भ में परिभाषित करके, इस मुद्दे को सुलझाया जा सकता है। चूंकि इस प्रकार इसमें सम्मिलित दो समुच्चयों के बीच आक्षेप है, यह वास्तव में समुच्चय की प्रमुखता की परिभाषा से सीधे अनुसरण करता है। | ||
गणना के विरोधाभासों पर अधिक जानकारी के लिए ग्रैंड होटल का हिल्बर्ट का विरोधाभास देखें। | गणना के विरोधाभासों पर अधिक जानकारी के लिए ग्रैंड होटल का हिल्बर्ट का विरोधाभास देखें। | ||
=== जे ले वोइस, माई जे ने क्रोइस पास === | === जे ले वोइस, माई जे ने क्रोइस पास === | ||
मैं इसे देखता हूं | मैं इसे देखता हूं अपितु मुझे विश्वास नहीं होता, कैंटर ने [[रिचर्ड डेडेकिंड]] को यह प्रमाणित करने के बाद लिखा कि वर्ग के बिंदुओं के समुच्चय में वही कार्डिनैलिटी है जो वर्ग के किनारे पर बिंदुओं की है: सातत्य की कार्डिनैलिटी को दर्शाता हैं। | ||
यह दर्शाता है कि केवल कार्डिनैलिटी द्वारा परिभाषित | यह दर्शाता है कि केवल कार्डिनैलिटी द्वारा परिभाषित समुच्चय का आकार समुच्चय की तुलना करने का एकमात्र उपयोगी तरीका नहीं है। इस प्रकार इस [[माप सिद्धांत]] का आकार अधिक सूक्ष्म सिद्धांत प्रदान करता है जो हमारे अंतर्ज्ञान के अनुरूप है कि लंबाई और क्षेत्र आकार के असंगत उपाय हैं। | ||
साक्ष्य दृढ़ता से सुझाव देते हैं कि कैंटर स्वयं परिणाम में | साक्ष्य दृढ़ता से सुझाव देते हैं कि इस प्रकार कैंटर स्वयं परिणाम में अधिक आश्वस्त था और डेडेकिंड के लिए उसकी टिप्पणी इसके प्रमाण की वैधता के बारे में उसकी तत्कालीन-अभी तक सुस्त चिंताओं को संदर्भित करती है।<ref>[[Fernando Q. Gouvêa|F. Q. Gouvêa]], [https://www.jstor.org/stable/10.4169/amer.math.monthly.118.03.198 "Was Cantor Surprised?"], ''[[American Mathematical Monthly]]'', '''118''', March 2011, 198–209.</ref> फिर भी, कैंटर की टिप्पणी इस आश्चर्य को व्यक्त करने के लिए भी अच्छी तरह से काम करेगी कि उसके बाद के कई गणितज्ञों ने पहली बार ऐसे परिणाम का अनुभव किया है जो इतना सहज ज्ञान युक्त है। | ||
=== सुव्यवस्थितता के विरोधाभास === | === सुव्यवस्थितता के विरोधाभास === | ||
1904 में [[अर्नेस्ट ज़र्मेलो]] ने | 1904 में [[अर्नेस्ट ज़र्मेलो]] ने इसकी स्वयंसिद्ध के लिए इस कारण इसे इस प्रकार प्रस्तुत किया था, जिसके माध्यम से प्रमाणित किया जा सकता हैं कि हर समुच्चय को सुव्यवस्थित किया जा सकता है। इस प्रकार 1963 में पॉल जे. कोहेन ने दिखाया कि ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत में पसंद के स्वयंसिद्ध के बिना वास्तविक संख्याओं के सु-क्रम के अस्तित्व को प्रमाणित करना संभव नहीं है। | ||
चूंकि किसी भी समुच्चय को व्यवस्थित करने की क्षमता कुछ निर्माणों को करने की अनुमति देती है जिन्हें विरोधाभासी कहा गया है। उदाहरण बनच-तर्स्की विरोधाभास है, प्रमेय जिसे व्यापक रूप से गैर-सहज माना जाता है। इसमें कहा गया है कि निश्चित त्रिज्या की गेंद को टुकड़ों की सीमित संख्या में विघटित करना संभव है और फिर इस प्रकार उन टुकड़ों को साधारण [[यूक्लिडियन समूह]] बिना स्केलिंग किये इसके द्वारा मूल प्रति से दो प्रतियां प्राप्त करने के लिए स्थानांतरित करना और फिर से इकट्ठा करना संभव है। इन टुकड़ों के निर्माण के लिए पसंद के स्वयंसिद्ध की आवश्यकता होती है, इस प्रकार टुकड़ों में विभाजित गेंद के साधारण क्षेत्र नहीं हैं, अपितु [[गैर-मापने योग्य सेट|गैर-मापने योग्य समुच्चय]] नहीं हैं। | |||
== सुपरटास्क के विरोधाभास == | == सुपरटास्क के विरोधाभास == | ||
{{main| | {{main|सुपरटास्क}} | ||
समुच्चय सिद्धांत में, अनंत समुच्चय को कुछ गणितीय प्रक्रिया द्वारा निर्मित नहीं माना जाता है जैसे कि तत्व को जोड़ना जो कि अनंत बार किया जाता है। इसके अतिरिक्त, विशेष अनंत समुच्चय (जैसे कि सभी [[प्राकृतिक संख्या]]ओं का समुच्चय) पहले से सम्मिलित है, फिएट द्वारा, धारणा या स्वयंसिद्ध के रूप में कहा जाता है। इस प्रकार इस अनंत समुच्चय को देखते हुए, तार्किक परिणाम के रूप में, अन्य अनंत समुच्चय भी सम्मिलित प्रमाणित होते हैं। अपितु यह अभी भी प्राकृतिक दार्शनिक प्रश्न है कि कुछ भौतिक क्रियाओं पर विचार किया जाए जो वास्तव में असतत चरणों की अनंत संख्या के बाद पूरी होती हैं, और समुच्चय सिद्धांत का उपयोग करते हुए इस प्रश्न की व्याख्या सुपरटास्क के विरोधाभासों को जन्म देती है। | |||
=== [[ट्रिस्ट्राम शैंडी]] की डायरी === | === [[ट्रिस्ट्राम शैंडी]] की डायरी === | ||
[[लारेंस स्टर्न]] के | [[लारेंस स्टर्न]] के उपन्यास के नायक ट्रिस्टारम शैंडी अपनी आत्मकथा इतनी ईमानदारी से लिखते हैं कि उन्हें दिन की घटनाओं को निर्धारित करने में साल लग जाता है। यदि वह नश्वर है तो वह कभी समाप्त नहीं हो सकता, अपितु यदि वह सदैव के लिए जीवित रहता, तो उसकी डायरी का कोई भी भाग अलिखित नहीं रहता, क्योंकि उसके जीवन के प्रत्येक दिन के लिए उस दिन के विवरण के अनुरूप वर्ष होता हैं। | ||
=== रॉस-लिटिलवुड विरोधाभास === | === रॉस-लिटिलवुड विरोधाभास === | ||
{{main| | {{main|रॉस-लिटलवुड विरोधाभास}} | ||
निष्कासन अनुक्रम के महत्व से विरोधाभास और बढ़ जाता है। यदि गेंदों को अनुक्रम 1, 2, 3, ... में नहीं हटाया जाता है, | इस प्रकार के विरोधाभास का बढ़ा हुआ संस्करण अधिकांशतः दूरस्थ अंत को परिमित समय में परिवर्तित कर देता है। इस प्रकार 1 से 10 तक की संख्या में गिने गए गेंदों के साथ विशाल जलाशय को भरें और गेंद संख्या 1 को उतारें। फिर 11 से 20 तक की संख्या के अनुसार गेंदों को जोड़ें और संख्या 2 से बाहर निकालें जाते हैं। इस प्रकार इसके आधार पर 10n - 9 से 10n तक की संख्या से गिने गेंदों को जोड़ना जारी रखें और निकालने के लिए गेंद संख्या n सभी प्राकृतिक संख्याओं के लिए n = 3, 4, 5, .... मान लीजिए कि पहला लेन-देन आधे घंटे तक चलता है, दूसरा लेन-देन घंटे में समाप्त हो जाता है, और इसी प्रकार, जिससे कि घंटे के बाद सभी लेन-देन समाप्त हो जाएं, इस प्रकार इसका आशय हैं कि जलाशय में गेंदों का समुच्चय बिना किसी सीमा के बढ़ता है। फिर भी इस प्रकार कुछ घंटों के बाद जलाशय खाली हो जाता है क्योंकि प्रत्येक गेंद के लिए हटाने का समय ज्ञात होता है। | ||
निष्कासन अनुक्रम के महत्व से विरोधाभास और बढ़ जाता है। यदि गेंदों को अनुक्रम 1, 2, 3, ... में नहीं हटाया जाता है, अपितु क्रम 1, 11, 21, ... में घंटे के बाद असीम रूप से कई गेंदें जलाशय को स्वतंत्र कर देती हैं, चूंकि पहले के समान ही सामग्री की मात्रा ले जाया जाता हैं। | |||
== प्रमाण और निश्चितता के विरोधाभास == | == प्रमाण और निश्चितता के विरोधाभास == | ||
अपरिमित समुच्चयों से संबंधित प्रश्नों को हल करने में इसकी सभी उपयोगिता के | अपरिमित समुच्चयों से संबंधित प्रश्नों को हल करने में इसकी सभी उपयोगिता के अतिरिक्त, सरल समुच्चय सिद्धांत में कुछ घातक दोष हैं। विशेष रूप से, यह [[तार्किक विरोधाभास|तार्किक]] विरोधाभासों का शिकार है जैसे रसेल के विरोधाभास द्वारा उजागर किए गए। इन विरोधाभासों की खोज से पता चला है कि सभी समुच्चय जिन्हें सहज समुच्चय सिद्धांत की भाषा में वर्णित किया जा सकता है, वास्तव में विरोधाभास उत्पन्न किए बिना अस्तित्व में नहीं कहा जा सकता है। इस प्रकार 20वीं सदी में समुच्चय सिद्धांतों के विभिन्न स्वयंसिद्धों के विकास में इन विरोधाभासों का समाधान देखा गया, जैसे वर्तमान समय में उपयोग में [[ZFC]] और वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय सिद्धांत। चूंकि, इन सिद्धांतों की अत्यधिक औपचारिक और [[प्रतीकात्मक भाषा (गणित)]] और गणितीय भाषा के हमारे विशिष्ट अनौपचारिक उपयोग के बीच की खाई विभिन्न विरोधाभासी स्थितियों में परिणाम देती है, साथ ही दार्शनिक प्रश्न वास्तव में यह क्या है कि ऐसी औपचारिक प्रणालियाँ वास्तव में होने का प्रस्ताव करती हैं। के बारे में बातें कर रहे हैं। | ||
=== प्रारंभिक विरोधाभास: सभी | === प्रारंभिक विरोधाभास: सभी समुच्चयों का समुच्चय === | ||
{{main| | {{main|रसेल का विरोधाभास}} | ||
1897 में इतालवी गणितज्ञ सिजेयर बुराली-फोर्टी ने पाया कि ऐसा कोई समुच्चय नहीं है जिसमें सभी क्रमिक संख्याएँ होती हैं। जैसा कि प्रत्येक क्रमिक संख्या को छोटे क्रमिक संख्याओं के समुच्चय द्वारा परिभाषित किया गया है, सभी क्रमिक संख्याओं का सुव्यवस्थित समुच्चय Ω (यदि यह सम्मिलित है) परिभाषा में फिट बैठता है और इस प्रकार यह स्वयं क्रमसूचक है। दूसरी ओर, कोई भी क्रमिक संख्या स्वयं को समाहित नहीं कर सकती है, इसलिए Ω क्रमसूचक नहीं हो सकता हैं। इसलिए इस प्रकार सभी क्रमसूचक संख्याओं का समुच्चय सम्मिलित नहीं हो सकता हैं। | |||
19वीं सदी के अंत तक कैंटर को सभी कार्डिनल नंबरों के समुच्चय और सभी ऑर्डिनल नंबरों के समुच्चय के गैर-अस्तित्व के बारे में पता था। [[डेविड हिल्बर्ट]] और रिचर्ड डेडेकिंड को लिखे पत्रों में उन्होंने असंगत समुच्चयों के बारे में लिखा, जिनमें से सभी तत्वों को साथ होने के बारे में नहीं सोचा जा सकता है, और इस प्रकार उन्होंने इस परिणाम का उपयोग यह प्रमाणित करने के लिए किया कि प्रत्येक सुसंगत समुच्चय में कार्डिनल संख्या होती है। | |||
इन सब के बाद, 1903 में [[बर्ट्रेंड रसेल]] द्वारा परिकल्पित सभी समुच्चय विरोधाभास के समुच्चय के संस्करण ने समुच्चय सिद्धांत में गंभीर संकट उत्पन्न कर दिया गया हैं। इस प्रकार रसेल ने माना कि कथन x = x प्रत्येक समुच्चय के लिए सत्य है, और इस प्रकार सभी समुच्चयों का समुच्चय {x |X = X} द्वारा परिभाषित किया गया है। इस प्रकार 1906 में उन्होंने कई विरोधाभास समुच्चयों का निर्माण किया, जिनमें से सबसे प्रसिद्ध उन सभी समुच्चयों का समुच्चय है जो स्वयं को सम्मिलित नहीं करते हैं। यहाँ पर रसल ने स्वयं इस विचार को कुछ अत्यंत ठोस चित्रों के माध्यम से समझाया हैं। उदाहरण के रूप में यदि देखे तो जिसे [[नाई विरोधाभास]] के रूप में जाना जाता है, पुरुष नाई जो सभी को शेव करता है और केवल वही पुरुष जो खुद को शेव नहीं करते हैं, उन्हें खुद को शेव करना पड़ता है, यदि वह खुद को शेव नहीं करता है। | |||
समुच्चय सिद्धांत में रसेल के विरोधाभास और ग्रीलिंग-नेल्सन विरोधाभास के बीच अधिक समानताएं हैं, जो प्राकृतिक भाषा में विरोधाभास को प्रदर्शित करता है। | |||
=== भाषा के परिवर्तन से विरोधाभास === | === भाषा के परिवर्तन से विरोधाभास === | ||
==== कोनिग का विरोधाभास ==== | ==== कोनिग का विरोधाभास ==== | ||
1905 में, हंगेरियन गणितज्ञ जूलियस कोनिग ने इस तथ्य के आधार पर | 1905 में, हंगेरियन गणितज्ञ जूलियस कोनिग ने इस तथ्य के आधार पर विरोधाभास प्रकाशित किया कि केवल गिने-चुने परिमित परिभाषाएँ हैं। यदि हम वास्तविक संख्याओं को सुव्यवस्थित समुच्चय के रूप में कल्पना करते हैं, तो वे वास्तविक संख्याएँ जिन्हें परिमित रूप से परिभाषित किया जा सकता है, इस प्रकार यह उपसमुच्चय बनाती हैं। इसलिए इस क्रम में पहली वास्तविक संख्या होनी चाहिए जो अंतिम रूप से परिभाषित नहीं होता हैं। यह विरोधाभासी है, क्योंकि इस वास्तविक संख्या को अभी अंतिम वाक्य द्वारा परिमित रूप से परिभाषित किया गया है। इस प्रकार यह समुच्चय सिद्धांत में विरोधाभास की ओर ले जाता है। | ||
स्वयंसिद्ध समुच्चय सिद्धांत में इस विरोधाभास से बचा जाता है। | स्वयंसिद्ध समुच्चय सिद्धांत में इस विरोधाभास से बचा जाता है। चूंकि गोडेल संख्या के रूप में ज्ञात कोड की प्रणाली द्वारा समुच्चय के रूप में समुच्चय के बारे में प्रस्ताव का प्रतिनिधित्व करना संभव है, कोई सूत्र नहीं है <math>\varphi(a,x)</math> समुच्चय सिद्धांत की भाषा में जो वास्तव में कब होता है, इस प्रकार <math>a</math> समुच्चय के बारे में परिमित प्रस्ताव के लिए कोड है, इस प्रकार यहाँ पर <math>x</math> समुच्चय है, और <math>a</math> के लिए <math>x</math> का मान रखता है, इस परिणाम को टार्स्की की अपरिभाष्यता प्रमेय के रूप में जाना जाता है, यह औपचारिक प्रणालियों की विस्तृत श्रेणी पर लागू होता है, जिसमें समुच्चय सिद्धांत के सभी सामान्यतः अध्ययन किए गए स्व-सिद्धांत सम्मिलित हैं। | ||
==== रिचर्ड का विरोधाभास ==== | ==== रिचर्ड का विरोधाभास ==== | ||
{{main| | {{main|रिचर्ड का विरोधाभास}} | ||
उसी वर्ष फ्रांसीसी गणितज्ञ [[जूल्स रिचर्ड (गणितज्ञ)]] ने नेव | उसी वर्ष फ्रांसीसी गणितज्ञ [[जूल्स रिचर्ड (गणितज्ञ)]] ने नेव समुच्चय सिद्धांत में और विरोधाभास प्राप्त करने के लिए कैंटर के विकर्ण तर्क या कैंटर की विकर्ण विधि के संस्करण का उपयोग किया। शब्दों के सभी परिमित समूहों के समुच्चय A पर विचार करें। इस प्रकार वास्तविक संख्याओं की सभी परिमित परिभाषाओं का समुच्चय E, A का उपसमुच्चय है। जैसा कि A गणितीय है, वैसे ही E भी है। मान लीजिए p समुच्चय E द्वारा परिभाषित nवीं वास्तविक संख्या का nवां दशमलव है, हम संख्या N बनाते हैं जिसमें पूर्णांक भाग के लिए शून्य और n वें दशमलव के लिए p + 1 है यदि p 8 या 9 के बराबर नहीं है, और एकता है यदि p 8 या 9 के बराबर है। यह संख्या N समुच्चय द्वारा परिभाषित नहीं है, यहाँ पर E क्योंकि यह किसी भी निश्चित रूप से परिभाषित वास्तविक संख्या अर्थात् nवें अंक से nवें अंक से भिन्न है। अपितु N को इस पैराग्राफ में सीमित संख्या में शब्दों द्वारा परिभाषित किया गया है। इसलिए यह समुच्चय E में होना चाहिए। यह विरोधाभास है। | ||
कोनिग के विरोधाभास के साथ, इस विरोधाभास को स्वयंसिद्ध | कोनिग के विरोधाभास के साथ, इस विरोधाभास को स्वयंसिद्ध समुच्चय सिद्धांत में औपचारिक रूप नहीं दिया जा सकता है क्योंकि इसमें यह बताने की क्षमता की आवश्यकता होती है कि कोई विवरण किसी विशेष समुच्चय पर लागू होता है, या समकक्ष, यह बताने के लिए कि क्या कोई सूत्र वास्तव में एकल समुच्चय की परिभाषा है। | ||
=== लोवेनहेम और स्कोलेम का विरोधाभास === | === लोवेनहेम और स्कोलेम का विरोधाभास === | ||
{{main| | {{main|स्कोलेम का विरोधाभास}} | ||
जर्मन गणितज्ञ लियोपोल्ड लोवेनहेम (1915) के काम के आधार पर नॉर्वेजियन लॉजिशियन [[ थोराल्फ़ स्कोलेम ]] ने 1922 में दिखाया कि प्रथम-क्रम के प्रत्येक सुसंगत सिद्धांत, जैसे कि | जर्मन गणितज्ञ लियोपोल्ड लोवेनहेम (1915) के काम के आधार पर नॉर्वेजियन लॉजिशियन [[ थोराल्फ़ स्कोलेम |थोराल्फ़ स्कोलेम]] ने 1922 में दिखाया कि प्रथम-क्रम के प्रत्येक सुसंगत सिद्धांत, जैसे कि समुच्चय सिद्धांत, कैलकुलस की भविष्यवाणी करते हैं, में सबसे अधिक गणना योग्य [[मॉडल सिद्धांत|प्रारूप सिद्धांत]] होता है। चूंकि, कैंटर की प्रमेय प्रमाणित करती है कि अधिक समुच्चय हैं। इस प्रकार प्रतीत होने वाले विरोधाभास की जड़ यह है कि समुच्चय की गिनती या गैर-गिनती सदैव [[निरपेक्षता (गणितीय तर्क)]] नहीं होती है, अपितु उस प्रारूप पर निर्भर हो सकती है जिसमें कार्डिनैलिटी को मापा जाता है। समुच्चय सिद्धांत के प्रारूप में समुच्चय के लिए अधिक होना संभव है, अपितु बड़े प्रारूप में काउंटेबल है, क्योंकि काउंटेबिलिटी स्थापित करने वाले आक्षेप बड़े प्रारूप में हैं, अपितु यहाँ पर इससे छोटे आपेक्ष प्रारूप उपलब्ध नहीं हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 96: | Line 98: | ||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
{{Reflist}} | {{Reflist}} | ||
== संदर्भ == | == संदर्भ == | ||
*G. Cantor: ''Gesammelte Abhandlungen mathematischen und philosophischen Inhalts'', E. Zermelo (Ed.), Olms, Hildesheim 1966. | *G. Cantor: ''Gesammelte Abhandlungen mathematischen und philosophischen Inhalts'', E. Zermelo (Ed.), Olms, Hildesheim 1966. | ||
Line 110: | Line 110: | ||
*[[Alfred North Whitehead|A. N. Whitehead]], B. Russell: ''Principia Mathematica '''I''''', Cambridge Univ. Press, Cambridge 1910, p. 64. | *[[Alfred North Whitehead|A. N. Whitehead]], B. Russell: ''Principia Mathematica '''I''''', Cambridge Univ. Press, Cambridge 1910, p. 64. | ||
*E. Zermelo: ''Neuer Beweis für die Möglichkeit einer Wohlordnung'', Math. Ann. '''65''' (1908) p. 107-128. | *E. Zermelo: ''Neuer Beweis für die Möglichkeit einer Wohlordnung'', Math. Ann. '''65''' (1908) p. 107-128. | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
*[http://www.hti.umich.edu/cgi/t/text/pageviewer-idx?c=umhistmath;cc=umhistmath;rgn=full%20text;idno=AAT3201.0001.001;didno=AAT3201.0001.001;view=pdf;seq=00000086 Principia Mathematica] | *[http://www.hti.umich.edu/cgi/t/text/pageviewer-idx?c=umhistmath;cc=umhistmath;rgn=full%20text;idno=AAT3201.0001.001;didno=AAT3201.0001.001;view=pdf;seq=00000086 Principia Mathematica] | ||
Line 120: | Line 118: | ||
{{Set theory}} | {{Set theory}} | ||
{{Mathematical logic}} | {{Mathematical logic}} | ||
[[Category: | [[Category:Articles with Internet Encyclopedia of Philosophy links]] | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 02/06/2023]] | [[Category:Created On 02/06/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Mathematics navigational boxes]] | |||
[[Category:Navbox orphans]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Philosophy and thinking navigational boxes]] | |||
[[Category:Portal-inline template with redlinked portals]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:गणितीय विरोधाभास| सेट सिद्धांत]] | |||
[[Category:समुच्चय सिद्धान्त]] | |||
[[Category:सेट थ्योरी के विरोधाभास| सेट थ्योरी के विरोधाभास ]] |
Latest revision as of 11:31, 28 June 2023
इस लेख में समुच्चय सिद्धांत के विरोधाभास की चर्चा है। अधिकांश गणितीय विरोधाभासों के साथ, वे सामान्यतः आधुनिक स्वयंसिद्ध समुच्चय सिद्धांत के भीतर वास्तविक तार्किक विरोधाभासों के अतिरिक्त आश्चर्यजनक और प्रति-सहज गणितीय परिणाम प्रकट करते हैं।
मूल बातें
प्राकृतिक संख्या
जॉर्ज कैंटर द्वारा परिकल्पित समुच्चय सिद्धांत अनंत समुच्चयों के अस्तित्व को मानता है। जैसा कि इस धारणा को पहले सिद्धांतों से सिद्ध नहीं किया जा सकता है, इसे अनंतता के स्वयंसिद्ध द्वारा स्वयंसिद्ध समुच्चय सिद्धांत में प्रस्तुत किया गया है, जो प्राकृतिक संख्याओं के समुच्चय N के अस्तित्व पर बल देता है। इस प्रकार प्रत्येक के अनंत समुच्चय जिसे प्राकृतिक संख्याओं द्वारा गिना जा सकता है, उन्हें N के समान आकार कार्डिनैलिटी द्वारा प्रदर्शित होता है, और इसे गणितीय कहा जाता है। इस प्रकार गणितीय रूप से अनंत समुच्चय के उदाहरण हैं, इस प्रकार प्राकृतिक संख्याएँ, सम संख्याएँ, अभाज्य संख्याएँ और साथ ही सभी परिमेय संख्याएँ, अर्ताथ भिन्न। इन समुच्चयों में कार्डिनल संख्या साधारण है, जिसके आधार पर | N | = (एलेफ-नॉट), प्रत्येक प्राकृतिक संख्या से बड़ी संख्या को प्रदर्शित करती हैं।
कार्डिनल नंबरों को निम्नानुसार परिभाषित किया जा सकता है। दो समुच्चयों को समान आकार के लिए परिभाषित करें: दो समुच्चयों के बीच आपत्ति सम्मिलित है, जो इन तत्वों के बीच एक-से-एक पत्राचार को प्रदर्शित करती हैं। इस प्रकार इस परिभाषा के अनुसार कार्डिनल नंबर वर्ग है जिसमें ही आकार के सभी समुच्चय होते हैं। इस प्रकार इसके समान आकार का होना तुल्यता संबंध है, और कार्डिनल संख्याएँ तुल्यता वर्ग हैं।
क्रमसूचक संख्या
कार्डिनैलिटी के अतिरिक्त, जो समुच्चय के आकार का वर्णन करता है, ऑर्डर किए गए समुच्चय भी समुच्चय सिद्धांत का विषय बनाते हैं। इस प्रकार यह गारंटी देता है कि प्रत्येक समुच्चय को अच्छी तरह से क्रमबद्ध किया जा सकता है, जिसका अर्थ है कि इसके तत्वों पर कुल आदेश लगाया जा सकता है जैसे कि प्रत्येक गैर-रिक्त सबसमुच्चय में उस आदेश के संबंध में पहला तत्व होता है। सुव्यवस्थित समुच्चय का क्रम क्रमिक संख्या द्वारा वर्णित किया गया है। इस प्रकार उदाहरण के लिए, 3 समुच्चय {0, 1, 2} की क्रमिक संख्या है जिसका सामान्य क्रम 0 < 1 < 2 है, और ω सामान्य तरीके से आदेशित सभी प्राकृतिक संख्याओं के समुच्चय की क्रमिक संख्या है। आदेश की अवहेलना करते हुए, हमारे पास मुख्य संख्या |N|= |ω| = रह जाती है।
क्रमिक संख्याओं को कार्डिनल संख्याओं के लिए उपयोग की जाने वाली उसी विधि से परिभाषित किया जा सकता है। इस प्रकार इस क्रम के लिए दो सुव्यवस्थित समुच्चयों को परिभाषित करें: क्रम के संबंध में दो समुच्चयों के बीच आक्षेप सम्मिलित है: छोटे तत्वों को छोटे तत्वों के लिए मैप किया जाता है। तब क्रमसूचक संख्या, परिभाषा के अनुसार, वर्ग है जिसमें ही क्रम प्रकार के सभी सुव्यवस्थित समुच्चय होते हैं। इस प्रकार के समान क्रम वाले विभिन्न प्रकारों का होना सुव्यवस्थित समुच्चयों के वर्ग पर तुल्यता से संबंधित है, और क्रमिक संख्याएँ तुल्यता वर्ग हैं।
समान क्रम प्रकार के दो समुच्चयों में समान कार्डिनैलिटी होती है। सामान्यतः अनंत समुच्चयों के लिए उलटा सच नहीं है: इस प्रकार प्राकृतिक संख्याओं के समुच्चय पर अलग-अलग सुव्यवस्थित संख्याओं को लागू करना संभव है जो अलग-अलग क्रमिक संख्याओं को जन्म देते हैं।
इस प्रकार के अध्यादेशों पर प्राकृतिक आदेश इस प्रकार है कि जो स्वयं अच्छी व्यवस्था को प्रदर्शित करता है। किसी भी क्रमिक α को देखते हुए, α से कम सभी अध्यादेशों के समुच्चय पर विचार किया जा सकता है। यह समुच्चय क्रमिक संख्या α निकला है। इस अवलोकन का उपयोग ऑर्डिनल्स को प्रस्तुत करने के अलग तरीके के लिए किया जाता है, जिसमें ऑर्डिनल को सभी छोटे ऑर्डिनल्स के समुच्चय के बराबर किया जाता है। क्रमिक संख्या का यह रूप इस प्रकार तुल्यता वर्ग के पहले के रूप का विहित प्रतिनिधि है।
पावर सबसमुच्चय
समुच्चय S के सभी उपसमुच्चय (उसके अवयवों के सभी संभावित विकल्प) बनाकर, हम घात समुच्चय P(S) प्राप्त करते हैं। इस प्रकार जॉर्ज कैंटर ने प्रमाणित किया कि सत्ता स्थापित सदैव समुच्चय से बड़ा होता है, अर्ताथ |P(s)| > |s| के लिए कैंटर के प्रमेय का विशेष स्थिति यह प्रमाणित करता है कि सभी वास्तविक संख्याओं के समुच्चय 'R' की गणना प्राकृतिक संख्याओं द्वारा नहीं की जा सकती है। इस प्रकार 'R' का मान |'R'| > |'N'| अधिक है।
अनंत समुच्चयों के विरोधाभास
अस्पष्ट विवरणों पर विश्वास करने के अतिरिक्त, जैसे कि जो बढ़ाया नहीं जा सकता है या बाध्य किए बिना बढ़ रहा है, समुच्चय सिद्धांत अनंत शब्द के लिए परिभाषा प्रदान करता है जिससे कि वाक्यांशों को स्पष्ट अर्थ दिया जा सके जैसे कि सभी प्राकृतिक संख्याओं का समुच्चय अनंत है। इस प्रकार परिमित समुच्चयों के समान, सिद्धांत आगे की परिभाषाएँ बनाता है जो हमें निरंतर दो अनंत समुच्चयों की तुलना करने की अनुमति देता है कि क्या समुच्चय से बड़ा है, से छोटा है, या दूसरे के समान आकार का है। अपितु इस प्रकार परिमित समुच्चय के आकार के बारे में हर अंतर्ज्ञान अनंत समुच्चय के आकार पर लागू नहीं होता है, जिससे गणना, आकार, माप और क्रम के संबंध में विभिन्न विरोधाभासी परिणाम सामने आते हैं।
गणना के विरोधाभास
समुच्चय सिद्धांत प्रस्तुत किए जाने से पहले, समुच्चय के आकार की धारणा समस्याग्रस्त रही थी। इस पर गैलीलियो गैलीली और बर्नार्ड बोलजानो ने चर्चा की थी। क्या गणना की विधि द्वारा मापे जाने पर प्राकृतिक संख्याओं के वर्ग के रूप में कई प्राकृतिक संख्याएँ होती हैं?
- उत्तर हाँ है, क्योंकि प्रत्येक प्राकृतिक संख्या n के लिए वर्ग संख्या n2 होती है, और इसी प्रकार इसके विपरीत।
- उत्तर नहीं है, क्योंकि वर्ग प्राकृतिक का उचित उपसमुच्चय है: प्रत्येक वर्ग प्राकृतिक संख्या है अपितु कुछ प्राकृतिक संख्याएँ हैं, जैसे 2, जो प्राकृतिक संख्याओं के वर्ग नहीं हैं।
एक समुच्चय के आकार की धारणा को उसकी प्रमुखता के संदर्भ में परिभाषित करके, इस मुद्दे को सुलझाया जा सकता है। चूंकि इस प्रकार इसमें सम्मिलित दो समुच्चयों के बीच आक्षेप है, यह वास्तव में समुच्चय की प्रमुखता की परिभाषा से सीधे अनुसरण करता है।
गणना के विरोधाभासों पर अधिक जानकारी के लिए ग्रैंड होटल का हिल्बर्ट का विरोधाभास देखें।
जे ले वोइस, माई जे ने क्रोइस पास
मैं इसे देखता हूं अपितु मुझे विश्वास नहीं होता, कैंटर ने रिचर्ड डेडेकिंड को यह प्रमाणित करने के बाद लिखा कि वर्ग के बिंदुओं के समुच्चय में वही कार्डिनैलिटी है जो वर्ग के किनारे पर बिंदुओं की है: सातत्य की कार्डिनैलिटी को दर्शाता हैं।
यह दर्शाता है कि केवल कार्डिनैलिटी द्वारा परिभाषित समुच्चय का आकार समुच्चय की तुलना करने का एकमात्र उपयोगी तरीका नहीं है। इस प्रकार इस माप सिद्धांत का आकार अधिक सूक्ष्म सिद्धांत प्रदान करता है जो हमारे अंतर्ज्ञान के अनुरूप है कि लंबाई और क्षेत्र आकार के असंगत उपाय हैं।
साक्ष्य दृढ़ता से सुझाव देते हैं कि इस प्रकार कैंटर स्वयं परिणाम में अधिक आश्वस्त था और डेडेकिंड के लिए उसकी टिप्पणी इसके प्रमाण की वैधता के बारे में उसकी तत्कालीन-अभी तक सुस्त चिंताओं को संदर्भित करती है।[1] फिर भी, कैंटर की टिप्पणी इस आश्चर्य को व्यक्त करने के लिए भी अच्छी तरह से काम करेगी कि उसके बाद के कई गणितज्ञों ने पहली बार ऐसे परिणाम का अनुभव किया है जो इतना सहज ज्ञान युक्त है।
सुव्यवस्थितता के विरोधाभास
1904 में अर्नेस्ट ज़र्मेलो ने इसकी स्वयंसिद्ध के लिए इस कारण इसे इस प्रकार प्रस्तुत किया था, जिसके माध्यम से प्रमाणित किया जा सकता हैं कि हर समुच्चय को सुव्यवस्थित किया जा सकता है। इस प्रकार 1963 में पॉल जे. कोहेन ने दिखाया कि ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत में पसंद के स्वयंसिद्ध के बिना वास्तविक संख्याओं के सु-क्रम के अस्तित्व को प्रमाणित करना संभव नहीं है।
चूंकि किसी भी समुच्चय को व्यवस्थित करने की क्षमता कुछ निर्माणों को करने की अनुमति देती है जिन्हें विरोधाभासी कहा गया है। उदाहरण बनच-तर्स्की विरोधाभास है, प्रमेय जिसे व्यापक रूप से गैर-सहज माना जाता है। इसमें कहा गया है कि निश्चित त्रिज्या की गेंद को टुकड़ों की सीमित संख्या में विघटित करना संभव है और फिर इस प्रकार उन टुकड़ों को साधारण यूक्लिडियन समूह बिना स्केलिंग किये इसके द्वारा मूल प्रति से दो प्रतियां प्राप्त करने के लिए स्थानांतरित करना और फिर से इकट्ठा करना संभव है। इन टुकड़ों के निर्माण के लिए पसंद के स्वयंसिद्ध की आवश्यकता होती है, इस प्रकार टुकड़ों में विभाजित गेंद के साधारण क्षेत्र नहीं हैं, अपितु गैर-मापने योग्य समुच्चय नहीं हैं।
सुपरटास्क के विरोधाभास
समुच्चय सिद्धांत में, अनंत समुच्चय को कुछ गणितीय प्रक्रिया द्वारा निर्मित नहीं माना जाता है जैसे कि तत्व को जोड़ना जो कि अनंत बार किया जाता है। इसके अतिरिक्त, विशेष अनंत समुच्चय (जैसे कि सभी प्राकृतिक संख्याओं का समुच्चय) पहले से सम्मिलित है, फिएट द्वारा, धारणा या स्वयंसिद्ध के रूप में कहा जाता है। इस प्रकार इस अनंत समुच्चय को देखते हुए, तार्किक परिणाम के रूप में, अन्य अनंत समुच्चय भी सम्मिलित प्रमाणित होते हैं। अपितु यह अभी भी प्राकृतिक दार्शनिक प्रश्न है कि कुछ भौतिक क्रियाओं पर विचार किया जाए जो वास्तव में असतत चरणों की अनंत संख्या के बाद पूरी होती हैं, और समुच्चय सिद्धांत का उपयोग करते हुए इस प्रश्न की व्याख्या सुपरटास्क के विरोधाभासों को जन्म देती है।
ट्रिस्ट्राम शैंडी की डायरी
लारेंस स्टर्न के उपन्यास के नायक ट्रिस्टारम शैंडी अपनी आत्मकथा इतनी ईमानदारी से लिखते हैं कि उन्हें दिन की घटनाओं को निर्धारित करने में साल लग जाता है। यदि वह नश्वर है तो वह कभी समाप्त नहीं हो सकता, अपितु यदि वह सदैव के लिए जीवित रहता, तो उसकी डायरी का कोई भी भाग अलिखित नहीं रहता, क्योंकि उसके जीवन के प्रत्येक दिन के लिए उस दिन के विवरण के अनुरूप वर्ष होता हैं।
रॉस-लिटिलवुड विरोधाभास
इस प्रकार के विरोधाभास का बढ़ा हुआ संस्करण अधिकांशतः दूरस्थ अंत को परिमित समय में परिवर्तित कर देता है। इस प्रकार 1 से 10 तक की संख्या में गिने गए गेंदों के साथ विशाल जलाशय को भरें और गेंद संख्या 1 को उतारें। फिर 11 से 20 तक की संख्या के अनुसार गेंदों को जोड़ें और संख्या 2 से बाहर निकालें जाते हैं। इस प्रकार इसके आधार पर 10n - 9 से 10n तक की संख्या से गिने गेंदों को जोड़ना जारी रखें और निकालने के लिए गेंद संख्या n सभी प्राकृतिक संख्याओं के लिए n = 3, 4, 5, .... मान लीजिए कि पहला लेन-देन आधे घंटे तक चलता है, दूसरा लेन-देन घंटे में समाप्त हो जाता है, और इसी प्रकार, जिससे कि घंटे के बाद सभी लेन-देन समाप्त हो जाएं, इस प्रकार इसका आशय हैं कि जलाशय में गेंदों का समुच्चय बिना किसी सीमा के बढ़ता है। फिर भी इस प्रकार कुछ घंटों के बाद जलाशय खाली हो जाता है क्योंकि प्रत्येक गेंद के लिए हटाने का समय ज्ञात होता है।
निष्कासन अनुक्रम के महत्व से विरोधाभास और बढ़ जाता है। यदि गेंदों को अनुक्रम 1, 2, 3, ... में नहीं हटाया जाता है, अपितु क्रम 1, 11, 21, ... में घंटे के बाद असीम रूप से कई गेंदें जलाशय को स्वतंत्र कर देती हैं, चूंकि पहले के समान ही सामग्री की मात्रा ले जाया जाता हैं।
प्रमाण और निश्चितता के विरोधाभास
अपरिमित समुच्चयों से संबंधित प्रश्नों को हल करने में इसकी सभी उपयोगिता के अतिरिक्त, सरल समुच्चय सिद्धांत में कुछ घातक दोष हैं। विशेष रूप से, यह तार्किक विरोधाभासों का शिकार है जैसे रसेल के विरोधाभास द्वारा उजागर किए गए। इन विरोधाभासों की खोज से पता चला है कि सभी समुच्चय जिन्हें सहज समुच्चय सिद्धांत की भाषा में वर्णित किया जा सकता है, वास्तव में विरोधाभास उत्पन्न किए बिना अस्तित्व में नहीं कहा जा सकता है। इस प्रकार 20वीं सदी में समुच्चय सिद्धांतों के विभिन्न स्वयंसिद्धों के विकास में इन विरोधाभासों का समाधान देखा गया, जैसे वर्तमान समय में उपयोग में ZFC और वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय सिद्धांत। चूंकि, इन सिद्धांतों की अत्यधिक औपचारिक और प्रतीकात्मक भाषा (गणित) और गणितीय भाषा के हमारे विशिष्ट अनौपचारिक उपयोग के बीच की खाई विभिन्न विरोधाभासी स्थितियों में परिणाम देती है, साथ ही दार्शनिक प्रश्न वास्तव में यह क्या है कि ऐसी औपचारिक प्रणालियाँ वास्तव में होने का प्रस्ताव करती हैं। के बारे में बातें कर रहे हैं।
प्रारंभिक विरोधाभास: सभी समुच्चयों का समुच्चय
1897 में इतालवी गणितज्ञ सिजेयर बुराली-फोर्टी ने पाया कि ऐसा कोई समुच्चय नहीं है जिसमें सभी क्रमिक संख्याएँ होती हैं। जैसा कि प्रत्येक क्रमिक संख्या को छोटे क्रमिक संख्याओं के समुच्चय द्वारा परिभाषित किया गया है, सभी क्रमिक संख्याओं का सुव्यवस्थित समुच्चय Ω (यदि यह सम्मिलित है) परिभाषा में फिट बैठता है और इस प्रकार यह स्वयं क्रमसूचक है। दूसरी ओर, कोई भी क्रमिक संख्या स्वयं को समाहित नहीं कर सकती है, इसलिए Ω क्रमसूचक नहीं हो सकता हैं। इसलिए इस प्रकार सभी क्रमसूचक संख्याओं का समुच्चय सम्मिलित नहीं हो सकता हैं।
19वीं सदी के अंत तक कैंटर को सभी कार्डिनल नंबरों के समुच्चय और सभी ऑर्डिनल नंबरों के समुच्चय के गैर-अस्तित्व के बारे में पता था। डेविड हिल्बर्ट और रिचर्ड डेडेकिंड को लिखे पत्रों में उन्होंने असंगत समुच्चयों के बारे में लिखा, जिनमें से सभी तत्वों को साथ होने के बारे में नहीं सोचा जा सकता है, और इस प्रकार उन्होंने इस परिणाम का उपयोग यह प्रमाणित करने के लिए किया कि प्रत्येक सुसंगत समुच्चय में कार्डिनल संख्या होती है।
इन सब के बाद, 1903 में बर्ट्रेंड रसेल द्वारा परिकल्पित सभी समुच्चय विरोधाभास के समुच्चय के संस्करण ने समुच्चय सिद्धांत में गंभीर संकट उत्पन्न कर दिया गया हैं। इस प्रकार रसेल ने माना कि कथन x = x प्रत्येक समुच्चय के लिए सत्य है, और इस प्रकार सभी समुच्चयों का समुच्चय {x |X = X} द्वारा परिभाषित किया गया है। इस प्रकार 1906 में उन्होंने कई विरोधाभास समुच्चयों का निर्माण किया, जिनमें से सबसे प्रसिद्ध उन सभी समुच्चयों का समुच्चय है जो स्वयं को सम्मिलित नहीं करते हैं। यहाँ पर रसल ने स्वयं इस विचार को कुछ अत्यंत ठोस चित्रों के माध्यम से समझाया हैं। उदाहरण के रूप में यदि देखे तो जिसे नाई विरोधाभास के रूप में जाना जाता है, पुरुष नाई जो सभी को शेव करता है और केवल वही पुरुष जो खुद को शेव नहीं करते हैं, उन्हें खुद को शेव करना पड़ता है, यदि वह खुद को शेव नहीं करता है।
समुच्चय सिद्धांत में रसेल के विरोधाभास और ग्रीलिंग-नेल्सन विरोधाभास के बीच अधिक समानताएं हैं, जो प्राकृतिक भाषा में विरोधाभास को प्रदर्शित करता है।
भाषा के परिवर्तन से विरोधाभास
कोनिग का विरोधाभास
1905 में, हंगेरियन गणितज्ञ जूलियस कोनिग ने इस तथ्य के आधार पर विरोधाभास प्रकाशित किया कि केवल गिने-चुने परिमित परिभाषाएँ हैं। यदि हम वास्तविक संख्याओं को सुव्यवस्थित समुच्चय के रूप में कल्पना करते हैं, तो वे वास्तविक संख्याएँ जिन्हें परिमित रूप से परिभाषित किया जा सकता है, इस प्रकार यह उपसमुच्चय बनाती हैं। इसलिए इस क्रम में पहली वास्तविक संख्या होनी चाहिए जो अंतिम रूप से परिभाषित नहीं होता हैं। यह विरोधाभासी है, क्योंकि इस वास्तविक संख्या को अभी अंतिम वाक्य द्वारा परिमित रूप से परिभाषित किया गया है। इस प्रकार यह समुच्चय सिद्धांत में विरोधाभास की ओर ले जाता है।
स्वयंसिद्ध समुच्चय सिद्धांत में इस विरोधाभास से बचा जाता है। चूंकि गोडेल संख्या के रूप में ज्ञात कोड की प्रणाली द्वारा समुच्चय के रूप में समुच्चय के बारे में प्रस्ताव का प्रतिनिधित्व करना संभव है, कोई सूत्र नहीं है समुच्चय सिद्धांत की भाषा में जो वास्तव में कब होता है, इस प्रकार समुच्चय के बारे में परिमित प्रस्ताव के लिए कोड है, इस प्रकार यहाँ पर समुच्चय है, और के लिए का मान रखता है, इस परिणाम को टार्स्की की अपरिभाष्यता प्रमेय के रूप में जाना जाता है, यह औपचारिक प्रणालियों की विस्तृत श्रेणी पर लागू होता है, जिसमें समुच्चय सिद्धांत के सभी सामान्यतः अध्ययन किए गए स्व-सिद्धांत सम्मिलित हैं।
रिचर्ड का विरोधाभास
उसी वर्ष फ्रांसीसी गणितज्ञ जूल्स रिचर्ड (गणितज्ञ) ने नेव समुच्चय सिद्धांत में और विरोधाभास प्राप्त करने के लिए कैंटर के विकर्ण तर्क या कैंटर की विकर्ण विधि के संस्करण का उपयोग किया। शब्दों के सभी परिमित समूहों के समुच्चय A पर विचार करें। इस प्रकार वास्तविक संख्याओं की सभी परिमित परिभाषाओं का समुच्चय E, A का उपसमुच्चय है। जैसा कि A गणितीय है, वैसे ही E भी है। मान लीजिए p समुच्चय E द्वारा परिभाषित nवीं वास्तविक संख्या का nवां दशमलव है, हम संख्या N बनाते हैं जिसमें पूर्णांक भाग के लिए शून्य और n वें दशमलव के लिए p + 1 है यदि p 8 या 9 के बराबर नहीं है, और एकता है यदि p 8 या 9 के बराबर है। यह संख्या N समुच्चय द्वारा परिभाषित नहीं है, यहाँ पर E क्योंकि यह किसी भी निश्चित रूप से परिभाषित वास्तविक संख्या अर्थात् nवें अंक से nवें अंक से भिन्न है। अपितु N को इस पैराग्राफ में सीमित संख्या में शब्दों द्वारा परिभाषित किया गया है। इसलिए यह समुच्चय E में होना चाहिए। यह विरोधाभास है।
कोनिग के विरोधाभास के साथ, इस विरोधाभास को स्वयंसिद्ध समुच्चय सिद्धांत में औपचारिक रूप नहीं दिया जा सकता है क्योंकि इसमें यह बताने की क्षमता की आवश्यकता होती है कि कोई विवरण किसी विशेष समुच्चय पर लागू होता है, या समकक्ष, यह बताने के लिए कि क्या कोई सूत्र वास्तव में एकल समुच्चय की परिभाषा है।
लोवेनहेम और स्कोलेम का विरोधाभास
जर्मन गणितज्ञ लियोपोल्ड लोवेनहेम (1915) के काम के आधार पर नॉर्वेजियन लॉजिशियन थोराल्फ़ स्कोलेम ने 1922 में दिखाया कि प्रथम-क्रम के प्रत्येक सुसंगत सिद्धांत, जैसे कि समुच्चय सिद्धांत, कैलकुलस की भविष्यवाणी करते हैं, में सबसे अधिक गणना योग्य प्रारूप सिद्धांत होता है। चूंकि, कैंटर की प्रमेय प्रमाणित करती है कि अधिक समुच्चय हैं। इस प्रकार प्रतीत होने वाले विरोधाभास की जड़ यह है कि समुच्चय की गिनती या गैर-गिनती सदैव निरपेक्षता (गणितीय तर्क) नहीं होती है, अपितु उस प्रारूप पर निर्भर हो सकती है जिसमें कार्डिनैलिटी को मापा जाता है। समुच्चय सिद्धांत के प्रारूप में समुच्चय के लिए अधिक होना संभव है, अपितु बड़े प्रारूप में काउंटेबल है, क्योंकि काउंटेबिलिटी स्थापित करने वाले आक्षेप बड़े प्रारूप में हैं, अपितु यहाँ पर इससे छोटे आपेक्ष प्रारूप उपलब्ध नहीं हैं।
यह भी देखें
टिप्पणियाँ
- ↑ F. Q. Gouvêa, "Was Cantor Surprised?", American Mathematical Monthly, 118, March 2011, 198–209.
संदर्भ
- G. Cantor: Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, E. Zermelo (Ed.), Olms, Hildesheim 1966.
- H. Meschkowski, W. Nilson: Georg Cantor - Briefe, Springer, Berlin 1991.
- A. Fraenkel: Einleitung in die Mengenlehre, Springer, Berlin 1923.
- A. A. Fraenkel, A. Levy: Abstract Set Theory, North Holland, Amsterdam 1976.
- F. Hausdorff: Grundzüge der Mengenlehre, Chelsea, New York 1965.
- B. Russell: The principles of mathematics I, Cambridge 1903.
- B. Russell: On some difficulties in the theory of transfinite numbers and order types, Proc. London Math. Soc. (2) 4 (1907) 29-53.
- P. J. Cohen: Set Theory and the Continuum Hypothesis, Benjamin, New York 1966.
- S. Wagon: The Banach–Tarski Paradox, Cambridge University Press, Cambridge 1985.
- A. N. Whitehead, B. Russell: Principia Mathematica I, Cambridge Univ. Press, Cambridge 1910, p. 64.
- E. Zermelo: Neuer Beweis für die Möglichkeit einer Wohlordnung, Math. Ann. 65 (1908) p. 107-128.