ओवरड्राइव वोल्टेज: Difference between revisions

From Vigyanwiki
(Created page with "{{context|date=October 2009}} ओवरड्राइव वोल्टेज, जिसे आमतौर पर वी के रूप में संक्षिप...")
 
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{context|date=October 2009}}
'''ओवरड्राइव वोल्टेज''', जिसे सामान्यतः '''V<sub>OV</sub>''' के रूप में संक्षिप्त किया जाता है, सामान्यतः [[MOSFET|एमओएसएफईटी]] [[ट्रांजिस्टर]] के संदर्भ में संदर्भित किया जाता है। ओवरड्राइव वोल्टेज को ट्रांजिस्टर गेट और स्रोत (V<sub>GS</sub>) के बीच थ्रेसहोल्ड वोल्टेज (V<sub>TH</sub>) से अधिक वोल्टेज के रूप में परिभाषित किया गया है, जहां V<sub>TH</sub> को ट्रांजिस्टर को चालू करने के लिए गेट और स्रोत के बीच आवश्यक न्यूनतम वोल्टेज के रूप में परिभाषित किया गया है (इसे विद्युत् का संचालन करने की अनुमति दें) इस परिभाषा के कारण, ओवरड्राइव वोल्टेज को "अतिरिक्त गेट वोल्टेज" या "प्रभावी वोल्टेज" के रूप में भी जाना जाता है।<ref>Sedra and Smith, Microelectronic Circuits, Fifth Edition, (2004) Chapter 4, {{ISBN|978-0-19-533883-6}}</ref> ओवरड्राइव वोल्टेज को सरल समीकरण का उपयोग करके पाया जा सकता है: V<sub>OV</sub> = V<sub>GS</sub> − V<sub>TH</sub>.


ओवरड्राइव वोल्टेज, जिसे आमतौर पर वी के रूप में संक्षिप्त किया जाता है<sub>OV</sub>, को आमतौर पर [[MOSFET]] [[ट्रांजिस्टर]] के संदर्भ में संदर्भित किया जाता है। ओवरड्राइव वोल्टेज को ट्रांजिस्टर गेट और स्रोत के बीच वोल्टेज के रूप में परिभाषित किया गया है (वी<sub>GS</sub>) दहलीज वोल्टेज से अधिक (वी<sub>TH</sub>) जहां वी<sub>TH</sub> ट्रांजिस्टर को चालू करने के लिए गेट और स्रोत के बीच आवश्यक न्यूनतम वोल्टेज के रूप में परिभाषित किया गया है (इसे बिजली का संचालन करने की अनुमति दें)। इस परिभाषा के कारण, ओवरड्राइव वोल्टेज को अतिरिक्त गेट वोल्टेज या प्रभावी वोल्टेज के रूप में भी जाना जाता है।<ref>Sedra and Smith, Microelectronic Circuits, Fifth Edition, (2004) Chapter 4, {{ISBN|978-0-19-533883-6}}</ref> सरल समीकरण का उपयोग करके ओवरड्राइव वोल्टेज पाया जा सकता है: वी<sub>OV</sub> = वी<sub>GS</sub> - वी<sub>TH</sub>.
== प्रौद्योगिकी                                                                                                                ==
V<sub>OV</sub> महत्वपूर्ण है क्योंकि यह सीधे ट्रांजिस्टर के आउटपुट ड्रेन टर्मिनल धारा (I<sub>D</sub>) को प्रभावित करता है, जो एम्पलीफायर परिपथ की एक महत्वपूर्ण संपत्ति है। V<sub>OV</sub>, बढ़ाकर, (I<sub>D</sub> ) को संतृप्ति तक पहुंचने तक बढ़ाया जा सकता है।<ref>[http://www-inst.eecs.berkeley.edu/~ee105/fa07/lectures/Lecture%2024.ppt Lecture Note of Prof Liu, UC Berkeley]</ref>


== प्रौद्योगिकी ==
ओवरड्राइव वोल्टेज भी महत्वपूर्ण है क्योंकि इसका V<sub>DS</sub> से संबंध है, स्रोत के सापेक्ष ड्रेन वोल्टेज, जिसका उपयोग मोस्फेट के संचालन के क्षेत्र को निर्धारित करने के लिए किया जा सकता है। नीचे दी गई तालिका दिखाती है कि मोस्फेट ऑपरेशन के किस क्षेत्र में है, यह समझने के लिए ओवरड्राइव वोल्टेज का उपयोग कैसे करें:
वी<sub>OV</sub> महत्वपूर्ण है क्योंकि यह सीधे आउटपुट ड्रेन टर्मिनल करंट (I<sub>D</sub>) ट्रांजिस्टर की, एम्पलीफायर सर्किट की एक महत्वपूर्ण संपत्ति। वी को बढ़ाकर<sub>OV</sub>, मैं<sub>D</sub> संतृप्ति धारा तक पहुंचने तक बढ़ाया जा सकता है।<ref>[http://www-inst.eecs.berkeley.edu/~ee105/fa07/lectures/Lecture%2024.ppt Lecture Note of Prof Liu, UC Berkeley]</ref>
V से संबंध के कारण ओवरड्राइव वोल्टेज भी महत्वपूर्ण है<sub>DS</sub>, स्रोत के सापेक्ष नाली वोल्टेज, जिसका उपयोग MOSFET के संचालन के क्षेत्र को निर्धारित करने के लिए किया जा सकता है। नीचे दी गई तालिका दिखाती है कि MOSFET किस क्षेत्र में है, यह समझने के लिए ओवरड्राइव वोल्टेज का उपयोग कैसे करें:


{| class="wikitable"
{| class="wikitable"
|-
|-
! Conditions
! स्थिति
! Region of Operation
! संचालन का क्षेत्र
! Description
! विवरण
|-
|-
| V<sub>DS</sub> > V<sub>OV</sub>; V<sub>GS</sub> > V<sub>TH</sub>
| V<sub>DS</sub> > V<sub>OV</sub>; V<sub>GS</sub> > V<sub>TH</sub>
| Saturation (CCR)
| संतृप्ति (सीसीआर)
| The MOSFET is delivering a high amount of current, and changing V<sub>DS</sub> won't do much.
| मॉस्फ़ेट अधिक मात्रा में धारा दे रहा है, और V<sub>DS</sub> बदलने से अधिक कुछ नहीं होगा।
|-
|-
| V<sub>DS</sub> < V<sub>OV</sub>; V<sub>GS</sub> > V<sub>TH</sub>
| V<sub>DS</sub> < V<sub>OV</sub>; V<sub>GS</sub> > V<sub>TH</sub>
| Triode (Linear)
| ट्रायोड (रैखिक)
| The MOSFET is delivering current in a linear relationship to the voltage (V<sub>DS</sub>).
| मॉस्फ़ेट वोल्टेज (V<sub>DS</sub> ) के रैखिक संबंध में धारा पहुंचा रहा है।
|-
|-
| V<sub>GS</sub> < V<sub>TH</sub>
| V<sub>GS</sub> < V<sub>TH</sub>
| Cutoff
| कटऑफ
| The MOSFET is turned off, and should not be delivering any current.
| मॉस्फ़ेट बंद है, और उसे कोई धारा नहीं देना चाहिए।
|}
|}
एक और भौतिकी से संबंधित स्पष्टीकरण इस प्रकार है:
एक और भौतिकी से संबंधित स्पष्टीकरण इस प्रकार है:


एनएमओएस ट्रांजिस्टर में, शून्य बायस के तहत चैनल क्षेत्र में छेदों की बहुतायत होती है (यानी, यह पी-टाइप सिलिकॉन है)। नकारात्मक गेट बायस लगाने से (वी<sub>GS</sub> < 0) हम अधिक छिद्रों को आकर्षित करते हैं, और इसे संचय कहा जाता है। एक सकारात्मक गेट वोल्टेज (वी<sub>GS</sub> > 0) इलेक्ट्रॉनों को आकर्षित करेगा और छिद्रों को पीछे हटाएगा, और इसे अवक्षय कहा जाता है क्योंकि हम छिद्रों की संख्या को कम कर रहे हैं। एक महत्वपूर्ण वोल्टेज पर दहलीज वोल्टेज कहा जाता है (वी<sub>TH</sub>) चैनल वास्तव में छेदों से इतना कम हो जाएगा और इलेक्ट्रॉनों में समृद्ध होगा कि यह एन-टाइप सिलिकॉन होने में बदल जाएगा, और इसे उलटा क्षेत्र कहा जाता है।
एनएमओएस ट्रांजिस्टर में, शून्य पूर्वाग्रह के तहत चैनल क्षेत्र में छेद की बहुतायत होती है (यानी, यह पी-प्रकार सिलिकॉन है)। नकारात्मक गेट पूर्वाग्रह (V<sub>GS</sub> <0) प्रयुक्त करके हम अधिक छिद्रों को आकर्षित करते हैं, और इसे संचय कहा जाता है। एक सकारात्मक गेट वोल्टेज (V<sub>GS</sub> > 0) इलेक्ट्रॉनों को आकर्षित करेगा और छिद्रों को विकर्षित करेगा, और इसे कमी कहा जाता है क्योंकि हम छिद्रों की संख्या कम कर रहे हैं। थ्रेशोल्ड वोल्टेज (V<sub>TH</sub>) नामक एक महत्वपूर्ण वोल्टेज पर, चैनल वास्तव में छिद्रों से इतना कम हो जाएगा और इलेक्ट्रॉनों से समृद्ध होगा कि यह एन-प्रकार के सिलिकॉन में बदल जाएगा, और इसे उलटा क्षेत्र कहा जाता है।


जैसे ही हम इस वोल्टेज को बढ़ाते हैं, V<sub>GS</sub>, वी से आगे<sub>TH</sub>, कहा जाता है कि हम एक मजबूत चैनल बनाकर गेट को ओवरड्राइव कर रहे हैं, इसलिए ओवरड्राइव (जिसे अक्सर V कहा जाता है)<sub>ov</sub>, में<sub>od</sub>, या वी<sub>on</sub>) के रूप में परिभाषित किया गया है (वी<sub>GS</sub> - वी<sub>TH</sub>).
जैसे ही हम इस वोल्टेज, V<sub>GS</sub>, को V<sub>TH</sub> से आगे बढ़ाते हैं, तो कहा जाता है कि हम एक प्रबल चैनल बनाकर गेट को ओवरड्राइव कर रहे हैं, इसलिए ओवरड्राइव (जिसे अधिकांशतः V<sub>ov</sub>, V<sub>od</sub>, or V<sub>on</sub> कहा जाता है) को (V<sub>GS</sub> − V<sub>TH</sub>) के रूप में परिभाषित किया जाता है।


== यह भी देखें ==
== यह भी देखें                                                                                                                 ==


*मॉसफेट
*मॉसफेट
Line 37: Line 36:
*[[इलेक्ट्रॉनिक एम्पलीफायर]]
*[[इलेक्ट्रॉनिक एम्पलीफायर]]
* [[लघु-चैनल प्रभाव]]
* [[लघु-चैनल प्रभाव]]
*पक्षपात
*बिअसिंग


==संदर्भ==
==संदर्भ==
<references/>
<references/>
[[Category: विद्युत पैरामीटर]] [[Category: अर्धचालक]] [[Category: MOSFETs]]


[[Category: Machine Translated Page]]
[[Category:Created On 20/06/2023]]
[[Category:Created On 20/06/2023]]
[[Category:MOSFETs]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:अर्धचालक]]
[[Category:विद्युत पैरामीटर]]

Latest revision as of 20:13, 5 July 2023

ओवरड्राइव वोल्टेज, जिसे सामान्यतः VOV के रूप में संक्षिप्त किया जाता है, सामान्यतः एमओएसएफईटी ट्रांजिस्टर के संदर्भ में संदर्भित किया जाता है। ओवरड्राइव वोल्टेज को ट्रांजिस्टर गेट और स्रोत (VGS) के बीच थ्रेसहोल्ड वोल्टेज (VTH) से अधिक वोल्टेज के रूप में परिभाषित किया गया है, जहां VTH को ट्रांजिस्टर को चालू करने के लिए गेट और स्रोत के बीच आवश्यक न्यूनतम वोल्टेज के रूप में परिभाषित किया गया है (इसे विद्युत् का संचालन करने की अनुमति दें) इस परिभाषा के कारण, ओवरड्राइव वोल्टेज को "अतिरिक्त गेट वोल्टेज" या "प्रभावी वोल्टेज" के रूप में भी जाना जाता है।[1] ओवरड्राइव वोल्टेज को सरल समीकरण का उपयोग करके पाया जा सकता है: VOV = VGS − VTH.

प्रौद्योगिकी

VOV महत्वपूर्ण है क्योंकि यह सीधे ट्रांजिस्टर के आउटपुट ड्रेन टर्मिनल धारा (ID) को प्रभावित करता है, जो एम्पलीफायर परिपथ की एक महत्वपूर्ण संपत्ति है। VOV, बढ़ाकर, (ID ) को संतृप्ति तक पहुंचने तक बढ़ाया जा सकता है।[2]

ओवरड्राइव वोल्टेज भी महत्वपूर्ण है क्योंकि इसका VDS से संबंध है, स्रोत के सापेक्ष ड्रेन वोल्टेज, जिसका उपयोग मोस्फेट के संचालन के क्षेत्र को निर्धारित करने के लिए किया जा सकता है। नीचे दी गई तालिका दिखाती है कि मोस्फेट ऑपरेशन के किस क्षेत्र में है, यह समझने के लिए ओवरड्राइव वोल्टेज का उपयोग कैसे करें:

स्थिति संचालन का क्षेत्र विवरण
VDS > VOV; VGS > VTH संतृप्ति (सीसीआर) मॉस्फ़ेट अधिक मात्रा में धारा दे रहा है, और VDS बदलने से अधिक कुछ नहीं होगा।
VDS < VOV; VGS > VTH ट्रायोड (रैखिक) मॉस्फ़ेट वोल्टेज (VDS ) के रैखिक संबंध में धारा पहुंचा रहा है।
VGS < VTH कटऑफ मॉस्फ़ेट बंद है, और उसे कोई धारा नहीं देना चाहिए।

एक और भौतिकी से संबंधित स्पष्टीकरण इस प्रकार है:

एनएमओएस ट्रांजिस्टर में, शून्य पूर्वाग्रह के तहत चैनल क्षेत्र में छेद की बहुतायत होती है (यानी, यह पी-प्रकार सिलिकॉन है)। नकारात्मक गेट पूर्वाग्रह (VGS <0) प्रयुक्त करके हम अधिक छिद्रों को आकर्षित करते हैं, और इसे संचय कहा जाता है। एक सकारात्मक गेट वोल्टेज (VGS > 0) इलेक्ट्रॉनों को आकर्षित करेगा और छिद्रों को विकर्षित करेगा, और इसे कमी कहा जाता है क्योंकि हम छिद्रों की संख्या कम कर रहे हैं। थ्रेशोल्ड वोल्टेज (VTH) नामक एक महत्वपूर्ण वोल्टेज पर, चैनल वास्तव में छिद्रों से इतना कम हो जाएगा और इलेक्ट्रॉनों से समृद्ध होगा कि यह एन-प्रकार के सिलिकॉन में बदल जाएगा, और इसे उलटा क्षेत्र कहा जाता है।

जैसे ही हम इस वोल्टेज, VGS, को VTH से आगे बढ़ाते हैं, तो कहा जाता है कि हम एक प्रबल चैनल बनाकर गेट को ओवरड्राइव कर रहे हैं, इसलिए ओवरड्राइव (जिसे अधिकांशतः Vov, Vod, or Von कहा जाता है) को (VGS − VTH) के रूप में परिभाषित किया जाता है।

यह भी देखें

संदर्भ

  1. Sedra and Smith, Microelectronic Circuits, Fifth Edition, (2004) Chapter 4, ISBN 978-0-19-533883-6
  2. Lecture Note of Prof Liu, UC Berkeley