वैकल्पिक श्रृंखला: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Infinite series whose terms alternate in sign}}[[गणित]] में, एक वैकल्पिक श्रृंखला प्रपत्र की एक अनंत श्रृंखला है | {{Short description|Infinite series whose terms alternate in sign}}[[गणित]] में, एक '''वैकल्पिक श्रृंखला''' प्रपत्र की एक अनंत श्रृंखला है | ||
<math display="block">\sum_{n=0}^\infty (-1)^n a_n</math> या <math display="block">\sum_{n=0}^\infty (-1)^{n+1} a_n</math> | <math display="block">\sum_{n=0}^\infty (-1)^n a_n</math> या <math display="block">\sum_{n=0}^\infty (-1)^{n+1} a_n</math> | ||
साथ {{math|''a<sub>n</sub>'' > 0}} सभी के लिए{{mvar|n}}. सामान्य शब्दों के संकेत | साथ {{math|''a<sub>n</sub>'' > 0}} सभी के लिए{{mvar|n}}. सामान्य शब्दों के संकेत धनात्मक और ऋणात्मक के बीच वैकल्पिक होते हैं। किसी भी श्रृंखला की तरह, एक वैकल्पिक श्रृंखला अभिसरण करती है यदि और केवल तभी जब आंशिक योगों का संबद्ध अनुक्रम अभिसरण करता है। | ||
== उदाहरण == | == उदाहरण == | ||
Line 10: | Line 10: | ||
मर्केटर श्रृंखला प्राकृतिक लघुगणक की एक विश्लेषणात्मक अभिव्यक्ति प्रदान करती है: | मर्केटर श्रृंखला प्राकृतिक लघुगणक की एक विश्लेषणात्मक अभिव्यक्ति प्रदान करती है: | ||
<math display="block"> \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} x^n \;=\; \ln (1+x).</math> | <math display="block"> \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} x^n \;=\; \ln (1+x).</math> | ||
[[त्रिकोणमिति]] में उपयोग किए जाने वाले | [[त्रिकोणमिति]] में उपयोग किए जाने वाले फलन साइन और कोसाइन को [[कैलकुलस का इतिहास|कैलकुलस]] में वैकल्पिक श्रृंखला के रूप में परिभाषित किया जा सकता है, भले ही उन्हें प्रारंभिक बीजगणित में एक समकोण त्रिभुज की भुजाओं के अनुपात के रूप में प्रस्तुत किया गया हो। वास्तव में, | ||
<math display="block">\sin x = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{(2n+1)!},</math> और | <math display="block">\sin x = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{(2n+1)!},</math> और | ||
<math display="block">\cos x = \sum_{n=0}^\infty (-1)^n \frac{x^{2n}}{(2n)!} .</math> | <math display="block">\cos x = \sum_{n=0}^\infty (-1)^n \frac{x^{2n}}{(2n)!} .</math> | ||
जब वैकल्पिक कारक {{math|(–1)<sup>''n''</sup>}} को इन श्रंखलाओं से हटा दिया जाता है तो हमें कैलकुलस में प्रयुक्त अतिशयोक्तिपूर्ण फलन sinh और cosh प्राप्त होते हैं। | जब वैकल्पिक कारक {{math|(–1)<sup>''n''</sup>}} को इन श्रंखलाओं से हटा दिया जाता है तो हमें कैलकुलस में प्रयुक्त अतिशयोक्तिपूर्ण फलन sinh और cosh प्राप्त होते हैं। | ||
पूर्णांक या धनात्मक सूचकांक α के लिए पहली तरह के बेसेल | पूर्णांक या धनात्मक सूचकांक α के लिए पहली तरह के बेसेल फलन को वैकल्पिक श्रृंखला के साथ परिभाषित किया जा सकता है | ||
<math display="block"> J_\alpha(x) = \sum_{m=0}^\infty \frac{(-1)^m}{m! \, \Gamma(m+\alpha+1)} {\left(\frac{x}{2}\right)}^{2m+\alpha} </math> कहाँ {{math|Γ(''z'')}} [[गामा समारोह]] है। | <math display="block"> J_\alpha(x) = \sum_{m=0}^\infty \frac{(-1)^m}{m! \, \Gamma(m+\alpha+1)} {\left(\frac{x}{2}\right)}^{2m+\alpha} </math> कहाँ {{math|Γ(''z'')}} [[गामा समारोह|गामा फलन]] है। | ||
यदि s एक जटिल संख्या है, तो डिरिचलेट एटा (Dirichlet eta) | यदि s एक जटिल संख्या है, तो डिरिचलेट एटा (Dirichlet eta) फलन एक वैकल्पिक श्रृंखला के रूप में बनता है | ||
<math display="block">\eta(s) = \sum_{n=1}^{\infty}{(-1)^{n-1} \over n^s} = \frac{1}{1^s} - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} + \cdots</math> | <math display="block">\eta(s) = \sum_{n=1}^{\infty}{(-1)^{n-1} \over n^s} = \frac{1}{1^s} - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} + \cdots</math> | ||
जिसका उपयोग [[विश्लेषणात्मक संख्या सिद्धांत]] में किया जाता है। | जिसका उपयोग [[विश्लेषणात्मक संख्या सिद्धांत]] में किया जाता है। | ||
Line 25: | Line 25: | ||
{{main|वैकल्पिक श्रृंखला परीक्षण}} | {{main|वैकल्पिक श्रृंखला परीक्षण}} | ||
"लीबनिज परीक्षण" या प्रत्यावर्ती श्रेणी परीक्षण के रूप में जाना जाने वाला प्रमेय हमें बताता है कि एक प्रत्यावर्ती श्रृंखला अभिसरित होगी यदि पद {{math|''a<sub>n</sub>''}} 0 [[मोनोटोनिक फ़ंक्शन]] में अभिसरण करें। | "'''लीबनिज परीक्षण'''" या प्रत्यावर्ती श्रेणी परीक्षण के रूप में जाना जाने वाला प्रमेय हमें बताता है कि एक प्रत्यावर्ती श्रृंखला अभिसरित होगी यदि पद {{math|''a<sub>n</sub>''}} 0 [[मोनोटोनिक फ़ंक्शन|मोनोटोनिक फलन]] में अभिसरण करें। | ||
प्रमाण: मान लीजिए कि अनुक्रम <math>a_n</math> शून्य पर परिवर्तित हो जाता है और मोनोटोन घट रहा है। यदि <math>m</math> विषम है और <math>m<n</math>, हम अनुमान प्राप्त करते हैं <math>S_n - S_m \le a_{m}</math> निम्नलिखित गणना के माध्यम से: | प्रमाण: मान लीजिए कि अनुक्रम <math>a_n</math> शून्य पर परिवर्तित हो जाता है और मोनोटोन घट रहा है। यदि <math>m</math> विषम है और <math>m<n</math>, हम अनुमान प्राप्त करते हैं <math>S_n - S_m \le a_{m}</math> निम्नलिखित गणना के माध्यम से: | ||
Line 34: | Line 34: | ||
& = a_{m+1}-(a_{m+2}-a_{m+3}) - (a_{m+4}-a_{m+5}) - \cdots - a_n \le a_{m+1} \le a_{m}. | & = a_{m+1}-(a_{m+2}-a_{m+3}) - (a_{m+4}-a_{m+5}) - \cdots - a_n \le a_{m+1} \le a_{m}. | ||
\end{align}</math> | \end{align}</math> | ||
तब से <math>a_n</math> | तब से <math>a_n</math> साधारण रूप से घट रहा है, शर्तें <math>-(a_m - a_{m+1})</math> ऋणात्मक हैं। इस प्रकार, हमारे पास अंतिम असमानता है: <math>S_n - S_m \le a_m</math>. इसी तरह, यह दिखाया जा सकता है <math>-a_m \le S_n - S_m </math>. तब से <math>a_m</math> में विलीन हो जाता है <math>0</math>, हमारी आंशिक योग <math>S_m</math> एक कॉशी अनुक्रम बनाता है (यानी, श्रृंखला कौशी मानदंड को संतुष्ट करती है) और इसलिए अभिसरण करती है। के लिए तर्क <math>m</math> समान है। | ||
== अनुमानित योग == | == अनुमानित योग == | ||
उपरोक्त अनुमान पर निर्भर नहीं करता है <math>n</math>. तो यदि <math>a_n</math> 0 | उपरोक्त अनुमान पर निर्भर नहीं करता है <math>n</math>. तो यदि <math>a_n</math> 0 साधारण रूप से आ रहा है, अनुमान आंशिक योग से अनंत योग का अनुमान लगाने के लिए एक त्रुटि सीमा प्रदान करता है: | ||
<math display="block">\left|\sum_{k=0}^\infty(-1)^k\,a_k\,-\,\sum_{k=0}^m\,(-1)^k\,a_k\right|\le |a_{m+1}|.</math>इसका | <math display="block">\left|\sum_{k=0}^\infty(-1)^k\,a_k\,-\,\sum_{k=0}^m\,(-1)^k\,a_k\right|\le |a_{m+1}|.</math>इसका अर्थ यह नहीं है कि यह अनुमान हमेशा सबसे पहले तत्व को खोजता है जिसके बाद त्रुटि श्रृंखला में अगले पद के मापांक से कम होती है। वास्तव में यदि आप लेते हैं <math>1-1/2+1/3-1/4+... = \ln 2</math> और उस पद को खोजने का प्रयास करें जिसके बाद त्रुटि अधिकतम 0.00005 है, उपरोक्त असमानता से पता चलता है कि आंशिक योग के माध्यम से <math>a_{20000}</math> पर्याप्त है, लेकिन वास्तव में यह आवश्यकता से दोगुना शब्द है। वास्तव में, पहले 9999 तत्वों के योग के बाद त्रुटि 0.0000500025 है, और इसलिए आंशिक योग को लेते हुए <math>a_{10000}</math> काफी है। इस श्रृंखला में ऐसा गुण होता है जो एक नई श्रृंखला का निर्माण करता है <math>a_n -a_{n+1}</math> एक वैकल्पिक श्रृंखला भी देता है जहां लीबनिज़ परीक्षण लागू होता है और इस प्रकार यह सरल त्रुटि सीमा इष्टतम नहीं होती है। यह केलाब्रेसी बाउंड द्वारा सुधारा गया था,<ref>{{Cite journal |last=Calabrese |first=Philip |date=March 1962 |title=वैकल्पिक श्रृंखला पर एक नोट|url=https://www.jstor.org/stable/2311056 |journal=The American Mathematical Monthly |volume=69 |issue=3 |pages=215–217 |doi=10.2307/2311056|jstor=2311056 }}</ref> 1962 में खोजा गया, जो कहता है कि यह संपत्ति लीबनिज़ त्रुटि सीमा की तुलना में 2 गुना कम परिणाम देती है। वास्तव में यह श्रृंखला के लिए भी इष्टतम नहीं है जहां यह संपत्ति 2 या अधिक बार लागू होती है, जिसे रिचर्ड जॉनसनबॉघ त्रुटि बाध्य द्वारा वर्णित किया गया है।<ref>{{Cite journal |last=Johnsonbaugh |first=Richard |date=October 1979 |title=एक वैकल्पिक श्रृंखला का सारांश|url=https://www.jstor.org/stable/2321292 |journal=The American Mathematical Monthly |volume=86 |issue=8 |pages=637–648 |doi=10.2307/2321292|jstor=2321292 }}</ref> यदि कोई एक गुण को अनंत बार प्रयुक्त कर सकता है, तो यूलर का परिवर्तन लागू होता है।<ref>{{cite arXiv |last=Villarino |first=Mark B. |date=2015-11-27 |title=एक वैकल्पिक श्रृंखला में त्रुटि|class=math.CA |eprint=1511.08568 }}</ref> | ||
== पूर्ण अभिसरण == | == पूर्ण अभिसरण == | ||
यदि श्रृंखला <math display=inline>\sum a_n</math> अभिसरण करती है तो एक श्रृंखला <math display=inline>\sum |a_n|</math> पूर्णतः अभिसरण करती है। | |||
प्रमेय: | प्रमेय: पूर्णतः अभिसारी श्रृंखला अभिसारी होती है। | ||
प्रमाण: मान लीजिए <math display=inline>\sum a_n</math> कि यह बिल्कुल अभिसरण है। फिर, <math display=inline>\sum |a_n|</math> अभिसरण है और यह उसका अनुसरण करता है <math display=inline>\sum 2|a_n|</math> भी अभिसरण करता है। इसलिए <math display=inline> 0 \leq a_n + |a_n| \leq 2|a_n|</math>, श्रृंखला <math display=inline>\sum (a_n + |a_n|)</math> तुलना परीक्षण द्वारा अभिसरण होता है। इसलिए, श्रृंखला <math display=inline>\sum a_n</math> दो अभिसारी श्रृंखलाओं के अंतर के रूप में अभिसरण होता है <math display=inline>\sum a_n = \sum (a_n + |a_n|) - \sum |a_n|</math>. | |||
== [[सशर्त अभिसरण]] == | == [[सशर्त अभिसरण]] == | ||
एक श्रृंखला सशर्त अभिसरण है यदि यह अभिसरण करती है लेकिन | एक श्रृंखला सशर्त रूप से अभिसरण होती है यदि यह अभिसरण करती है लेकिन पूर्ण रूप से अभिसरण नहीं करती है। | ||
उदाहरण के लिए, हार्मोनिक श्रृंखला (गणित) | उदाहरण के लिए, हार्मोनिक श्रृंखला (गणित) | ||
Line 55: | Line 55: | ||
विचलन, जबकि वैकल्पिक संस्करण | विचलन, जबकि वैकल्पिक संस्करण | ||
<math display="block">\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n}, </math> | <math display="block">\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n}, </math> | ||
वैकल्पिक श्रृंखला परीक्षण द्वारा अभिसरित होता है। | |||
== पुनर्व्यवस्था == | == पुनर्व्यवस्था == | ||
किसी भी श्रृंखला के लिए, हम योग के क्रम को पुनर्व्यवस्थित करके एक नई श्रृंखला बना सकते हैं। एक श्रृंखला | किसी भी श्रृंखला के लिए, हम योग के क्रम को पुनर्व्यवस्थित करके एक नई श्रृंखला बना सकते हैं। एक श्रृंखला बिना शर्त अभिसरण होती है यदि कोई पुनर्व्यवस्था मूल श्रृंखला के समान अभिसरण के साथ एक श्रृंखला बनाती है। पूर्णतः अभिसारी श्रृंखला बिना शर्त अभिसरण है। लेकिन [[रीमैन श्रृंखला प्रमेय]] में कहा गया है कि मनमाना अभिसरण बनाने के लिए सशर्त रूप से अभिसरण श्रृंखला को पुनर्व्यवस्थित किया जा सकता है।<ref>{{cite journal |last1=Mallik |first1=AK |year=2007 |title=सरल अनुक्रमों के जिज्ञासु परिणाम|journal=Resonance |volume=12 |issue=1 |pages=23–37 |doi=10.1007/s12045-007-0004-7|s2cid=122327461 }}</ref> सामान्य सिद्धांत यह है कि अनंत योगों का योग केवल पूर्ण रूप से अभिसरण श्रृंखला के लिए क्रमविनिमेय है। | ||
उदाहरण के लिए, एक | उदाहरण के लिए, एक ली प्रमाण कि 1=0 अनंत राशियों के लिए साहचर्य की विफलता का लाभ उठाता है। | ||
एक अन्य उदाहरण के रूप में, मर्केटर श्रृंखला द्वारा | एक अन्य उदाहरण के रूप में, मर्केटर श्रृंखला द्वारा | ||
<math display="block">\ln(2) = \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots.</math> | <math display="block">\ln(2) = \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots.</math> | ||
लेकिन, चूंकि श्रृंखला पूरी तरह से अभिसरण नहीं करती है, इसलिए हम श्रृंखला प्राप्त करने के लिए | लेकिन, चूंकि श्रृंखला पूरी तरह से अभिसरण नहीं करती है, इसलिए हम श्रृंखला प्राप्त करने के लिए शब्दों को पुनर्व्यवस्थित कर सकते हैं <math display="inline">\tfrac 1 2 \ln(2)</math>: | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
& {} \quad \left(1-\frac{1}{2}\right)-\frac{1}{4} +\left(\frac{1}{3}-\frac{1}{6}\right) -\frac{1}{8}+\left(\frac{1}{5} -\frac{1}{10}\right)-\frac{1}{12}+\cdots \\[8pt] | & {} \quad \left(1-\frac{1}{2}\right)-\frac{1}{4} +\left(\frac{1}{3}-\frac{1}{6}\right) -\frac{1}{8}+\left(\frac{1}{5} -\frac{1}{10}\right)-\frac{1}{12}+\cdots \\[8pt] | ||
Line 71: | Line 71: | ||
\end{align}</math> | \end{align}</math> | ||
== श्रृंखला त्वरण == | |||
== | व्यवहार में, विभिन्न प्रकार की श्रृंखला त्वरण तकनीकों में से किसी एक का उपयोग करके एक वैकल्पिक श्रृंखला के संख्यात्मक योग को तेज़ किया जा सकता है। सबसे पुरानी तकनीकों में से एक यूलर योग है, और कई आधुनिक तकनीकें हैं जो और भी अधिक तेजी से अभिसरण प्रदान कर सकती हैं। | ||
व्यवहार में, | |||
== यह भी देखें == | == यह भी देखें == | ||
* ग्रैंडी की श्रृंखला | * ग्रैंडी की श्रृंखला | ||
* नोरलुंड-इंटीग्रल | * नोरलुंड- राइस इंटीग्रल | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
Line 89: | Line 88: | ||
{{series (mathematics)}} | {{series (mathematics)}} | ||
{{DEFAULTSORT:Alternating Series}} | {{DEFAULTSORT:Alternating Series}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page|Alternating Series]] | ||
[[Category:Created On 20/06/2023]] | [[Category:Collapse templates|Alternating Series]] | ||
[[Category:Created On 20/06/2023|Alternating Series]] | |||
[[Category:Lua-based templates|Alternating Series]] | |||
[[Category:Machine Translated Page|Alternating Series]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Alternating Series]] | |||
[[Category:Pages with script errors|Alternating Series]] | |||
[[Category:Sidebars with styles needing conversion|Alternating Series]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Alternating Series]] | |||
[[Category:Templates generating microformats|Alternating Series]] | |||
[[Category:Templates that add a tracking category|Alternating Series]] | |||
[[Category:Templates that are not mobile friendly|Alternating Series]] | |||
[[Category:Templates that generate short descriptions|Alternating Series]] | |||
[[Category:Templates using TemplateData|Alternating Series]] | |||
[[Category:Wikipedia metatemplates|Alternating Series]] | |||
[[Category:गणितीय श्रृंखला|Alternating Series]] | |||
[[Category:वास्तविक विश्लेषण|Alternating Series]] |
Latest revision as of 15:58, 12 July 2023
गणित में, एक वैकल्पिक श्रृंखला प्रपत्र की एक अनंत श्रृंखला है
उदाहरण
ज्यामितीय श्रृंखला 1/2 - 1/4 + 1/8 - 1/16 + ⋯ का योग 1/3 होता है।
वैकल्पिक हार्मोनिक श्रृंखला (गणित) में एक सीमित योग होता है लेकिन हार्मोनिक श्रृंखला में नहीं होता है।
मर्केटर श्रृंखला प्राकृतिक लघुगणक की एक विश्लेषणात्मक अभिव्यक्ति प्रदान करती है:
पूर्णांक या धनात्मक सूचकांक α के लिए पहली तरह के बेसेल फलन को वैकल्पिक श्रृंखला के साथ परिभाषित किया जा सकता है
यदि s एक जटिल संख्या है, तो डिरिचलेट एटा (Dirichlet eta) फलन एक वैकल्पिक श्रृंखला के रूप में बनता है
वैकल्पिक श्रृंखला परीक्षण
"लीबनिज परीक्षण" या प्रत्यावर्ती श्रेणी परीक्षण के रूप में जाना जाने वाला प्रमेय हमें बताता है कि एक प्रत्यावर्ती श्रृंखला अभिसरित होगी यदि पद an 0 मोनोटोनिक फलन में अभिसरण करें।
प्रमाण: मान लीजिए कि अनुक्रम शून्य पर परिवर्तित हो जाता है और मोनोटोन घट रहा है। यदि विषम है और , हम अनुमान प्राप्त करते हैं निम्नलिखित गणना के माध्यम से:
अनुमानित योग
उपरोक्त अनुमान पर निर्भर नहीं करता है . तो यदि 0 साधारण रूप से आ रहा है, अनुमान आंशिक योग से अनंत योग का अनुमान लगाने के लिए एक त्रुटि सीमा प्रदान करता है:
पूर्ण अभिसरण
यदि श्रृंखला अभिसरण करती है तो एक श्रृंखला पूर्णतः अभिसरण करती है।
प्रमेय: पूर्णतः अभिसारी श्रृंखला अभिसारी होती है।
प्रमाण: मान लीजिए कि यह बिल्कुल अभिसरण है। फिर, अभिसरण है और यह उसका अनुसरण करता है भी अभिसरण करता है। इसलिए , श्रृंखला तुलना परीक्षण द्वारा अभिसरण होता है। इसलिए, श्रृंखला दो अभिसारी श्रृंखलाओं के अंतर के रूप में अभिसरण होता है .
सशर्त अभिसरण
एक श्रृंखला सशर्त रूप से अभिसरण होती है यदि यह अभिसरण करती है लेकिन पूर्ण रूप से अभिसरण नहीं करती है।
उदाहरण के लिए, हार्मोनिक श्रृंखला (गणित)
पुनर्व्यवस्था
किसी भी श्रृंखला के लिए, हम योग के क्रम को पुनर्व्यवस्थित करके एक नई श्रृंखला बना सकते हैं। एक श्रृंखला बिना शर्त अभिसरण होती है यदि कोई पुनर्व्यवस्था मूल श्रृंखला के समान अभिसरण के साथ एक श्रृंखला बनाती है। पूर्णतः अभिसारी श्रृंखला बिना शर्त अभिसरण है। लेकिन रीमैन श्रृंखला प्रमेय में कहा गया है कि मनमाना अभिसरण बनाने के लिए सशर्त रूप से अभिसरण श्रृंखला को पुनर्व्यवस्थित किया जा सकता है।[4] सामान्य सिद्धांत यह है कि अनंत योगों का योग केवल पूर्ण रूप से अभिसरण श्रृंखला के लिए क्रमविनिमेय है।
उदाहरण के लिए, एक ली प्रमाण कि 1=0 अनंत राशियों के लिए साहचर्य की विफलता का लाभ उठाता है।
एक अन्य उदाहरण के रूप में, मर्केटर श्रृंखला द्वारा
श्रृंखला त्वरण
व्यवहार में, विभिन्न प्रकार की श्रृंखला त्वरण तकनीकों में से किसी एक का उपयोग करके एक वैकल्पिक श्रृंखला के संख्यात्मक योग को तेज़ किया जा सकता है। सबसे पुरानी तकनीकों में से एक यूलर योग है, और कई आधुनिक तकनीकें हैं जो और भी अधिक तेजी से अभिसरण प्रदान कर सकती हैं।
यह भी देखें
- ग्रैंडी की श्रृंखला
- नोरलुंड- राइस इंटीग्रल
टिप्पणियाँ
- ↑ Calabrese, Philip (March 1962). "वैकल्पिक श्रृंखला पर एक नोट". The American Mathematical Monthly. 69 (3): 215–217. doi:10.2307/2311056. JSTOR 2311056.
- ↑ Johnsonbaugh, Richard (October 1979). "एक वैकल्पिक श्रृंखला का सारांश". The American Mathematical Monthly. 86 (8): 637–648. doi:10.2307/2321292. JSTOR 2321292.
- ↑ Villarino, Mark B. (2015-11-27). "एक वैकल्पिक श्रृंखला में त्रुटि". arXiv:1511.08568 [math.CA].
- ↑ Mallik, AK (2007). "सरल अनुक्रमों के जिज्ञासु परिणाम". Resonance. 12 (1): 23–37. doi:10.1007/s12045-007-0004-7. S2CID 122327461.
संदर्भ
- Earl D. Rainville (1967) Infinite Series, pp 73–6, Macmillan Publishers.
- Weisstein, Eric W. "Alternating Series". MathWorld.