न्यूनाधिक सम्मिश्र विविधता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Smooth manifold}}
{{Short description|Smooth manifold}}
गणित में, लगभग जटिल मैनिफोल्ड प्रत्येक [[स्पर्शरेखा स्थान]] पर एक चिकनी [[रैखिक जटिल संरचना]] से सुसज्जित एक चिकनी मैनिफोल्ड है। प्रत्येक जटिल मैनिफोल्ड एक लगभग जटिल मैनिफोल्ड है, लेकिन लगभग जटिल मैनिफोल्ड भी हैं जो जटिल मैनिफोल्ड नहीं हैं। लगभग जटिल संरचनाओं का [[सिंपलेक्टिक ज्यामिति]] में महत्वपूर्ण अनुप्रयोग होता है।
गणित में, '''न्यूनाधिक सम्मिश्र विविधता''' प्रत्येक [[स्पर्शरेखा स्थान]] पर एक समतल  [[रैखिक जटिल संरचना|रैखिक सम्मिश्र संरचना]] से सुसज्जित एक समतल विविधता होती है। प्रत्येक सम्मिश्र विविधता एक न्यूनाधिक सम्मिश्र विविधता होती है, यघपि न्यूनाधिक सम्मिश्र विविधता ऐसी भी हैं जो सम्मिश्र विविधता नहीं होती हैं। न्यूनाधिक सम्मिश्र संरचनाओं का [[सिंपलेक्टिक ज्यामिति]] में महत्वपूर्ण अनुप्रयोग होता है।


यह अवधारणा 1940 के दशक में [[चार्ल्स एह्रेसमैन]] और [[हेंज हॉफ]] की देन है।<ref>{{cite journal|author1-last=Van de Ven|author1-first=A.|title=कुछ जटिल और लगभग जटिल मैनिफोल्ड्स की चेर्न संख्या पर|journal=[[Proceedings of the National Academy of Sciences]]|volume=55|issue=6|pages=1624–1627|date=June 1966|doi=10.1073/pnas.55.6.1624|pmid=16578639|pmc=224368|bibcode=1966PNAS...55.1624V|doi-access=free}}</ref>
यह अवधारणा 1940 के समय में [[चार्ल्स एह्रेसमैन]] और [[हेंज हॉफ]] की देन है।<ref>{{cite journal|author1-last=Van de Ven|author1-first=A.|title=कुछ जटिल और लगभग जटिल मैनिफोल्ड्स की चेर्न संख्या पर|journal=[[Proceedings of the National Academy of Sciences]]|volume=55|issue=6|pages=1624–1627|date=June 1966|doi=10.1073/pnas.55.6.1624|pmid=16578639|pmc=224368|bibcode=1966PNAS...55.1624V|doi-access=free}}</ref>


== औपचारिक परिभाषा ==
== औपचारिक परिभाषा ==
मान लीजिए M एक सहज मैनिफोल्ड है। एम पर एक 'लगभग जटिल संरचना' जे, मैनिफोल्ड के प्रत्येक स्पर्शरेखा स्थान पर एक रैखिक जटिल संरचना (अर्थात, एक रैखिक मानचित्र जिसका वर्ग -1) है, जो मैनिफोल्ड पर आसानी से बदलती रहती है। दूसरे शब्दों में, हमारे पास Tensor#Tensor डिग्री का एक सुचारू फ़ंक्शन [[टेंसर फ़ील्ड]] J है {{nowrap|(1, 1)}} ऐसा है कि <math>J^2=-1</math> जब इसे [[वेक्टर बंडल]] समरूपता के रूप में माना जाता है <math>J\colon TM\to TM</math> [[स्पर्शरेखा बंडल]] पर. लगभग जटिल संरचना से सुसज्जित मैनिफोल्ड को लगभग जटिल मैनिफोल्ड कहा जाता है।
मान लीजिए ''M'' एक सहज विविधता है। ''M'' पर एक '''न्यूनाधिक सम्मिश्र संरचना''' J, विविधता के प्रत्येक स्पर्शरेखा स्थान पर एक रैखिक सम्मिश्र संरचना (अर्थात, एक रैखिक मानचित्र जिसका मान  -1 वर्ग होता है) है, जो विविधता पर सरलता से बदलती रहती है। दूसरे शब्दों में, हमारे पास डिग्री (1, 1) का सुचारू [[टेंसर फ़ील्ड|टेंसर क्षेत्र]] J होता है, जैसे की <math>J^2=-1</math> इस प्रकार [[स्पर्शरेखा बंडल]] जिसे [[वेक्टर बंडल|सदिश बंडल]] समरूपता <math>J\colon TM\to TM</math> के रूप में जाना जाता है। न्यूनाधिक सम्मिश्र संरचना से सुसज्जित विविधता को '''न्यूनाधिक सम्मिश्र विविधता''' कहा जाता है।


यदि ''एम'' लगभग जटिल संरचना को स्वीकार करता है, तो इसे सम-आयामी होना चाहिए। इस प्रकार इसे देखा जा सकता है। मान लीजिए ''एम'' ''एन''-आयामी है, और चलो {{nowrap|''J'' : ''TM'' → ''TM''}} लगभग एक जटिल संरचना हो। अगर {{nowrap|1=''J''{{i sup|2}} = −1}} तब {{nowrap|1=(det ''J'')<sup>2</sup> = (−1){{sup|''n''}}}}. लेकिन यदि एम एक वास्तविक अनेक गुना है, तो {{nowrap|det ''J''}} एक वास्तविक संख्या है - इस प्रकार n तब भी होना चाहिए जब M की संरचना लगभग जटिल हो। कोई यह दिखा सकता है कि यह [[ कुंडा कई गुना |कुंडा कई गुना]] भी होना चाहिए।
यदि ''M'' न्यूनाधिक सम्मिश्र संरचना को स्वीकार करता है, तो इसे सम-आयामी होना चाहिए। इस प्रकार इसे देखा जा सकता है। मान लीजिए ''M'' ''n''-आयामी होता है, और {{nowrap|''J'' : ''TM'' → ''TM''}} तो न्यूनाधिक एक सम्मिश्र संरचना होने दें। अगर {{nowrap|1=''J''{{i sup|2}} = −1}} होता है तब {{nowrap|1=(det ''J'')<sup>2</sup> = (−1){{sup|''n''}}}} होता है। यघपि यदि ''M'' एक वास्तविक विविधता होती है, तो {{nowrap|det ''J''}} एक वास्तविक संख्या होती है - इस प्रकार n तब भी होना चाहिए जब M की संरचना न्यूनाधिक सम्मिश्र हो। कोई यह दिखा सकता है कि यह [[ कुंडा कई गुना |उन्मुखी]] भी होना चाहिए।


रैखिक बीजगणित में एक आसान अभ्यास से पता चलता है कि कोई भी आयामी वेक्टर स्थान एक रैखिक जटिल संरचना को स्वीकार करता है। इसलिए, एक सम आयामी मैनिफोल्ड हमेशा एक को स्वीकार करता है {{nowrap|(1, 1)}}-रैंक टेंसर बिंदुवार (जो प्रत्येक स्पर्शरेखा स्थान पर केवल एक रैखिक परिवर्तन है) जैसे कि {{nowrap|1=''J''{{sub|''p''}}{{sup|2}} = −1}} प्रत्येक बिंदु पर पी. केवल जब इस स्थानीय टेंसर को विश्व स्तर पर परिभाषित करने के लिए एक साथ पैच किया जा सकता है, तो बिंदुवार रैखिक जटिल संरचना लगभग एक जटिल संरचना उत्पन्न करती है, जिसे तब विशिष्ट रूप से निर्धारित किया जाता है। इस पैचिंग की संभावना, और इसलिए मैनिफोल्ड एम पर लगभग एक जटिल संरचना का अस्तित्व, स्पर्शरेखा बंडल के [[संरचना समूह की कमी]] के बराबर है {{nowrap|GL(2''n'', '''R''')}} को {{nowrap|GL(''n'', '''C''')}}. अस्तित्व का प्रश्न तब पूरी तरह से [[बीजगणितीय टोपोलॉजी]] है और काफी अच्छी तरह से समझा जाता है।
रैखिक बीजगणित में एक सरल अभ्यास से पता चलता है कि कोई भी आयामी सदिश स्थान एक रैखिक सम्मिश्र संरचना को स्वीकार करता है। इसलिए, एक सम आयामी विविधता सदैव {{nowrap|(1, 1)}}-रैंक टेंसर को बिंदुवार स्वीकार करता है (जो प्रत्येक स्पर्शरेखा स्थान पर मात्र एक रैखिक परिवर्तन है) जैसे कि प्रत्येक बिंदु ''p'' पर {{nowrap|1=''J''{{sub|''p''}}{{sup|2}} = −1}}। मात्र जब इस स्थानीय टेंसर को विश्व स्तर पर परिभाषित करने के लिए एक साथ पैच किया जा सकता है, तो बिंदुवार रैखिक सम्मिश्र संरचना न्यूनाधिक एक सम्मिश्र संरचना उत्पन्न करती है, जिसे तब विशिष्ट रूप से निर्धारित किया जाता है। इस पैचिंग की संभावना, और इसलिए विविधता ''M'' पर न्यूनाधिक एक सम्मिश्र संरचना का अस्तित्व {{nowrap|GL(2''n'', '''R''')}} से {{nowrap|GL(''n'', '''C''')}} तक स्पर्शरेखा बंडल के [[संरचना समूह की कमी]] के बराबर होता है। अस्तित्व का प्रश्न तब पूरी तरह से [[बीजगणितीय टोपोलॉजी|बीजगणितीय सांस्थिति]] होता है और अत्यधिक अच्छी तरह से समझा जाता है।


==उदाहरण==
==उदाहरण==
प्रत्येक पूर्णांक n के लिए, समतल स्थान R<sup>2n</sup>लगभग एक जटिल संरचना को स्वीकार करता है। ऐसी लगभग जटिल संरचना का एक उदाहरण है (1 ≤ i, j ≤ 2n): <math>J_{ij} = -\delta_{i,j-1} </math> मेरे लिए भी, <math>J_{ij} = \delta_{i,j+1} </math> विषम i के लिए
प्रत्येक पूर्णांक n के लिए, समतल स्थान R<sup>2n</sup> न्यूनाधिक एक सम्मिश्र संरचना को स्वीकार करता है। ऐसी न्यूनाधिक सम्मिश्र संरचना का एक उदाहरण (1 ≤ i, j ≤ 2n): <math>J_{ij} = -\delta_{i,j-1} </math>सम ''i'' लिए , <math>J_{ij} = \delta_{i,j+1} </math> विषम i के लिए होता है।


एकमात्र क्षेत्र जो लगभग जटिल संरचनाओं को स्वीकार करते हैं वे 'S' हैं<sup>2</sup>और एस<sup>6</sup>({{harvtxt|Borel|Serre|1953}}). विशेष रूप से, एस<sup>4</sup>को लगभग जटिल नहीं दिया जा सकता
एकमात्र क्षेत्र जो न्यूनाधिक सम्मिश्र संरचनाओं को स्वीकार करते हैं वे '''S'''<sup>2</sup> और S<sup>6</sup> ({{harvtxt|बोरेल |सेरे|1953}}) हैं। विशेष रूप से, S<sup>4</sup> को न्यूनाधिक सम्मिश्र संरचना (एह्रेसमैन और होपफ) नहीं दिया जा सकता है। '''S'''<sup>2</sup> के स्थिति में, न्यूनाधिक सम्मिश्र संरचना [[रीमैन क्षेत्र]] पर एक स्पष्ट सम्मिश्र संरचना से आती है। 6-व्रक, S<sup>6</sup>, जब इकाई मानक काल्पनिक [[ऑक्टोनियन]] के सम्मुचय के रूप में माना जाता है, तो ऑक्टोनियन गुणन से न्यूनाधिक एक सम्मिश्र संरचना प्राप्त होती है; यह प्रश्न कि क्या इसमें अभिन्न न्यूनाधिक सम्मिश्र संरचनाएं हैं, हेंज हॉपफ के नाम पर हॉपफ समस्या के रूप में जाना जाता है।<ref>{{cite journal|last1=Agricola |first1=Ilka |authorlink1=Ilka Agricola |first2=Giovanni |last2=Bazzoni |first3=Oliver |last3=Goertsches |first4=Panagiotis |last4=Konstantis |first5=Sönke |last5=Rollenske |title=हॉपफ समस्या के इतिहास पर|arxiv=1708.01068 |journal=[[Differential Geometry and Its Applications]] |year=2018 |volume=57 |pages=1–9|doi=10.1016/j.difgeo.2017.10.014 |s2cid=119297359 }}</ref>
संरचना (एह्रेसमैन और होपफ)। एस के मामले में<sup>2</sup>, लगभग जटिल संरचना [[रीमैन क्षेत्र]] पर एक ईमानदार जटिल संरचना से आती है। 6-गोला, एस<sup>6</sup>, जब इकाई मानक काल्पनिक [[ऑक्टोनियन]] के सेट के रूप में माना जाता है, तो ऑक्टोनियन गुणन से लगभग एक जटिल संरचना प्राप्त होती है; यह सवाल कि क्या इसमें #अभिन्न लगभग जटिल संरचनाएं हैं, हेंज हॉपफ के बाद हॉपफ समस्या के रूप में जाना जाता है।<ref>{{cite journal|last1=Agricola |first1=Ilka |authorlink1=Ilka Agricola |first2=Giovanni |last2=Bazzoni |first3=Oliver |last3=Goertsches |first4=Panagiotis |last4=Konstantis |first5=Sönke |last5=Rollenske |title=हॉपफ समस्या के इतिहास पर|arxiv=1708.01068 |journal=[[Differential Geometry and Its Applications]] |year=2018 |volume=57 |pages=1–9|doi=10.1016/j.difgeo.2017.10.014 |s2cid=119297359 }}</ref>


== लगभग जटिल मैनिफोल्ड्स की विभेदक टोपोलॉजी ==
== न्यूनाधिक सम्मिश्र विविधता्स की विभेदक टोपोलॉजी ==
जिस प्रकार सदिश समष्टि V पर एक जटिल संरचना, V के अपघटन की अनुमति देती है<sup>सी</sup> ''वी'' में<sup>+</sup>और वी<sup>−</sup> (J के [[eigenspace]]s क्रमशः +i और −i के अनुरूप हैं), इसलिए M पर लगभग एक जटिल संरचना जटिल स्पर्शरेखा बंडल TM के अपघटन की अनुमति देती है<sup>C</sup> (जो प्रत्येक बिंदु पर जटिल स्पर्शरेखा स्थानों का वेक्टर बंडल है) ''TM'' में<sup>+</sup>और टीएम<sup>−</sup>. टीएम का एक भाग<sup>+</sup> को प्रकार (1, 0) का एक [[वेक्टर फ़ील्ड]] कहा जाता है, जबकि TM का एक अनुभाग<sup>−</sup> (0, 1) प्रकार का एक सदिश क्षेत्र है। इस प्रकार J, जटिल स्पर्शरेखा बंडल के (1, 0)-वेक्टर फ़ील्ड पर काल्पनिक इकाई द्वारा गुणा और (0, 1)-वेक्टर फ़ील्ड पर −i द्वारा गुणा से मेल खाता है।
जिस प्रकार सदिश समष्टि V पर एक सम्मिश्र संरचना, ''V''<sup>'''C'''</sup> के ''V''<sup>+</sup> और ''V''<sup>−</sup>(क्रमशः +i और −i के अनुरूप J के [[eigenspace|ईजेनस्पेसेस]]) में विघटित करने की अनुमति देती है, उसी प्रकार M पर एक न्यूनाधिक सम्मिश्र संरचना सम्मिश्र स्पर्शरेखा के विघटित होने की अनुमति देती है। टीएमसी (जो प्रत्येक बिंदु पर सम्मिश्र स्पर्शरेखा स्थानों का सदिश बंडल है) को ''TM''<sup>+</sup> और ''TM''<sup>−</sup> में बंडल करता है। ''TM''<sup>+</sup> के एक खंड को (1, 0) प्रकार का एक सदिश क्षेत्र कहा जाता है, जबकि ''TM''<sup>−</sup> के एक खंड को (0, 1) प्रकार का एक [[वेक्टर फ़ील्ड|सदिश क्षेत्र]] कहा जाता है। इस प्रकार J, सम्मिश्र स्पर्शरेखा बंडल के (1, 0)-सदिश क्षेत्र पर i द्वारा गुणा और (0, 1)-सदिश क्षेत्र पर −i द्वारा गुणा से सामंजस्य रखता है।  


जैसे हम [[कोटैंजेंट बंडल]] की [[बाहरी शक्ति]]यों से [[विभेदक रूप]] बनाते हैं, वैसे ही हम जटिल कोटैंजेंट बंडल की बाहरी शक्तियां बना सकते हैं (जो जटिल स्पर्शरेखा बंडल के दोहरे स्थानों के बंडल के लिए कैनोनिक रूप से आइसोमोर्फिक है)। लगभग जटिल संरचना आर-रूपों के प्रत्येक स्थान के अपघटन को प्रेरित करती है
जैसे हम [[कोटैंजेंट बंडल|कोटिस्पर्श रेखा बंडल]] की [[बाहरी शक्ति|बाह्य शक्ति]]यों से [[विभेदक रूप]] बनाते हैं, वैसे ही हम सम्मिश्र कोटिस्पर्श रेखा बंडल की बाहरी शक्तियां बना सकते हैं (जो सम्मिश्र स्पर्शरेखा बंडल के दोहरे स्थानों के बंडल के लिए विहित रूप से समरूपी होती है)। इस प्रकार न्यूनाधिक सम्मिश्र संरचना ''r''-रूपों के प्रत्येक स्थान के अपघटन को प्रेरित करती है


:<math>\Omega^r(M)^\mathbf{C}=\bigoplus_{p+q=r} \Omega^{(p,q)}(M). \, </math>
:<math>\Omega^r(M)^\mathbf{C}=\bigoplus_{p+q=r} \Omega^{(p,q)}(M). \, </math>
दूसरे शब्दों में, प्रत्येक Ω<sup>आर</sup>(एम)<sup>सी</sup> Ω के योग में एक अपघटन स्वीकार करता है<sup>(p, q)</sup>(M), r = p + q के साथ।
दूसरे शब्दों में, प्रत्येक Ω<sup>''r''</sup>(''M'')<sup>'''C'''</sup>, ''r'' = ''p'' + ''q'' के साथ Ω<sup>(''p'', ''q'')</sup>(''M'') के योग में एक अपघटन स्वीकार करता है।


वेक्टर बंडलों के किसी भी प्रत्यक्ष योग की तरह, एक विहित प्रक्षेपण π है<sub>''p'',''q''</sub> Ω से<sup>आर</sup>(एम)<sup>सी</sup>से Ω<sup>(p,q)</sup>. हमारे पास [[बाहरी व्युत्पन्न]] d भी है जो Ω को मैप करता है<sup>आर</sup>(एम)<sup>सी</sup>से Ω<sup>आर+1</sup>(एम)<sup>सी</sup>. इस प्रकार हम बाहरी व्युत्पन्न की क्रिया को निश्चित प्रकार के रूपों में परिष्कृत करने के लिए लगभग जटिल संरचना का उपयोग कर सकते हैं
किसी भी प्रत्यक्ष योग की तरह, Ω<sup>''r''</sup>(''M'')<sup>'''C'''</sup> से Ω<sup>(''p'',''q'')</sup> तक एक विहित प्रक्षेपण π<sub>''p'',''q''</sub> होता है। हमारे पास [[बाहरी व्युत्पन्न]] d भी होता है जो Ω<sup>''r''</sup>(''M'')<sup>'''C'''</sup> को Ω<sup>''r''+1</sup>(''M'')<sup>'''C'''</sup> तक मानचित्र करता है। इस प्रकार हम बाहरी व्युत्पन्न की क्रिया को निश्चित प्रकार के रूपों में परिष्कृत करने के लिए न्यूनाधिक सम्मिश्र संरचना का उपयोग कर सकते हैं


:<math>\partial=\pi_{p+1,q}\circ d</math>
<math>\partial=\pi_{p+1,q}\circ d</math>
:<math>\overline{\partial}=\pi_{p,q+1}\circ d</math>
ताकि <math>\partial</math> एक मानचित्र है जो प्रकार के होलोमोर्फिक भाग को एक-एक करके बढ़ाता है (प्रकार (p, q) के रूप को प्रकार (p+1, q) के रूप में लेता है), और <math>\overline{\partial}</math> एक मानचित्र है जो प्रकार के एंटीहोलोमोर्फिक भाग को एक से बढ़ाता है। इन ऑपरेटरों को [[डॉल्बॉल्ट ऑपरेटर]] कहा जाता है।


चूँकि सभी अनुमानों का योग पहचान फ़ंक्शन होना चाहिए, हम ध्यान दें कि बाहरी व्युत्पन्न लिखा जा सकता है
<math>\overline{\partial}=\pi_{p,q+1}\circ d</math>
 
इस प्रकार <math>\partial</math> एक मानचित्र है जो होलोमोर्फिक भाग को एक-एक करके बढ़ाता है (प्रकार (p, q) के रूप को प्रकार (p+1, q) के रूप में लेता है), और <math>\overline{\partial}</math> एक मानचित्र है जो प्रकार के एंटीहोलोमोर्फिक भाग को एक से बढ़ाता है। इन ऑपरेटरों को [[डॉल्बॉल्ट ऑपरेटर]] कहा जाता है।
 
चूँकि सभी अनुमानों का योग पहचान फ़ंक्शन होना चाहिए, हम ध्यान दें कि बाहरी व्युत्पन्न निम्न प्रकार लिखा जा सकता है


:<math>d=\sum_{r+s=p+q+1} \pi_{r,s}\circ d=\partial + \overline{\partial} + \cdots .</math>
:<math>d=\sum_{r+s=p+q+1} \pi_{r,s}\circ d=\partial + \overline{\partial} + \cdots .</math>


== अभिन्न लगभग जटिल संरचनाएँ ==
== अभिन्न न्यूनाधिक सम्मिश्र संरचनाएँ ==
प्रत्येक जटिल मैनिफोल्ड अपने आप में लगभग एक जटिल मैनिफोल्ड है। स्थानीय होलोमोर्फिक निर्देशांक में <math>z^\mu = x^\mu + i y^\mu</math> कोई मानचित्रों को परिभाषित कर सकता है
प्रत्येक सम्मिश्र विविधता अपने आप में न्यूनाधिक एक सम्मिश्र विविधता होती है। स्थानीय होलोमोर्फिक निर्देशांक में <math>z^\mu = x^\mu + i y^\mu</math> कोई भी मानचित्रों को परिभाषित कर सकता है


:<math>J\frac{\partial}{\partial x^\mu} = \frac{\partial}{\partial y^\mu} \qquad J\frac{\partial}{\partial y^\mu} = -\frac{\partial}{\partial x^\mu}</math>
:<math>J\frac{\partial}{\partial x^\mu} = \frac{\partial}{\partial y^\mu} \qquad J\frac{\partial}{\partial y^\mu} = -\frac{\partial}{\partial x^\mu}</math>
(बिल्कुल π/2 के वामावर्त घुमाव की तरह) या
(आवश्यक π/2 के वामावर्त घुमाव की तरह) या


:<math>J\frac{\partial}{\partial z^\mu} = i\frac{\partial}{\partial z^\mu} \qquad J\frac{\partial}{\partial \bar{z}^\mu} = -i\frac{\partial}{\partial \bar{z}^\mu}.</math>
:<math>J\frac{\partial}{\partial z^\mu} = i\frac{\partial}{\partial z^\mu} \qquad J\frac{\partial}{\partial \bar{z}^\mu} = -i\frac{\partial}{\partial \bar{z}^\mu}.</math>
कोई भी आसानी से जाँच सकता है कि यह मानचित्र लगभग एक जटिल संरचना को परिभाषित करता है। इस प्रकार मैनिफोल्ड पर कोई भी जटिल संरचना लगभग एक जटिल संरचना उत्पन्न करती है, जिसे जटिल संरचना से 'प्रेरित' कहा जाता है, और जटिल संरचना को लगभग जटिल संरचना के साथ 'संगत' कहा जाता है।
कोई भी सरलता से जाँच सकता है कि यह मानचित्र न्यूनाधिक एक सम्मिश्र संरचना को परिभाषित करता है। इस प्रकार विविधता पर कोई भी सम्मिश्र संरचना न्यूनाधिक एक सम्मिश्र संरचना उत्पन्न करती है, जिसे सम्मिश्र संरचना से 'प्रेरित' कहा जाता है, और सम्मिश्र संरचना को न्यूनाधिक सम्मिश्र संरचना के साथ 'संगत' कहा जाता है।


विपरीत प्रश्न, कि क्या लगभग जटिल संरचना का तात्पर्य एक जटिल संरचना के अस्तित्व से है, बहुत कम तुच्छ है, और सामान्य रूप से सत्य नहीं है। एक मनमाने ढंग से लगभग जटिल मैनिफोल्ड पर कोई भी हमेशा निर्देशांक पा सकता है जिसके लिए लगभग जटिल संरचना किसी भी बिंदु पी पर उपरोक्त विहित रूप लेती है। सामान्य तौर पर, हालांकि, निर्देशांक ढूंढना संभव नहीं है ताकि जे पी के पूरे [[पड़ोस (टोपोलॉजी)]] पर विहित रूप ले सके। ऐसे निर्देशांक, यदि वे मौजूद हैं, तो 'जे के लिए स्थानीय होलोमोर्फिक निर्देशांक' कहलाते हैं। यदि एम हर बिंदु के आसपास जे के लिए स्थानीय होलोमोर्फिक निर्देशांक स्वीकार करता है तो ये एक साथ मिलकर एम के लिए एक [[होलोमोर्फिक फ़ंक्शन]] [[एटलस (टोपोलॉजी)]] बनाते हैं, जो इसे एक जटिल संरचना देता है, जो जे को प्रेरित करता है। जे को तब 'फ्रोबेनियस प्रमेय (डिफरेंशियल टोपोलॉजी)' कहा जाता है। '. यदि J एक जटिल संरचना से प्रेरित है, तो यह एक अद्वितीय जटिल संरचना से प्रेरित है।
विपरीत प्रश्न, कि क्या न्यूनाधिक सम्मिश्र संरचना का तात्पर्य एक सम्मिश्र संरचना के अस्तित्व से है, बहुत कम तुच्छ है, और सामान्य रूप से सत्य नहीं है। एक इच्छानुसार ढंग से न्यूनाधिक सम्मिश्र विविधता पर कोई भी सदैव निर्देशांक पा सकता है जिसके लिए न्यूनाधिक सम्मिश्र संरचना किसी भी बिंदु ''p'' पर उपरोक्त विहित रूप लेती है। सामान्यतः, चुकीं, निर्देशांक ढूंढना संभव नहीं होता है जिससें ''J'' ''p'' के पूरे [[पड़ोस (टोपोलॉजी)|समीपस्थ]] पर विहित रूप ले सके। ऐसे निर्देशांक, यदि वे उपस्थित हैं, तो ''J'' के लिए 'स्थानीय होलोमोर्फिक निर्देशांक' कहलाते हैं। यदि ''M'' हर बिंदु के आसपास ''J'' के लिए स्थानीय होलोमोर्फिक निर्देशांक स्वीकार करता है तो ये एक साथ मिलकर ''M'' के लिए एक [[होलोमोर्फिक फ़ंक्शन]] [[एटलस (टोपोलॉजी)]] बनाते हैं, जो इसे एक सम्मिश्र संरचना देता है, जो ''J'' को प्रेरित करता है। इस प्रकार ''J'' को तब 'फ्रोबेनियस प्रमेय (डिफरेंशियल टोपोलॉजी)' कहा जाता है। यदि J एक सम्मिश्र संरचना से प्रेरित है, तो यह एक अद्वितीय सम्मिश्र संरचना से प्रेरित होती है।


एम के प्रत्येक स्पर्शरेखा स्थान पर किसी भी रैखिक मानचित्र को देखते हुए; यानी, रैंक (1,1) का एक टेंसर फ़ील्ड है, तो 'निजेनहुइस टेंसर' रैंक (1,2) का एक टेंसर फ़ील्ड है जो द्वारा दिया गया है
''M'' के प्रत्येक स्पर्शरेखा स्थान पर किसी भी रैखिक मानचित्र ''A'' को देखते हुए; अर्थात्, ''A'' रैंक (1,1) का एक टेंसर क्षेत्र होता है, तो 'निजेनहुइस टेंसर' रैंक (1,2) का एक टेंसर क्षेत्र है जो निम्न प्रकार से दिया गया है


:<math> N_A(X,Y) = -A^2[X,Y]+A([AX,Y]+[X,AY]) -[AX,AY]. \, </math>
:<math> N_A(X,Y) = -A^2[X,Y]+A([AX,Y]+[X,AY]) -[AX,AY]. \, </math>
या, लगभग जटिल संरचना A=J के सामान्य मामले के लिए <math> J^2=-Id </math>,
या, न्यूनाधिक सम्मिश्र संरचना A=J के सामान्य स्थिति के लिए <math> J^2=-Id </math>,


:<math> N_J(X,Y) = [X,Y]+J([JX,Y]+[X,JY])-[JX,JY]. \, </math>
:<math> N_J(X,Y) = [X,Y]+J([JX,Y]+[X,JY])-[JX,JY]. \, </math>
दाईं ओर की व्यक्तिगत अभिव्यक्तियाँ सुचारु वेक्टर फ़ील्ड X और Y की पसंद पर निर्भर करती हैं, लेकिन बाईं ओर वास्तव में केवल X और Y के बिंदुवार मानों पर निर्भर करती है, यही कारण है कि N<sub>''A''</sub> एक टेंसर है. यह घटक सूत्र से भी स्पष्ट है
दाईं ओर की व्यक्तिगत अभिव्यक्तियाँ सुचारु सदिश क्षेत्र X और Y की रूचि पर निर्भर करती हैं, यघपि बाईं ओर वास्तव में मात्र X और Y के बिंदुवार मानों पर निर्भर करती है, यही कारण है कि N<sub>''A''</sub> एक टेंसर होता है। यह घटक सूत्र से भी स्पष्ट होता है


:<math> -(N_A)_{ij}^k=A_i^m\partial_m A^k_j -A_j^m\partial_mA^k_i-A^k_m(\partial_iA^m_j-\partial_jA^m_i).</math>
:<math> -(N_A)_{ij}^k=A_i^m\partial_m A^k_j -A_j^m\partial_mA^k_i-A^k_m(\partial_iA^m_j-\partial_jA^m_i).</math>
फ्रोलिचर-निजेनहुइस ब्रैकेट के संदर्भ में, जो वेक्टर फ़ील्ड के लाई ब्रैकेट को सामान्यीकृत करता है, निजेनहुइस टेंसर एन<sub>A</sub>[, एएन] का केवल आधा हिस्सा है।
फ्रोलिचर-निजेनहुइस कोष्ठक के संदर्भ में, जो सदिश क्षेत्र के लाई कोष्ठक को सामान्यीकृत करता है, निजेनहुइस टेंसर ''N<sub>A</sub>'' एक [A, A] का मात्र आधा भाग होता है।
'न्यूलैंडर-निरेनबर्ग प्रमेय' बताता है कि लगभग जटिल संरचना J पूर्णांक है यदि और केवल यदि N<sub>J</sub>= 0. संगत जटिल संरचना अद्वितीय है, जैसा कि ऊपर चर्चा की गई है। चूँकि एक अभिन्न लगभग जटिल संरचना का अस्तित्व एक जटिल संरचना के अस्तित्व के बराबर है, इसलिए इसे कभी-कभी एक जटिल संरचना की परिभाषा के रूप में लिया जाता है।
 
'न्यूलैंडर-निरेनबर्ग प्रमेय' बताता है कि न्यूनाधिक सम्मिश्र संरचना में J पूर्णांक होता है यदि और मात्र यदि N<sub>J</sub>= 0। संगत सम्मिश्र संरचना अद्वितीय है, जैसा कि ऊपर चर्चा की गई है। चूँकि एक अभिन्न न्यूनाधिक सम्मिश्र संरचना का अस्तित्व एक सम्मिश्र संरचना के अस्तित्व के बराबर होता है, इसलिए इसे कभी-कभी एक सम्मिश्र संरचना की परिभाषा के रूप में लिया जाता है।


कई अन्य मानदंड हैं जो निजेनहुइस टेंसर के लुप्त होने के समतुल्य हैं, और इसलिए लगभग जटिल संरचना की अभिन्नता की जांच करने के तरीके प्रस्तुत करते हैं (और वास्तव में इनमें से प्रत्येक साहित्य में पाया जा सकता है):
कई अन्य मानदंड हैं जो निजेनहुइस टेंसर के लुप्त होने के समतुल्य हैं, और इसलिए न्यूनाधिक सम्मिश्र संरचना की अभिन्नता की जांच करने के विधि प्रस्तुत करते हैं (और वास्तव में इनमें से प्रत्येक साहित्य में पाया जा सकता है):


*किसी भी दो (1,0)-वेक्टर फ़ील्ड का झूठ ब्रैकेट फिर से प्रकार का होता है (1,0)
*किसी भी दो (1,0)-सदिश क्षेत्र का असत्य कोष्ठक फिर से (1,0) प्रकार का होता है
*<math>d = \partial + \bar\partial</math>
*<math>d = \partial + \bar\partial</math>
*<math>\bar\partial^2=0.</math>
*<math>\bar\partial^2=0.</math>
इनमें से कोई भी स्थिति एक अद्वितीय संगत जटिल संरचना के अस्तित्व को दर्शाती है।
इनमें से कोई भी स्थिति एक अद्वितीय संगत सम्मिश्र संरचना के अस्तित्व को प्रदर्शित करती है।


लगभग जटिल संरचना का अस्तित्व एक टोपोलॉजिकल प्रश्न है और इसका उत्तर देना अपेक्षाकृत आसान है, जैसा कि ऊपर चर्चा की गई है। दूसरी ओर, एक अभिन्न लगभग जटिल संरचना का अस्तित्व, एक अधिक कठिन विश्लेषणात्मक प्रश्न है। उदाहरण के लिए, यह अभी भी ज्ञात नहीं है कि एस<sup>अंततः असत्यापित दावों के लंबे इतिहास के बावजूद, 6</sup> एक अभिन्न लगभग जटिल संरचना को स्वीकार करता है। चिकनाई के मुद्दे महत्वपूर्ण हैं. वास्तविक-विश्लेषणात्मक जे के लिए, न्यूलैंडर-निरेनबर्ग प्रमेय फ्रोबेनियस प्रमेय (डिफरेंशियल टोपोलॉजी) से अनुसरण करता है; सी के लिए<sup>∞</sup> (और कम सहज) जे, विश्लेषण की आवश्यकता है (अधिक कठिन तकनीकों के साथ क्योंकि नियमितता परिकल्पना कमजोर हो जाती है)।
न्यूनाधिक सम्मिश्र संरचना का अस्तित्व एक संस्थानिक प्रश्न होता है और इसका उत्तर देना अपेक्षाकृत सरल होता है, जैसा कि ऊपर चर्चा की गई है। दूसरी ओर, एक अभिन्न न्यूनाधिक सम्मिश्र संरचना का अस्तित्व, एक अधिक कठिन विश्लेषणात्मक प्रश्न होता है। उदाहरण के लिए, यह अभी भी ज्ञात नहीं है कि '''S'''<sup>6</sup> अंततः असत्यापित प्रणामो के लंबे इतिहास के अतिरिक्त, एक अभिन्न न्यूनाधिक सम्मिश्र संरचना को स्वीकार करता है। इस प्रकार चिकनाई के उद्देश्य महत्वपूर्ण होते हैं। वास्तविक-विश्लेषणात्मक ''J'' के लिए, न्यूलैंडर-निरेनबर्ग प्रमेय फ्रोबेनियस प्रमेय (डिफरेंशियल टोपोलॉजी) से अनुसरण करता है; ''C''<sup>∞</sup> के लिए (और कम सहज) ''J'', विश्लेषण की आवश्यकता होती है (अधिक कठिन तकनीकों के साथ क्योंकि नियमितता परिकल्पना अशक्त हो जाती है)।


==संगत त्रिगुण ==
==संगत त्रिगुण ==
मान लीजिए कि एम एक सहानुभूतिपूर्ण रूप ω, एक [[रीमैनियन मीट्रिक]] जी और लगभग एक जटिल संरचना जे से सुसज्जित है। चूंकि ω और जी अपक्षयी रूप हैं, प्रत्येक एक बंडल आइसोमोर्फिज्म टीएम टी * एम प्रेरित करता है, जहां पहला नक्शा, φ दर्शाया गया है<sub>''ω''</sub>, [[आंतरिक उत्पाद]] φ द्वारा दिया गया है<sub>''ω''</sub>(यू) = मैं<sub>''u''</sub>ω = ω(u, •) और दूसरा, निरूपित φ<sub>''g''</sub>, जी के लिए अनुरूप ऑपरेशन द्वारा दिया गया है। इस समझ के साथ, तीन संरचनाएं (जी, ω, जे) एक 'संगत ट्रिपल' बनाती हैं जब प्रत्येक संरचना को दो अन्य द्वारा निम्नानुसार निर्दिष्ट किया जा सकता है:
मान लीजिए कि ''M'' एक सहानुभूतिपूर्ण रूप ω, एक [[रीमैनियन मीट्रिक|रीमैनियन आव्यूह]] ''g'' और न्यूनाधिक एक सम्मिश्र संरचना ''J'' से सुसज्जित है। चूंकि ω और ''g'' अपक्षयी रूप हैं, प्रत्येक एक बंडल आइसोमोर्फिज्म ''TM T*M'' प्रेरित करता है, जहाँ प्रथम  मानचित्र, ''φ<sub>ω</sub>'' प्रदर्शित किया गया है, [[आंतरिक उत्पाद]] ''φ<sub>ω</sub>'' द्वारा दिया गया है ''φ<sub>ω</sub>''(''u'') = ''i<sub>u</sub>ω'' = ''ω''(''u'', ) और दूसरा, निरूपित φ<sub>''g''</sub>, ''g'' के लिए अनुरूप संचालन द्वारा दिया गया है। इस समझ के साथ, तीन संरचनाएं (''g'', ''ω'', ''J'') एक 'संगत त्रिगुण' बनाती हैं इस प्रकार प्रत्येक संरचना को दो अन्य द्वारा निम्नानुसार निर्दिष्ट किया जा सकता है:
*जी(यू, वी) = ω(यू, जेवी)
*ω(यू, वी) = जी(जू, वी)
*जे(यू) = (φ<sub>''g''</sub>)<sup>−1</sup>(f<sub>''ω''</sub>(यू)).
इनमें से प्रत्येक समीकरण में, दाहिनी ओर की दो संरचनाओं को संगत कहा जाता है जब संबंधित निर्माण निर्दिष्ट प्रकार की संरचना उत्पन्न करता है। उदाहरण के लिए, ω और J संगत हैं यदि और केवल यदि ω(•, J•) एक रीमैनियन मीट्रिक है। एम पर बंडल जिसके खंड ω के अनुकूल लगभग जटिल संरचनाएं हैं, में 'संकुचित फाइबर' हैं: स्पर्शरेखा फाइबर पर जटिल संरचनाएं सिम्प्लेक्टिक रूपों के प्रतिबंध के साथ संगत हैं।


सिम्प्लेक्टिक फॉर्म ω के प्राथमिक गुणों का उपयोग करके, कोई यह दिखा सकता है कि एक संगत लगभग जटिल संरचना J एक लगभग काहलर मैनिफोल्ड है | रीमैनियन मीट्रिक ω (यू, जेवी) के लिए लगभग काहलर संरचना है। इसके अलावा, यदि J पूर्णांक है, तो (M, ω, J) एक काहलर मैनिफोल्ड है।
* ''g''(''u'', ''v'') = ''ω''(''u'', ''Jv'')
* ω(''u'', ''v'') = ''g''(''Ju'', ''v'')
* ''J''(''u'') = (''φ<sub>g</sub>'')<sup>−1</sup>(''φ<sub>ω</sub>''(''u''))


ये त्रिगुण एकात्मक समूह#2-आउट-ऑफ़-3 संपत्ति से संबंधित हैं।
इनमें से प्रत्येक समीकरण में, दाहिनी ओर की दो संरचनाओं को संगत कहा जाता है जो संबंधित निर्माण निर्दिष्ट प्रकार की संरचना उत्पन्न करता है। उदाहरण के लिए, ω और J संगत हैं यदि और मात्र यदि ω(•, J•) एक रीमैनियन आव्यूह होता है। ''M'' पर बंडल जिसके खंड ω के अनुकूल न्यूनाधिक सम्मिश्र संरचनाएं होती हैं, इनमे 'संकुचित फाइबर' होते हैं: स्पर्शरेखा फाइबर पर सम्मिश्र संरचनाएं सहानुभूतिपूर्ण रूपों के प्रतिबंध के साथ संगत होते हैं।


== [[सामान्यीकृत लगभग जटिल संरचना]] ==
सिम्प्लेक्टिक फॉर्म ω के प्राथमिक गुणों का उपयोग करके, कोई यह दिखा सकता है कि एक संगत न्यूनाधिक सम्मिश्र संरचना J एक रीमैनियन आव्यूह ''ω''(''u'', ''Jv'') के लिए न्यूनाधिक काहलर संरचना होती है। इसके अतिरिक्त, यदि J पूर्णांक होता है, तो (M, ω, J) एक काहलर विविधता होती है।
[[निगेल हिचिन]] ने मैनिफोल्ड एम पर एक सामान्यीकृत लगभग जटिल संरचना की धारणा पेश की, जिसे उनके छात्रों [[मार्को गुआल्टिएरी]] और [[गिल कैवलन्ती]] के डॉक्टरेट शोध प्रबंधों में विस्तृत किया गया था। एक सामान्य लगभग जटिल संरचना जटिल स्पर्शरेखा बंडल टीएम के प्रत्येक फाइबर के आधे-आयामी रैखिक उप-स्थान का विकल्प है। एक सामान्यीकृत लगभग जटिल संरचना, जटिल स्पर्शरेखा और कोटैंजेंट बंडलों के वेक्टर बंडलों के प्रत्यक्ष योग के प्रत्येक फाइबर के आधे-आयामी [[आइसोट्रोपिक मैनिफोल्ड]] उप-स्थान का विकल्प है। दोनों ही मामलों में कोई मांग करता है कि [[सबबंडल]] और उसके जटिल संयुग्म का सीधा योग मूल बंडल उत्पन्न करता है।


यदि अर्ध-आयामी उपस्थान लाई व्युत्पन्न के तहत बंद है तो लगभग एक जटिल संरचना एक जटिल संरचना में एकीकृत हो जाती है। एक सामान्यीकृत लगभग जटिल संरचना एक [[सामान्यीकृत जटिल संरचना]] में एकीकृत हो जाती है यदि उपस्थान [[कूरेंट ब्रैकेट]] के तहत बंद हो जाता है। यदि इसके अलावा यह अर्ध-आयामी स्थान कहीं लुप्त न होने वाले [[शुद्ध स्पिनर]] का विनाशक है तो एम एक सामान्यीकृत कैलाबी-याउ मैनिफोल्ड है।
ये त्रिगुण एकात्मक समूह की 3 में से 2 गुणों से संबंधित होते हैं।
 
== [[सामान्यीकृत लगभग जटिल संरचना|सामान्यीकृत न्यूनाधिक सम्मिश्र संरचना]] ==
[[निगेल हिचिन]] ने विविधता ''M'' पर एक सामान्यीकृत न्यूनाधिक सम्मिश्र संरचना की धारणा प्रस्तुत की, जिसे उनके छात्रों [[मार्को गुआल्टिएरी]] और [[गिल कैवलन्ती]] के डॉक्टरेट शोध प्रबंधों में विस्तृत किया गया था। एक सामान्य न्यूनाधिक सम्मिश्र संरचना सम्मिश्र स्पर्शरेखा बंडल ''TM'' के प्रत्येक फाइबर के आधे-आयामी रैखिक उप-स्थान का विकल्प होता है। एक सामान्यीकृत न्यूनाधिक सम्मिश्र संरचना, सम्मिश्र स्पर्शरेखा और कोटिस्पर्श रेखा बंडलों के सदिश बंडलों के प्रत्यक्ष योग के प्रत्येक फाइबर के आधे-आयामी [[आइसोट्रोपिक मैनिफोल्ड|आइसोट्रोपिक विविधता]] उप-स्थान का विकल्प होता है। दोनों ही स्थितियों में यह बताया जाता है कि [[सबबंडल]] और उसके सम्मिश्र संयुग्म का सीधा योग मूल बंडल उत्पन्न करता है।
 
यदि अर्ध-आयामी उपस्थान लाई व्युत्पन्न के अनुसार संवृत होते है तो न्यूनाधिक एक सम्मिश्र संरचना एक सम्मिश्र संरचना में एकीकृत हो जाती है। एक सामान्यीकृत न्यूनाधिक सम्मिश्र संरचना एक [[सामान्यीकृत जटिल संरचना|सामान्यीकृत सम्मिश्र संरचना]] में एकीकृत हो जाती है यदि उपस्थान [[कूरेंट ब्रैकेट|कूरेंट कोष्ठक]] के अनुसार संवृत हो जाता है। यदि इसके अतिरिक्त यह अर्ध-आयामी स्थान कहीं लुप्त न होने वाले [[शुद्ध स्पिनर]] का विनाशक होता है तो ''M'' एक सामान्यीकृत कैलाबी-याउ विविधता होती है।


== यह भी देखें ==
== यह भी देखें ==
* {{annotated link|Almost quaternionic manifold}}
* {{annotated link|न्यूनाधिक चतुर्धातुक विविधता}}
* {{annotated link|Chern class}}
* {{annotated link|चेर्न वर्ग}}- बीजगणितीय सदिश बंडलों पर विशेषता वर्ग
* {{annotated link|Frölicher–Nijenhuis bracket}}
* {{annotated link|फ्रोलिचर-निजेनहुइस कोष्टक}}
* {{annotated link|Kähler manifold}}
* {{annotated link|काहलर विविधता}}- रीमैनियन, सम्मिश्र और सहानुभूतिपूर्ण संरचना के साथ विविधता
* {{annotated link|Poisson manifold}}
* {{annotated link|पॉइसन विविधता}}
* {{annotated link|Rizza manifold}}
* {{annotated link|रिज़ा विविधता}}
* {{annotated link|Symplectic manifold}}
* {{annotated link|सहानुभूतिपूर्ण विविधता}}


== संदर्भ ==
== संदर्भ ==
Line 102: Line 106:


{{Manifolds}}
{{Manifolds}}
[[Category: चिकनी कई गुना]]


[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 04/07/2023]]
[[Category:Created On 04/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with maths render errors]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:चिकनी कई गुना]]

Latest revision as of 12:45, 14 July 2023

गणित में, न्यूनाधिक सम्मिश्र विविधता प्रत्येक स्पर्शरेखा स्थान पर एक समतल रैखिक सम्मिश्र संरचना से सुसज्जित एक समतल विविधता होती है। प्रत्येक सम्मिश्र विविधता एक न्यूनाधिक सम्मिश्र विविधता होती है, यघपि न्यूनाधिक सम्मिश्र विविधता ऐसी भी हैं जो सम्मिश्र विविधता नहीं होती हैं। न्यूनाधिक सम्मिश्र संरचनाओं का सिंपलेक्टिक ज्यामिति में महत्वपूर्ण अनुप्रयोग होता है।

यह अवधारणा 1940 के समय में चार्ल्स एह्रेसमैन और हेंज हॉफ की देन है।[1]

औपचारिक परिभाषा

मान लीजिए M एक सहज विविधता है। M पर एक न्यूनाधिक सम्मिश्र संरचना J, विविधता के प्रत्येक स्पर्शरेखा स्थान पर एक रैखिक सम्मिश्र संरचना (अर्थात, एक रैखिक मानचित्र जिसका मान -1 वर्ग होता है) है, जो विविधता पर सरलता से बदलती रहती है। दूसरे शब्दों में, हमारे पास डिग्री (1, 1) का सुचारू टेंसर क्षेत्र J होता है, जैसे की इस प्रकार स्पर्शरेखा बंडल जिसे सदिश बंडल समरूपता के रूप में जाना जाता है। न्यूनाधिक सम्मिश्र संरचना से सुसज्जित विविधता को न्यूनाधिक सम्मिश्र विविधता कहा जाता है।

यदि M न्यूनाधिक सम्मिश्र संरचना को स्वीकार करता है, तो इसे सम-आयामी होना चाहिए। इस प्रकार इसे देखा जा सकता है। मान लीजिए M n-आयामी होता है, और J : TMTM तो न्यूनाधिक एक सम्मिश्र संरचना होने दें। अगर J2 = −1 होता है तब (det J)2 = (−1)n होता है। यघपि यदि M एक वास्तविक विविधता होती है, तो det J एक वास्तविक संख्या होती है - इस प्रकार n तब भी होना चाहिए जब M की संरचना न्यूनाधिक सम्मिश्र हो। कोई यह दिखा सकता है कि यह उन्मुखी भी होना चाहिए।

रैखिक बीजगणित में एक सरल अभ्यास से पता चलता है कि कोई भी आयामी सदिश स्थान एक रैखिक सम्मिश्र संरचना को स्वीकार करता है। इसलिए, एक सम आयामी विविधता सदैव (1, 1)-रैंक टेंसर को बिंदुवार स्वीकार करता है (जो प्रत्येक स्पर्शरेखा स्थान पर मात्र एक रैखिक परिवर्तन है) जैसे कि प्रत्येक बिंदु p पर Jp2 = −1। मात्र जब इस स्थानीय टेंसर को विश्व स्तर पर परिभाषित करने के लिए एक साथ पैच किया जा सकता है, तो बिंदुवार रैखिक सम्मिश्र संरचना न्यूनाधिक एक सम्मिश्र संरचना उत्पन्न करती है, जिसे तब विशिष्ट रूप से निर्धारित किया जाता है। इस पैचिंग की संभावना, और इसलिए विविधता M पर न्यूनाधिक एक सम्मिश्र संरचना का अस्तित्व GL(2n, R) से GL(n, C) तक स्पर्शरेखा बंडल के संरचना समूह की कमी के बराबर होता है। अस्तित्व का प्रश्न तब पूरी तरह से बीजगणितीय सांस्थिति होता है और अत्यधिक अच्छी तरह से समझा जाता है।

उदाहरण

प्रत्येक पूर्णांक n के लिए, समतल स्थान R2n न्यूनाधिक एक सम्मिश्र संरचना को स्वीकार करता है। ऐसी न्यूनाधिक सम्मिश्र संरचना का एक उदाहरण (1 ≤ i, j ≤ 2n): सम i लिए , विषम i के लिए होता है।

एकमात्र क्षेत्र जो न्यूनाधिक सम्मिश्र संरचनाओं को स्वीकार करते हैं वे S2 और S6 (बोरेल & सेरे (1953)) हैं। विशेष रूप से, S4 को न्यूनाधिक सम्मिश्र संरचना (एह्रेसमैन और होपफ) नहीं दिया जा सकता है। S2 के स्थिति में, न्यूनाधिक सम्मिश्र संरचना रीमैन क्षेत्र पर एक स्पष्ट सम्मिश्र संरचना से आती है। 6-व्रक, S6, जब इकाई मानक काल्पनिक ऑक्टोनियन के सम्मुचय के रूप में माना जाता है, तो ऑक्टोनियन गुणन से न्यूनाधिक एक सम्मिश्र संरचना प्राप्त होती है; यह प्रश्न कि क्या इसमें अभिन्न न्यूनाधिक सम्मिश्र संरचनाएं हैं, हेंज हॉपफ के नाम पर हॉपफ समस्या के रूप में जाना जाता है।[2]

न्यूनाधिक सम्मिश्र विविधता्स की विभेदक टोपोलॉजी

जिस प्रकार सदिश समष्टि V पर एक सम्मिश्र संरचना, VC के V+ और V(क्रमशः +i और −i के अनुरूप J के ईजेनस्पेसेस) में विघटित करने की अनुमति देती है, उसी प्रकार M पर एक न्यूनाधिक सम्मिश्र संरचना सम्मिश्र स्पर्शरेखा के विघटित होने की अनुमति देती है। टीएमसी (जो प्रत्येक बिंदु पर सम्मिश्र स्पर्शरेखा स्थानों का सदिश बंडल है) को TM+ और TM में बंडल करता है। TM+ के एक खंड को (1, 0) प्रकार का एक सदिश क्षेत्र कहा जाता है, जबकि TM के एक खंड को (0, 1) प्रकार का एक सदिश क्षेत्र कहा जाता है। इस प्रकार J, सम्मिश्र स्पर्शरेखा बंडल के (1, 0)-सदिश क्षेत्र पर i द्वारा गुणा और (0, 1)-सदिश क्षेत्र पर −i द्वारा गुणा से सामंजस्य रखता है।

जैसे हम कोटिस्पर्श रेखा बंडल की बाह्य शक्तियों से विभेदक रूप बनाते हैं, वैसे ही हम सम्मिश्र कोटिस्पर्श रेखा बंडल की बाहरी शक्तियां बना सकते हैं (जो सम्मिश्र स्पर्शरेखा बंडल के दोहरे स्थानों के बंडल के लिए विहित रूप से समरूपी होती है)। इस प्रकार न्यूनाधिक सम्मिश्र संरचना r-रूपों के प्रत्येक स्थान के अपघटन को प्रेरित करती है

दूसरे शब्दों में, प्रत्येक Ωr(M)C, r = p + q के साथ Ω(p, q)(M) के योग में एक अपघटन स्वीकार करता है।

किसी भी प्रत्यक्ष योग की तरह, Ωr(M)C से Ω(p,q) तक एक विहित प्रक्षेपण πp,q होता है। हमारे पास बाहरी व्युत्पन्न d भी होता है जो Ωr(M)C को Ωr+1(M)C तक मानचित्र करता है। इस प्रकार हम बाहरी व्युत्पन्न की क्रिया को निश्चित प्रकार के रूपों में परिष्कृत करने के लिए न्यूनाधिक सम्मिश्र संरचना का उपयोग कर सकते हैं

इस प्रकार एक मानचित्र है जो होलोमोर्फिक भाग को एक-एक करके बढ़ाता है (प्रकार (p, q) के रूप को प्रकार (p+1, q) के रूप में लेता है), और एक मानचित्र है जो प्रकार के एंटीहोलोमोर्फिक भाग को एक से बढ़ाता है। इन ऑपरेटरों को डॉल्बॉल्ट ऑपरेटर कहा जाता है।

चूँकि सभी अनुमानों का योग पहचान फ़ंक्शन होना चाहिए, हम ध्यान दें कि बाहरी व्युत्पन्न निम्न प्रकार लिखा जा सकता है

अभिन्न न्यूनाधिक सम्मिश्र संरचनाएँ

प्रत्येक सम्मिश्र विविधता अपने आप में न्यूनाधिक एक सम्मिश्र विविधता होती है। स्थानीय होलोमोर्फिक निर्देशांक में कोई भी मानचित्रों को परिभाषित कर सकता है

(आवश्यक π/2 के वामावर्त घुमाव की तरह) या

कोई भी सरलता से जाँच सकता है कि यह मानचित्र न्यूनाधिक एक सम्मिश्र संरचना को परिभाषित करता है। इस प्रकार विविधता पर कोई भी सम्मिश्र संरचना न्यूनाधिक एक सम्मिश्र संरचना उत्पन्न करती है, जिसे सम्मिश्र संरचना से 'प्रेरित' कहा जाता है, और सम्मिश्र संरचना को न्यूनाधिक सम्मिश्र संरचना के साथ 'संगत' कहा जाता है।

विपरीत प्रश्न, कि क्या न्यूनाधिक सम्मिश्र संरचना का तात्पर्य एक सम्मिश्र संरचना के अस्तित्व से है, बहुत कम तुच्छ है, और सामान्य रूप से सत्य नहीं है। एक इच्छानुसार ढंग से न्यूनाधिक सम्मिश्र विविधता पर कोई भी सदैव निर्देशांक पा सकता है जिसके लिए न्यूनाधिक सम्मिश्र संरचना किसी भी बिंदु p पर उपरोक्त विहित रूप लेती है। सामान्यतः, चुकीं, निर्देशांक ढूंढना संभव नहीं होता है जिससें J p के पूरे समीपस्थ पर विहित रूप ले सके। ऐसे निर्देशांक, यदि वे उपस्थित हैं, तो J के लिए 'स्थानीय होलोमोर्फिक निर्देशांक' कहलाते हैं। यदि M हर बिंदु के आसपास J के लिए स्थानीय होलोमोर्फिक निर्देशांक स्वीकार करता है तो ये एक साथ मिलकर M के लिए एक होलोमोर्फिक फ़ंक्शन एटलस (टोपोलॉजी) बनाते हैं, जो इसे एक सम्मिश्र संरचना देता है, जो J को प्रेरित करता है। इस प्रकार J को तब 'फ्रोबेनियस प्रमेय (डिफरेंशियल टोपोलॉजी)' कहा जाता है। यदि J एक सम्मिश्र संरचना से प्रेरित है, तो यह एक अद्वितीय सम्मिश्र संरचना से प्रेरित होती है।

M के प्रत्येक स्पर्शरेखा स्थान पर किसी भी रैखिक मानचित्र A को देखते हुए; अर्थात्, A रैंक (1,1) का एक टेंसर क्षेत्र होता है, तो 'निजेनहुइस टेंसर' रैंक (1,2) का एक टेंसर क्षेत्र है जो निम्न प्रकार से दिया गया है

या, न्यूनाधिक सम्मिश्र संरचना A=J के सामान्य स्थिति के लिए ,

दाईं ओर की व्यक्तिगत अभिव्यक्तियाँ सुचारु सदिश क्षेत्र X और Y की रूचि पर निर्भर करती हैं, यघपि बाईं ओर वास्तव में मात्र X और Y के बिंदुवार मानों पर निर्भर करती है, यही कारण है कि NA एक टेंसर होता है। यह घटक सूत्र से भी स्पष्ट होता है

फ्रोलिचर-निजेनहुइस कोष्ठक के संदर्भ में, जो सदिश क्षेत्र के लाई कोष्ठक को सामान्यीकृत करता है, निजेनहुइस टेंसर NA एक [A, A] का मात्र आधा भाग होता है।

'न्यूलैंडर-निरेनबर्ग प्रमेय' बताता है कि न्यूनाधिक सम्मिश्र संरचना में J पूर्णांक होता है यदि और मात्र यदि NJ= 0। संगत सम्मिश्र संरचना अद्वितीय है, जैसा कि ऊपर चर्चा की गई है। चूँकि एक अभिन्न न्यूनाधिक सम्मिश्र संरचना का अस्तित्व एक सम्मिश्र संरचना के अस्तित्व के बराबर होता है, इसलिए इसे कभी-कभी एक सम्मिश्र संरचना की परिभाषा के रूप में लिया जाता है।

कई अन्य मानदंड हैं जो निजेनहुइस टेंसर के लुप्त होने के समतुल्य हैं, और इसलिए न्यूनाधिक सम्मिश्र संरचना की अभिन्नता की जांच करने के विधि प्रस्तुत करते हैं (और वास्तव में इनमें से प्रत्येक साहित्य में पाया जा सकता है):

  • किसी भी दो (1,0)-सदिश क्षेत्र का असत्य कोष्ठक फिर से (1,0) प्रकार का होता है

इनमें से कोई भी स्थिति एक अद्वितीय संगत सम्मिश्र संरचना के अस्तित्व को प्रदर्शित करती है।

न्यूनाधिक सम्मिश्र संरचना का अस्तित्व एक संस्थानिक प्रश्न होता है और इसका उत्तर देना अपेक्षाकृत सरल होता है, जैसा कि ऊपर चर्चा की गई है। दूसरी ओर, एक अभिन्न न्यूनाधिक सम्मिश्र संरचना का अस्तित्व, एक अधिक कठिन विश्लेषणात्मक प्रश्न होता है। उदाहरण के लिए, यह अभी भी ज्ञात नहीं है कि S6 अंततः असत्यापित प्रणामो के लंबे इतिहास के अतिरिक्त, एक अभिन्न न्यूनाधिक सम्मिश्र संरचना को स्वीकार करता है। इस प्रकार चिकनाई के उद्देश्य महत्वपूर्ण होते हैं। वास्तविक-विश्लेषणात्मक J के लिए, न्यूलैंडर-निरेनबर्ग प्रमेय फ्रोबेनियस प्रमेय (डिफरेंशियल टोपोलॉजी) से अनुसरण करता है; C के लिए (और कम सहज) J, विश्लेषण की आवश्यकता होती है (अधिक कठिन तकनीकों के साथ क्योंकि नियमितता परिकल्पना अशक्त हो जाती है)।

संगत त्रिगुण

मान लीजिए कि M एक सहानुभूतिपूर्ण रूप ω, एक रीमैनियन आव्यूह g और न्यूनाधिक एक सम्मिश्र संरचना J से सुसज्जित है। चूंकि ω और g अपक्षयी रूप हैं, प्रत्येक एक बंडल आइसोमोर्फिज्म TM → T*M प्रेरित करता है, जहाँ प्रथम मानचित्र, φω प्रदर्शित किया गया है, आंतरिक उत्पाद φω द्वारा दिया गया है φω(u) = iuω = ω(u, •) और दूसरा, निरूपित φg, g के लिए अनुरूप संचालन द्वारा दिया गया है। इस समझ के साथ, तीन संरचनाएं (g, ω, J) एक 'संगत त्रिगुण' बनाती हैं इस प्रकार प्रत्येक संरचना को दो अन्य द्वारा निम्नानुसार निर्दिष्ट किया जा सकता है:

  • g(u, v) = ω(u, Jv)
  • ω(u, v) = g(Ju, v)
  • J(u) = (φg)−1(φω(u))

इनमें से प्रत्येक समीकरण में, दाहिनी ओर की दो संरचनाओं को संगत कहा जाता है जो संबंधित निर्माण निर्दिष्ट प्रकार की संरचना उत्पन्न करता है। उदाहरण के लिए, ω और J संगत हैं यदि और मात्र यदि ω(•, J•) एक रीमैनियन आव्यूह होता है। M पर बंडल जिसके खंड ω के अनुकूल न्यूनाधिक सम्मिश्र संरचनाएं होती हैं, इनमे 'संकुचित फाइबर' होते हैं: स्पर्शरेखा फाइबर पर सम्मिश्र संरचनाएं सहानुभूतिपूर्ण रूपों के प्रतिबंध के साथ संगत होते हैं।

सिम्प्लेक्टिक फॉर्म ω के प्राथमिक गुणों का उपयोग करके, कोई यह दिखा सकता है कि एक संगत न्यूनाधिक सम्मिश्र संरचना J एक रीमैनियन आव्यूह ω(u, Jv) के लिए न्यूनाधिक काहलर संरचना होती है। इसके अतिरिक्त, यदि J पूर्णांक होता है, तो (M, ω, J) एक काहलर विविधता होती है।

ये त्रिगुण एकात्मक समूह की 3 में से 2 गुणों से संबंधित होते हैं।

सामान्यीकृत न्यूनाधिक सम्मिश्र संरचना

निगेल हिचिन ने विविधता M पर एक सामान्यीकृत न्यूनाधिक सम्मिश्र संरचना की धारणा प्रस्तुत की, जिसे उनके छात्रों मार्को गुआल्टिएरी और गिल कैवलन्ती के डॉक्टरेट शोध प्रबंधों में विस्तृत किया गया था। एक सामान्य न्यूनाधिक सम्मिश्र संरचना सम्मिश्र स्पर्शरेखा बंडल TM के प्रत्येक फाइबर के आधे-आयामी रैखिक उप-स्थान का विकल्प होता है। एक सामान्यीकृत न्यूनाधिक सम्मिश्र संरचना, सम्मिश्र स्पर्शरेखा और कोटिस्पर्श रेखा बंडलों के सदिश बंडलों के प्रत्यक्ष योग के प्रत्येक फाइबर के आधे-आयामी आइसोट्रोपिक विविधता उप-स्थान का विकल्प होता है। दोनों ही स्थितियों में यह बताया जाता है कि सबबंडल और उसके सम्मिश्र संयुग्म का सीधा योग मूल बंडल उत्पन्न करता है।

यदि अर्ध-आयामी उपस्थान लाई व्युत्पन्न के अनुसार संवृत होते है तो न्यूनाधिक एक सम्मिश्र संरचना एक सम्मिश्र संरचना में एकीकृत हो जाती है। एक सामान्यीकृत न्यूनाधिक सम्मिश्र संरचना एक सामान्यीकृत सम्मिश्र संरचना में एकीकृत हो जाती है यदि उपस्थान कूरेंट कोष्ठक के अनुसार संवृत हो जाता है। यदि इसके अतिरिक्त यह अर्ध-आयामी स्थान कहीं लुप्त न होने वाले शुद्ध स्पिनर का विनाशक होता है तो M एक सामान्यीकृत कैलाबी-याउ विविधता होती है।

यह भी देखें

संदर्भ

  1. Van de Ven, A. (June 1966). "कुछ जटिल और लगभग जटिल मैनिफोल्ड्स की चेर्न संख्या पर". Proceedings of the National Academy of Sciences. 55 (6): 1624–1627. Bibcode:1966PNAS...55.1624V. doi:10.1073/pnas.55.6.1624. PMC 224368. PMID 16578639.
  2. Agricola, Ilka; Bazzoni, Giovanni; Goertsches, Oliver; Konstantis, Panagiotis; Rollenske, Sönke (2018). "हॉपफ समस्या के इतिहास पर". Differential Geometry and Its Applications. 57: 1–9. arXiv:1708.01068. doi:10.1016/j.difgeo.2017.10.014. S2CID 119297359.