जॉर्डन सामान्य रूप: Difference between revisions
(Created page with "{{short description|Form of a matrix indicating its eigenvalues and their algebraic multiplicities}} File:Jordan canonical form.svg|thumb|360px|जॉर्डन साम...") |
No edit summary |
||
(18 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Form of a matrix indicating its eigenvalues and their algebraic multiplicities}} | {{short description|Form of a matrix indicating its eigenvalues and their algebraic multiplicities}} | ||
[[File:Jordan canonical form.svg|thumb|360px|जॉर्डन सामान्य रूप में | [[File:Jordan canonical form.svg|thumb|360px|जॉर्डन सामान्य रूप में आव्यूह का उदाहरण नहीं दिखाई गई सभी आव्यूह प्रविष्टियाँ शून्य हैं। रेखांकित वर्गों को जॉर्डन ब्लॉक के रूप में जाना जाता है। प्रत्येक जॉर्डन ब्लॉक में इसके मुख्य विकर्ण पर नंबर लैम्ब्डा होता है, और मुख्य विकर्ण के ऊपर नंबर होता है। लैम्ब्डा आव्यूह के आइगेनवैल्यू हैं; उन्हें अलग होने की आवश्यकता नहीं है.]]रैखिक बीजगणित में, '''जॉर्डन सामान्य रूप''' जिसे जॉर्डन विहित रूप (जेसीएफ) के रूप में भी जाना जाता है,<ref> | ||
Shilov defines the term ''Jordan canonical form'' and in a footnote says that ''Jordan normal form'' is synonymous. | Shilov defines the term ''Jordan canonical form'' and in a footnote says that ''Jordan normal form'' is synonymous. | ||
These terms are sometimes shortened to ''Jordan form''. (Shilov) | These terms are sometimes shortened to ''Jordan form''. (Shilov) | ||
The term ''Classical canonical form'' is also sometimes used in the sense of this article. (James & James, 1976) | The term ''Classical canonical form'' is also sometimes used in the sense of this article. (James & James, 1976) | ||
</ref><ref name="Holt 2009 9">{{harvtxt|Holt|Rumynin|2009|p=9}}</ref> | </ref><ref name="Holt 2009 9">{{harvtxt|Holt|Rumynin|2009|p=9}}</ref>यह विशेष रूप का [[ऊपरी त्रिकोणीय मैट्रिक्स|ऊपरी त्रिकोणीय आव्यूह]] है जिसे [[जॉर्डन मैट्रिक्स|जॉर्डन आव्यूह]] कहा जाता है जो कुछ [[आधार (रैखिक बीजगणित)]] के संबंध में [[परिमित-आयामी]] [[सदिश स्थल]] पर [[रैखिक ऑपरेटर]] का प्रतिनिधित्व करता है। ऐसे आव्यूह में प्रत्येक गैर-शून्य ऑफ-विकर्ण प्रविष्टि 1 के समान होती है, मुख्य विकर्ण के ठीक ऊपर ([[ अतिविकर्ण | अतिविकर्ण]] पर), और बाईं ओर और उनके नीचे समान विकर्ण प्रविष्टियां होती हैं। | ||
मान लीजिए V | मान लीजिए V क्षेत्र (गणित) K पर सदिश समष्टि है। फिर आधार जिसके संबंध में आव्यूह का आवश्यक रूप उपस्थित है, यदि आव्यूह के सभी [[eigenvalue|इगनवैल्यूज]] K में हैं, या समकक्ष यदि ऑपरेटर की [[विशेषता बहुपद]] है K पर रैखिक गुणनखंडों में विभाजित हो जाता है। यदि K [[बीजगणितीय रूप से बंद|बीजगणितीय रूप से]] विवृत है (उदाहरण के लिए, यदि यह [[जटिल संख्या]]ओं का क्षेत्र है) तो इसलिए यह स्थिति सदैव संतुष्ट होती है। सामान्य रूप की विकर्ण प्रविष्टियाँ इगनवैल्यूज (ऑपरेटर के) हैं, और प्रत्येक होने की संख्या को की [[बीजगणितीय बहुलता]] कहा जाता है। | ||
यदि ऑपरेटर मूल रूप से | यदि ऑपरेटर मूल रूप से [[वर्ग मैट्रिक्स|वर्ग आव्यूह]] M के लिए दिया गया है, तो इसके जॉर्डन सामान्य रूप को M का जॉर्डन सामान्य रूप भी कहा जाता है। किसी भी वर्ग आव्यूह में जॉर्डन सामान्य रूप होता है यदि गुणांक के क्षेत्र को सभी इगनवैल्यूज से युक्त आव्यूह तक बढ़ाया जाता है, इसके नाम के अतिरिक्त, किसी दिए गए M के लिए सामान्य रूप पूरी तरह से अद्वितीय नहीं है, क्योंकि यह [[जॉर्डन ब्लॉक]] से बना ब्लॉक विकर्ण आव्यूह है, जिसका क्रम निश्चित नहीं है; समान के लिए ब्लॉकों को साथ समूहित करना पारंपरिक है, किन्तु इगनवैल्यूज के बीच कोई क्रम नहीं लगाया जाता है, न ही किसी दिए गए के लिए ब्लॉकों के बीच, चूंकि बाद वाले को कमजोर रूप से घटते आकार के आधार पर ऑर्डर किया जा सकता है। | ||
जॉर्डन-चेवेल्ली अपघटन उस आधार के संबंध में विशेष रूप से सरल है जिसके लिए ऑपरेटर अपने जॉर्डन को सामान्य रूप लेता है। [[विकर्णीय]] आव्यूह के लिए विकर्ण रूप, उदाहरण के लिए [[सामान्य मैट्रिक्स|सामान्य आव्यूह]], जॉर्डन सामान्य रूप का विशेष स्थिति है।<ref>{{harvtxt|Beauregard|Fraleigh|1973|pp=270–274}}</ref><ref>{{harvtxt|Golub|Van Loan|1996|p=353}}</ref><ref>{{harvtxt|Nering|1970|pp=113–118}}</ref> | |||
जॉर्डन सामान्य रूप का नाम [[केमिली जॉर्डन]] के नाम पर रखा गया है, जिन्होंने पहली बार 1870 में जॉर्डन अपघटन प्रमेय को बताया था।<ref name="Brechenmacher-thesis">Brechenmacher, [https://tel.archives-ouvertes.fr/tel-00142786 "Histoire du théorème de Jordan de la décomposition matricielle (1870-1930). Formes de représentation et méthodes de décomposition"], Thesis, 2007</ref> | जॉर्डन सामान्य रूप का नाम [[केमिली जॉर्डन]] के नाम पर रखा गया है, जिन्होंने पहली बार 1870 में जॉर्डन अपघटन प्रमेय को बताया था।<ref name="Brechenmacher-thesis">Brechenmacher, [https://tel.archives-ouvertes.fr/tel-00142786 "Histoire du théorème de Jordan de la décomposition matricielle (1870-1930). Formes de représentation et méthodes de décomposition"], Thesis, 2007</ref> | ||
Line 18: | Line 19: | ||
=== संकेतन === | === संकेतन === | ||
कुछ पाठ्यपुस्तकें [[उपविकर्ण]] पर होती हैं; | कुछ पाठ्यपुस्तकें [[उपविकर्ण]] पर होती हैं; अर्थात, सुपरविकर्ण के अतिरिक्त मुख्य विकर्ण के ठीक नीचे होती है। आइगेनवैल्यू अभी भी मुख्य विकर्ण पर हैं।<ref>{{harvtxt|Cullen|1966|p=114}}</ref><ref>{{harvtxt|Franklin|1968|p=122}}</ref> | ||
=== प्रेरणा === | === प्रेरणा === | ||
n × n आव्यूह A [[विकर्णीय मैट्रिक्स|विकर्णीय आव्यूह]] है यदि और एकमात्र ईजेनसमिष्ट के आयामों का योग n है। या, समकक्ष रूप से, यदि और एकमात्र यदि A में n [[रैखिक रूप से स्वतंत्र]] [[eigenvectors|इगनवेक्टर्स]] हैं। सभी आव्यूह विकर्णीय नहीं होते; वे आव्यूह जो विकर्णीय नहीं होते, दोषपूर्ण आव्यूह कहलाते हैं। निम्नलिखित आव्यूह पर विचार करें: | |||
: <math>A = | : <math>A = | ||
Line 32: | Line 31: | ||
\end{array}\right]. | \end{array}\right]. | ||
</math> | </math> | ||
बहुलता सहित, A के | बहुलता सहित, A के इगनवैल्यूज λ = 1, 2, 4, 4 हैं। 4 के अनुरूप इगनसमिष्ट का हमेल आयाम 1 (और 2 नहीं) है, इसलिए A विकर्णीय नहीं है। यद्यपि, व्युत्क्रमणीय आव्यूह P इस प्रकार है कि J = P<sup>−1</sup>AP, कहां | ||
:<math>J = \begin{bmatrix} | :<math>J = \begin{bmatrix} | ||
Line 40: | Line 39: | ||
0 & 0 & 0 & 4 | 0 & 0 & 0 & 4 | ||
\end{bmatrix}.</math> | \end{bmatrix}.</math> | ||
गणित का सवाल <math>J</math> | गणित का सवाल <math>J</math> अधिकतर विकर्ण है. यह ए का जॉर्डन सामान्य रूप है। नीचे दिया गया अनुभाग उदाहरण गणना का विवरण भरता है। | ||
==संमिश्र आव्यूह == | ==संमिश्र आव्यूह == | ||
सामान्यतः, वर्ग जटिल आव्यूह ए ब्लॉक विकर्ण आव्यूह के [[समान (रैखिक बीजगणित)]] होता है | |||
:<math>J = \begin{bmatrix} | :<math>J = \begin{bmatrix} | ||
Line 50: | Line 49: | ||
\; & \ddots & \; \\ | \; & \ddots & \; \\ | ||
\; & \; & J_p\end{bmatrix}</math> | \; & \; & J_p\end{bmatrix}</math> | ||
जहां प्रत्येक ब्लॉक | जहां प्रत्येक ब्लॉक J<sub>i</sub> प्रपत्र का वर्ग आव्यूह है | ||
:<math>J_i = | :<math>J_i = | ||
Line 59: | Line 58: | ||
\; & \; & \; & \lambda_i | \; & \; & \; & \lambda_i | ||
\end{bmatrix}.</math> | \end{bmatrix}.</math> | ||
तो | तो व्युत्क्रमणीय आव्यूह P उपस्थित है जैसे कि P<sup>−1</sup>AP = J ऐसा है कि J की एकमात्र गैर-शून्य प्रविष्टियाँ विकर्ण और अतिविकर्ण पर हैं। J को A का 'जॉर्डन सामान्य रूप' कहा जाता है। प्रत्येक J<sub>''i''</sub> A का जॉर्डन ब्लॉक कहा जाता है। किसी दिए गए जॉर्डन ब्लॉक में, सुपर डायगोनल पर प्रत्येक प्रविष्टि 1 है। | ||
इस परिणाम को मानते हुए, हम निम्नलिखित गुण निकाल सकते हैं: | इस परिणाम को मानते हुए, हम निम्नलिखित गुण निकाल सकते हैं: | ||
* बहुलताओं की गणना करते हुए, J के | * बहुलताओं की गणना करते हुए, J के इगनवैल्यूज , और इसलिए A के, विकर्ण प्रविष्टियाँ हैं। | ||
* | * λ दिया गया है<sub>''i''</sub>, इसकी [[ज्यामितीय बहुलता]] ker(''A'' − ''λ'' का आयाम है<sub>''i'' </sub>I), जहां I पहचान आव्यूह है, और यह λ<sub>''i''</sub> के अनुरूप जॉर्डन ब्लॉक की संख्या है।<ref name="HJp321">{{harvtxt|Horn|Johnson|1985|loc=§3.2.1}}</ref> | ||
* | * λ के अनुरूप सभी जॉर्डन ब्लॉकों के आकार का योग<sub>''i''</sub> इसकी बीजगणितीय बहुलता है.<ref name="HJp321" />* A विकर्णीय है यदि और एकमात्र यदि, A के प्रत्येक λ के लिए, इसकी ज्यामितीय और बीजगणितीय बहुलताएं मेल खाती हैं। विशेष रूप से, इस स्थितियों में जॉर्डन ब्लॉक 1 × 1 आव्यूह हैं; अर्थात् अदिश होता है। | ||
* λ के अनुरूप जॉर्डन ब्लॉक λI + N के रूप का है, जहां N | * λ के अनुरूप जॉर्डन ब्लॉक λI + N के रूप का है, जहां N [[निलपोटेंट मैट्रिक्स|निलपोटेंट आव्यूह]] है जिसे ''N<sub>ij</sub>'' = ''δ<sub>i</sub>''<sub>,''j''−1</sub> के रूप में परिभाषित किया गया है (जहाँ δ [[क्रोनकर डेल्टा]] है)। F(A) की गणना करते समय N की शून्य क्षमता का उपयोग किया जा सकता है जहां जटिल विश्लेषणात्मक कार्य है। उदाहरण के लिए, सिद्धांत रूप में जॉर्डन फॉर्म घातीय exp(A) के लिए बंद-फॉर्म अभिव्यक्ति दे सकता है। | ||
* कम से कम j आकार के λ के अनुरूप जॉर्डन ब्लॉकों की संख्या मंद केर (A − λI) | * कम से कम j आकार के λ के अनुरूप जॉर्डन ब्लॉकों की संख्या मंद केर (A − λI)<sup>j</sup> है− dim ker(A − λI)<sup>j</sup><sup>−1</sup>. इस प्रकार, j आकार के जॉर्डन ब्लॉकों की संख्या है | ||
*:<math>2 \dim \ker (A - \lambda_i I)^j - \dim \ker (A - \lambda_i I)^{j+1} - \dim \ker (A - \lambda_i I)^{j-1}</math> | *:<math>2 \dim \ker (A - \lambda_i I)^j - \dim \ker (A - \lambda_i I)^{j+1} - \dim \ker (A - \lambda_i I)^{j-1}</math> | ||
* | * λ<sub>''i''</sub> दिया गया है, न्यूनतम बहुपद में इसकी बहुलता इसके सबसे बड़े जॉर्डन ब्लॉक के आकार के समान है। | ||
=== उदाहरण === | === उदाहरण === | ||
आव्यूह पर विचार करें <math>A</math> पिछले अनुभाग के उदाहरण से. जॉर्डन सामान्य रूप कुछ [[मैट्रिक्स समानता|आव्यूह समानता]] के लिए प्राप्त किया जाता है: | |||
:<math>P^{-1}AP = J;</math> वह है, <math>AP = PJ.</math> | :<math>P^{-1}AP = J;</math> वह है, <math>AP = PJ.</math> | ||
Line 88: | Line 87: | ||
:<math> (A - 4 I) p_3 = 0 </math> | :<math> (A - 4 I) p_3 = 0 </math> | ||
:<math> (A - 4 I) p_4 = p_3. </math> | :<math> (A - 4 I) p_4 = p_3. </math> | ||
के लिए <math>i = 1,2,3</math> अपने पास <math>p_i \in \ker(A-\lambda_{i} I)</math>, वह है, <math>p_i</math> का | के लिए <math>i = 1,2,3</math> अपने पास <math>p_i \in \ker(A-\lambda_{i} I)</math>, वह है, <math>p_i</math> का इगनसदिशहै <math>A</math> के अनुरूप <math>\lambda_i</math>. के लिए <math>i=4</math>, दोनों पक्षों को गुणा करने पर <math>(A-4I)</math> देता है | ||
:<math> (A-4I)^2 p_4 = (A-4I) p_3. </math> | :<math> (A-4I)^2 p_4 = (A-4I) p_3. </math> | ||
किन्तु <math>(A-4I)p_3 = 0</math>, इसलिए | |||
:<math> (A-4I)^2 p_4 = 0. </math> | :<math> (A-4I)^2 p_4 = 0. </math> | ||
इस प्रकार, <math>p_4 \in \ker(A-4 I)^2.</math> | इस प्रकार, <math>p_4 \in \ker(A-4 I)^2.</math> | ||
सदिश जैसे <math>p_4</math> A के [[सामान्यीकृत eigenvector|सामान्यीकृत इगनवेक्टर्स]] कहलाते हैं। | |||
=== उदाहरण: सामान्य रूप प्राप्त करना === | === उदाहरण: सामान्य रूप प्राप्त करना === | ||
यह उदाहरण दिखाता है कि किसी दिए गए | यह उदाहरण दिखाता है कि किसी दिए गए आव्यूह के जॉर्डन सामान्य रूप की गणना कैसे करें। | ||
आव्यूह पर विचार करें | |||
:<math>A = | :<math>A = | ||
\left[ \begin{array}{rrrr} | \left[ \begin{array}{rrrr} | ||
Line 107: | Line 106: | ||
1 & 1 & -1 & 2 | 1 & 1 & -1 & 2 | ||
\end{array} \right] </math> | \end{array} \right] </math> | ||
जिसका उल्लेख लेख की | जिसका उल्लेख लेख की प्रारंभ में किया गया है। | ||
A का अभिलक्षणिक बहुपद है | A का अभिलक्षणिक बहुपद है | ||
:<math> \begin{align} \chi(\lambda) & = \det(\lambda I - A) \\ & = \lambda^4 - 11 \lambda^3 + 42 \lambda^2 - 64 \lambda + 32 \\ & = (\lambda-1)(\lambda-2)(\lambda-4)^2. \, \end{align} </math> | :<math> \begin{align} \chi(\lambda) & = \det(\lambda I - A) \\ & = \lambda^4 - 11 \lambda^3 + 42 \lambda^2 - 64 \lambda + 32 \\ & = (\lambda-1)(\lambda-2)(\lambda-4)^2. \, \end{align} </math> | ||
इससे पता चलता है कि बीजगणितीय बहुलता के अनुसार | इससे पता चलता है कि बीजगणितीय बहुलता के अनुसार इगनवैल्यूज 1, 2, 4 और 4 हैं। 1 के अनुरूप इगनसमिष्ट समीकरण Av = λv को हल करके पाया जा सकता है। यह कॉलम सदिश v = (−1, 1, 0, 0)<sup>T</sup> के लिए फैलाया गया है. इसी प्रकार, 2 के संगत इगनसमिष्ट को w = (1, −1, 0, 1)<sup>T</sup> के लिए फैलाया गया है। अंत में, 4 के अनुरूप इगनसमिष्ट भी एक-आयामी है (भले ही यह दोहरा है) और x = (1, 0, −1, 1)<sup>T</sup> के लिए फैला हुआ है तो, तीनों इगनवैल्यूज में से प्रत्येक की ज्यामितीय बहुलता (अर्थात, दिए गए के इगनसमिष्ट का आयाम) है। इसलिए, 4 के समान दो इगनवैल्यूज एकल जॉर्डन ब्लॉक के अनुरूप हैं, और आव्यूह ए का जॉर्डन सामान्य रूप आव्यूह जोड़ प्रत्यक्ष योग है | ||
:<math> J = J_1(1) \oplus J_1(2) \oplus J_2(4) = | :<math> J = J_1(1) \oplus J_1(2) \oplus J_2(4) = | ||
\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 4 \end{bmatrix}. </math> | \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 4 \end{bmatrix}. </math> | ||
तीन सामान्यीकृत ईजेनवेक्टर | तीन सामान्यीकृत ईजेनवेक्टर जॉर्डन श्रृंखलाएं हैं। दो की लंबाई है: {v} और {w}, जो क्रमशः इगनवैल्यूज 1 और 2 के अनुरूप हैं। 4 के अनुरूप लंबाई दो की श्रृंखला है। इस श्रृंखला को खोजने के लिए, गणना करें | ||
: <math>\ker(A-4I)^2 = \operatorname{span} \, \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \left[ \begin{array}{r} 1 \\ 0 \\ -1 \\ 1 \end{array} \right] \right\}</math> | : <math>\ker(A-4I)^2 = \operatorname{span} \, \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \left[ \begin{array}{r} 1 \\ 0 \\ -1 \\ 1 \end{array} \right] \right\}</math> | ||
जहां I 4 × 4 पहचान | जहां I 4 × 4 पहचान आव्यूह है। उपरोक्त अवधि में सदिश चुनें जो A − 4I के कर्नेल में नहीं है; उदाहरण के लिए, y = (1,0,0,0)<sup>टी</sup>. अब, (A − 4I)y = x और (A − 4I)x = 0, इसलिए {y, x} 4 के अनुरूप लंबाई दो की श्रृंखला है। | ||
संक्रमण | संक्रमण आव्यूह P इस प्रकार है कि P<sup>−1</sup>AP = J इन सदिशों को दूसरे के बगल में रखकर इस प्रकार बनाया जाता है | ||
:<math> P = \left[\begin{array}{c|c|c|c} v & w & x & y \end{array}\right] = | :<math> P = \left[\begin{array}{c|c|c|c} v & w & x & y \end{array}\right] = | ||
\left[ \begin{array}{rrrr} | \left[ \begin{array}{rrrr} | ||
Line 126: | Line 125: | ||
0 & 1 & 1 & 0 | 0 & 1 & 1 & 0 | ||
\end{array} \right]. </math> | \end{array} \right]. </math> | ||
गणना से पता चलता है कि समीकरण ''P''<sup>−1</sup>''AP'' = ''J'' वास्तव में कायम है। | |||
:<math>P^{-1}AP=J=\begin{bmatrix} | :<math>P^{-1}AP=J=\begin{bmatrix} | ||
Line 133: | Line 132: | ||
0 & 0 & 4 & 1 \\ | 0 & 0 & 4 & 1 \\ | ||
0 & 0 & 0 & 4 \end{bmatrix}.</math> | 0 & 0 & 0 & 4 \end{bmatrix}.</math> | ||
यदि हमने उस क्रम को बदल दिया है जिसमें चेन वैक्टर दिखाई देते हैं, अर्थात, v, w और {x, y} के क्रम को | यदि हमने उस क्रम को बदल दिया है जिसमें चेन वैक्टर दिखाई देते हैं, अर्थात, v, w और {x, y} के क्रम को साथ बदलते हुए, जॉर्डन ब्लॉकों को आपस में बदल दिया जाएगा। यद्यपि, जॉर्डन रूप जॉर्डन रूपों के समकक्ष हैं। | ||
== सामान्यीकृत ईजेनवेक्टर == | == सामान्यीकृत ईजेनवेक्टर == | ||
{{main| | {{main|सामान्यीकृत ईजेनवेक्टर}} | ||
=== | λ दिया गया है, प्रत्येक संबंधित जॉर्डन ब्लॉक रैखिक रूप से स्वतंत्र वैक्टर p<sub>i</sub>, i = 1, ...,b की '[[जॉर्डन श्रृंखला]]' को जन्म देता है जहां b जॉर्डन ब्लॉक का आकार है। 'जनरेटर', या 'लीड वेक्टर', p<sub>b</sub> श्रृंखला का सामान्यीकृत इगनसदिशहै जैसे कि (''A'' − ''λ'''''I''')<sup>''b''</sup>''p<sub>b</sub>'' = 0। सदिश ''p''<sub>1</sub> = (''A'' − ''λ'''''I''')<sup>''b''−1</sup>''p<sub>b</sub>'' λ के अनुरूप साधारण इगनसदिशहै। p<sub>''i''</sub> सामान्यतः p<sub>''i''−1</sub>की पूर्व छवि है A - λ'I' के अंतर्गत। तो लीड सदिश A - λ'I' से गुणा करके श्रृंखला उत्पन्न करता है।<ref>{{harvtxt|Bronson|1970|pp=189,194}}</ref><ref name="Holt 2009 9" />इसलिए यह कथन कि प्रत्येक वर्ग आव्यूह ए को जॉर्डन में सामान्य रूप में रखा जा सकता है, इस दावे के समान है कि अंतर्निहित सदिश समिष्ट का आधार जॉर्डन श्रृंखलाओं से बना है। | ||
हम प्रेरण | |||
=== प्रमाण === | |||
हम प्रेरण के लिए प्रमाण देते हैं कि किसी भी जटिल-मूल्य वर्ग आव्यूह ए को जॉर्डन सामान्य रूप में रखा जा सकता है। चूँकि अंतर्निहित सदिश समिष्ट दिखाया जा सकता है<ref>Roe Goodman and Nolan R. Wallach, ''Representations and Invariants of Classical Groups'', Cambridge UP 1998, Appendix B.1.</ref> इगनवैल्यूज से जुड़े अपरिवर्तनीय उप-समिष्ट का प्रत्यक्ष योग होने के लिए, A को एकमात्र λ माना जा सकता है। 1×1 स्थिति है. मान लीजिए A n × n आव्यूह है। A - λ'I' के फलन की सीमा, जिसे Ran(A - λ'I'' के लिए निरूपित किया जाता है, A का [[अपरिवर्तनीय उपस्थान|अपरिवर्तनीय उपसमिष्ट]] है। इसके अतिरिक्त, चूँकि λ A का है, Ran(A - λ) का आयाम 'I'), r, n से बिल्कुल कम है, इसलिए, आगमनात्मक परिकल्पना के अनुसार, Ran(A - λ'I') का आधार है (रैखिक बीजगणित) {p<sub>1</sub>, …, p'' r''</sub>}जॉर्डन श्रृंखलाओं से बना है। | |||
इसके बाद [[कर्नेल (रैखिक बीजगणित)]] पर विचार करें, | इसके बाद [[कर्नेल (रैखिक बीजगणित)]] पर विचार करें, अर्थात, [[रैखिक उपस्थान|रैखिक उपसमिष्ट]] केर (A − λ'I')। अगर | ||
:<math>\operatorname{Ran}(A - \lambda I) \cap \ker(A - \lambda I) = \{0\},</math> | :<math>\operatorname{Ran}(A - \lambda I) \cap \ker(A - \lambda I) = \{0\},</math> | ||
वांछित परिणाम रैंक-शून्यता प्रमेय से तुरंत प्राप्त होता है। (यह | वांछित परिणाम रैंक-शून्यता प्रमेय से तुरंत प्राप्त होता है। (यह स्थिति होगा, उदाहरण के लिए, यदि A [[हर्मिटियन मैट्रिक्स|हर्मिटियन आव्यूह]] था।) | ||
अन्यथा, यदि | अन्यथा, यदि | ||
:<math>Q = \operatorname{Ran}(A - \lambda I) \cap \ker(A - \lambda I) \neq \{0\},</math> | :<math>Q = \operatorname{Ran}(A - \lambda I) \cap \ker(A - \lambda I) \neq \{0\},</math> | ||
माना Q का आयाम s ≤ r है। Q में प्रत्येक | माना Q का आयाम s ≤ r है। Q में प्रत्येक सदिश इगनसदिशहै, इसलिए Ran(A − λ'I') में s रैखिक रूप से स्वतंत्र इगनवेक्टर्स के अनुरूप s जॉर्डन श्रृंखला होनी चाहिए। इसलिए आधार {p<sub>1</sub>, ..., p<sub>''r''</sub>} में s सदिश होना चाहिए, मान लीजिए {p<sub>''r''−''s''+1</sub>, ..., p<sub>''r''</sub>}, जो इन जॉर्डन श्रृंखलाओं के प्रमुख वैक्टर हैं। हम इन लीड वैक्टरों की पूर्वछवियाँ लेकर श्रृंखलाओं का विस्तार कर सकते हैं। (यह मुख्य कदम है।) चलो q<sub>''i''</sub> ऐसा हो कि | ||
:<math>\; (A - \lambda I) q_i = p_i \mbox{ for } i = r-s+1, \ldots, r.</math> | :<math>\; (A - \lambda I) q_i = p_i \mbox{ for } i = r-s+1, \ldots, r.</math> | ||
सेट {q<sub>''i''</sub>}, रैखिक रूप से स्वतंत्र सेट | सेट {q<sub>''i''</sub>}, रैखिक रूप से स्वतंत्र सेट की पूर्वछवियाँ होने के नाते {p<sub>''i''</sub>} A - λ ''''I'''<nowiki/>' के अनुसार, भी रैखिक रूप से स्वतंत्र है। स्पष्टतः q<sub>''i''</sub> का कोई गैर-तुच्छ रैखिक संयोजन नहीं है {p<sub>''i''</sub>}<sub>''i''=''r''−''s''+1, ..., ''r''</sub> के लिए ker(A − λI) में स्थित हो सकता है रैखिक रूप से स्वतंत्र है. इसके अतिरिक्त, q का कोई गैर-तुच्छ रैखिक संयोजन नहीं है<sub>''i''</sub> Ran(A − λ 'I') से संबंधित हो सकता है क्योंकि तब यह मूल वैक्टर p<sub>1</sub>, ..., p<sub>''r''</sub>, का रैखिक संयोजन होगा और इस रैखिक संयोजन में मूल वैक्टर का योगदान होगा जो कि केर (A- λI) में नहीं है क्योंकि अन्यथा यह केर (A- λI) से संबंधित होगा। दोनों रैखिक संयोजनों पर A- λI की कार्रवाई तब लीड वैक्टर के गैर-तुच्छ रैखिक संयोजन और गैर-लीड वैक्टर के ऐसे रैखिक संयोजन की समानता उत्पन्न करेगी, जो (p<sub>1</sub>, ..., p<sub>''r''</sub>) की रैखिक स्वतंत्रता का खंडन करेगी। | ||
अंततः, हम कोई भी रैखिकतः स्वतंत्र समुच्चय { | अंततः, हम कोई भी रैखिकतः स्वतंत्र समुच्चय {चुन सकते हैं z <sub>1</sub>, ..., z<sub>''t''</sub>} जिसका प्रक्षेपण फैला हुआ है | ||
:<math>\ker(A - \lambda I) / Q.</math> | :<math>\ker(A - \lambda I) / Q.</math> | ||
प्रत्येक z<sub>''i''</sub> 1 लंबाई की जॉर्डन श्रृंखला बनाता है। निर्माण से, तीन सेटों का मिलन { | प्रत्येक z<sub>''i''</sub> 1 लंबाई की जॉर्डन श्रृंखला बनाता है। निर्माण से, तीन सेटों का मिलन {p<sub>1</sub>, ..., p<sub>''r''</sub>}, {q<sub>''r''−''s'' +1</sub>, ..., q<sub>''r''</sub>}, और {z<sub>1</sub>, ..., z<sub>''t''</sub>} रैखिक रूप से स्वतंत्र है, और इसके सदस्य मिलकर जॉर्डन श्रृंखला बनाते हैं। अंत में, रैंक-शून्यता प्रमेय के लिए , संघ की कार्डिनैलिटी n है। दूसरे शब्दों में, हमें जॉर्डन श्रृंखलाओं से बना आधार मिला है, और इससे पता चलता है कि A को जॉर्डन के सामान्य रूप में रखा जा सकता है। | ||
=== विशिष्टता === | === विशिष्टता === | ||
यह दिखाया जा सकता है कि किसी दिए गए | यह दिखाया जा सकता है कि किसी दिए गए आव्यूह A का जॉर्डन सामान्य रूप जॉर्डन ब्लॉक के क्रम तक अद्वितीय है। | ||
आइजेनवैल्यू की बीजगणितीय और ज्यामितीय बहुलताओं को जानना | आइजेनवैल्यू की बीजगणितीय और ज्यामितीय बहुलताओं को जानना A के जॉर्डन सामान्य रूप को निर्धारित करने के लिए पर्याप्त नहीं है। यह मानते हुए कि आइजेनवैल्यू λ की बीजगणितीय बहुलता M(λ) ज्ञात है, जॉर्डन फॉर्म की संरचना को रैंकों का विश्लेषण करके पता लगाया जा सकता है। शक्तियां (A- λI)<sup>m(λ)</sup>. इसे देखने के लिए, मान लीजिए कि n × n आव्यूह A का एकमात्र λ है। तो m(λ) = n. सबसे छोटा पूर्णांक k<sub>1</sub> ऐसा है कि | ||
:<math>(A - \lambda I)^{k_1} = 0</math> | :<math>(A - \lambda I)^{k_1} = 0</math> | ||
A के जॉर्डन रूप में सबसे बड़े जॉर्डन ब्लॉक का आकार है (यह संख्या k<sub>1</sub> इसे ''λ'' का सूचकांक भी कहा जाता है। निम्नलिखित अनुभाग में चर्चा देखें।) की रैंक | |||
:<math>(A - \lambda I)^{k_1 - 1}</math> | :<math>(A - \lambda I)^{k_1 - 1}</math> | ||
k | k<sub>1</sub> आकार के जॉर्डन ब्लॉकों की संख्या है. इसी प्रकार, का पद | ||
:<math>(A - \lambda I)^{k_1 - 2}</math> | :<math>(A - \lambda I)^{k_1 - 2}</math> | ||
k आकार के जॉर्डन ब्लॉकों की संख्या दोगुनी है<sub>1</sub> साथ ही k | k आकार के जॉर्डन ब्लॉकों की संख्या दोगुनी है<sub>1</sub> साथ ही k<sub>1</sub>- 1 आकार के जॉर्डन ब्लॉकों की संख्या सामान्य स्थिति समान है। | ||
इसका उपयोग जॉर्डन रूप की विशिष्टता दिखाने के लिए किया जा सकता है। | इसका उपयोग जॉर्डन रूप की विशिष्टता दिखाने के लिए किया जा सकता है। जहाँ J<sub>1</sub> और J<sub>2</sub> के दो जॉर्डन A सामान्य रूप बनें। फिर J<sub>1</sub> और J<sub>2</sub> समान हैं और इनका स्पेक्ट्रम भी समान है, जिसमें आइगेनवैल्यू की बीजगणितीय बहुलताएं भी सम्मलित हैं। पिछले पैराग्राफ में उल्लिखित प्रक्रिया का उपयोग इन आव्यूह की संरचना निर्धारित करने के लिए किया जा सकता है। चूँकि आव्यूह की रैंक समानता परिवर्तन के लिए संरक्षित होती है, J<sub>1</sub> और J<sub>2</sub> के जॉर्डन ब्लॉकों के बीच आपत्ति होती है. यह कथन की विशिष्टता वाले भाग को सिद्ध करता है। | ||
== वास्तविक आव्यूह == | == वास्तविक आव्यूह == | ||
यदि A | यदि A वास्तविक आव्यूह है, तो इसका जॉर्डन रूप अभी भी गैर-वास्तविक हो सकता है। जैसा कि ऊपर चर्चा की गई है, इसे जटिल इगनवैल्यूज और सुपरडायगोनल पर प्रस्तुत करने के अतिरिक्त, वास्तविक उलटा आव्यूह P उपस्थित है जैसे कि P<sup>−1</sup> AP = J वास्तविक ब्लॉक विकर्ण आव्यूह है जिसमें प्रत्येक ब्लॉक वास्तविक जॉर्डन ब्लॉक है।<ref>{{harvtxt|Horn|Johnson|1985|loc=Theorem 3.4.5}}</ref> वास्तविक जॉर्डन ब्लॉक या तो जटिल जॉर्डन ब्लॉक के समान होता है (यदि संबंधित <math>\lambda_i</math> वास्तविक है), या स्वयं ब्लॉक आव्यूह है, जिसमें 2×2 ब्लॉक सम्मलित हैं (गैर-वास्तविक आइजेनवैल्यू के लिए)। <math>\lambda_i = a_i+ib_i</math> फॉर्म की दी गई बीजगणितीय बहुलता के साथ) होता है। । | ||
:<math>C_i = | :<math>C_i = | ||
Line 185: | Line 185: | ||
b_i & a_i \\ | b_i & a_i \\ | ||
\end{array} \right] </math> | \end{array} \right] </math> | ||
और गुणन का वर्णन करें <math>\lambda_i</math> जटिल तल में. सुपरडायगोनल ब्लॉक 2×2 पहचान | और गुणन का वर्णन करें <math>\lambda_i</math> जटिल तल में. सुपरडायगोनल ब्लॉक 2×2 पहचान आव्यूह हैं और इसलिए इस प्रतिनिधित्व में आव्यूह आयाम जटिल जॉर्डन फॉर्म से बड़े हैं। पूर्ण वास्तविक जॉर्डन ब्लॉक के लिए दिया गया है | ||
:<math>J_i = | :<math>J_i = | ||
Line 194: | Line 194: | ||
& & & C_i | & & & C_i | ||
\end{bmatrix}.</math> | \end{bmatrix}.</math> | ||
यह वास्तविक जॉर्डन स्वरूप जटिल जॉर्डन स्वरूप का परिणाम है। | यह वास्तविक जॉर्डन स्वरूप जटिल जॉर्डन स्वरूप का परिणाम है। वास्तविक आव्यूह के लिए गैर-वास्तविक ईजेनसदिशऔर सामान्यीकृत ईजेनसदिशको सदैव जटिल संयुग्म जोड़े बनाने के लिए चुना जा सकता है। वास्तविक और काल्पनिक भाग (सदिश और उसके संयुग्म का रैखिक संयोजन) लेते हुए, नए आधार के संबंध में आव्यूह का यह रूप है। | ||
== फ़ील्ड में प्रविष्टियों के साथ | == फ़ील्ड में प्रविष्टियों के साथ आव्यूह == | ||
जॉर्डन | जॉर्डन घटना को किसी भी वर्गीकृत आव्यूह M के लिए विस्तारित किया जा सकता है जिसके अंश क्षेत्र K में होते हैं। परिणाम के अनुसार, किसी भी M को योग के रूप में लिखा जा सकता है, जहां D [[अर्धसरल ऑपरेटर]] है, N शून्यभूत है, और DN = ND है। इसे जॉर्डन-चेवली विघटन कहा जाता है। जब भी K M के इजनमानों को सम्मिलित करता है, विशेष रूप से जब K बीजगणितीय विवृत होता है, नियमित रूप जॉर्डन-चेवली विघटन को जॉर्डन ब्लॉकों के [[प्रत्यक्ष योग]] के रूप में स्पष्ट रूप से व्यक्त किया जा सकता है। | ||
K को चरण संख्याओं के रूप में अंशों की ज्यामिति जहां 1 ≤ k ≤ m के लिए (''M'' − ''λI'')<sup>''k''</sup> के कर्नलों की आयामों को जानना, M के जॉर्डन रूप को निर्धारित करने में सहायता करता है, यहां m ईजनमान की बहुपदिता है। हम विचार करके K[x]-मॉड्यूल के रूप में उपस्थित सदिश समिष्ट V को K-रेखांकितता के रूप में देख सकते हैं, जिसमें x की क्रिया को M के अनुप्रयोग के रूप में माना जाता है और K-रेखांकितता के लिए विस्तार किया जाता है। तब पॉलिनोमियल (''x'' − ''λ'')<sup>''k''</sup> M के तत्व विभाजक होते हैं, और जॉर्डन नियमित रूप को प्राथमिकताओं से जुड़े ब्लॉकों के लिए प्रस्तुत करने में लगे होते हैं। | |||
जॉर्डन सामान्य रूप का प्रमाण | जॉर्डन सामान्य रूप का प्रमाण सामान्यतः [[एक प्रमुख आदर्श डोमेन पर अंतिम रूप से उत्पन्न मॉड्यूल के लिए संरचना प्रमेय|प्रमुख आदर्श डोमेन पर अंतिम रूप से उत्पन्न मॉड्यूल के लिए संरचना प्रमेय]] के रिंग (गणित) K[x] के अनुप्रयोग के रूप में किया जाता है, जिसका यह परिणाम होता है। | ||
== परिणाम == | == परिणाम == | ||
जॉर्डन नियमित रूप को स्वतंत्रता सूत्र का तथ्य के रूप में देखा जा सकता है जो वर्गीकरण आव्यूहों के लिए होता है, और इसलिए रूप से कई महत्वपूर्ण परिणाम रूप में उसके परिणाम के रूप में देखे जा सकते हैं। | |||
=== स्पेक्ट्रल मैपिंग प्रमेय === | === स्पेक्ट्रल मैपिंग प्रमेय === | ||
जॉर्डन | जॉर्डन नियमित रूप का उपयोग करके, सीधी गणना से प्रारम्भिक विभाजक के लिए स्पेक्ट्रल मैपिंग सूत्र मिलता है: A n × n आव्यूह हो, जिसके इजनमान हैं ''λ''<sub>1</sub>, ..., ''λ<sub>n</sub>'', तो किसी भी बहुपद p के लिए, p(A) के इजनमान होंगे ''p''(''λ''<sub>1</sub>), ..., ''p''(''λ<sub>n</sub>'')। | ||
=== अभिलक्षणिक बहुपद === | === अभिलक्षणिक बहुपद === | ||
A का लक्षणिक बहुपद है <math>p_A(\lambda)=\det (\lambda I-A)</math> समान आव्यूहों का ही लक्षणिक बहुपद होता है। इसलिए <math display="inline">p_A(\lambda)=p_J(\lambda)=\prod_i (\lambda-\lambda_i)^{m_i}</math>यहां <math>\lambda_i</math> का ith मूल है <math display="inline">p_J</math> और <math>m_i</math> इसकी अवधिकता है, क्योंकि यह स्पष्ट रूप से A के जॉर्डन रूप का लक्षणिक बहुपद है। | |||
इसलिए | |||
=== केली-हैमिल्टन प्रमेय === | === केली-हैमिल्टन प्रमेय === | ||
केली-हैमिल्टन | केली-हैमिल्टन उपन्यास के अनुसार, हर आव्यूह A अपनी लक्षणिक समीकरण को पूरा करती है: यदि p A A का लक्षणिक बहुपद है, तो <math>p_A(A)=0</math> यह जॉर्डन रूप में सीधी गणना के माध्यम से दिखाया जा सकता है, क्योंकि यदि λ ई अवधिकता का इजनमान है, तो इसका जॉर्डन खंड J ई निश्चित रूप से संपूर्ण करता है <math>(J_i-\lambda_i I)^{m_i}=0</math> यदि यहां संपूर्ण खंड को एक-दूसरे को प्रभावित नहीं करते हैं, तो <math>(A-\lambda_i I)^{m_i}</math> का i वाला नुकताचीन खंड होता है <math>(J_i-\lambda_i I)^{m_i}=0</math>। इसलिए <math display="inline">p_A(A)=\prod_i (A-\lambda_i I)^{m_i}=0</math>. | ||
जॉर्डन | जॉर्डन रूप को यहां माना जा सकता है कि यह आव्यूह की मूलभूत ज्यामिति का क्षेत्र होता है, उदाहरण के लिए p के [[विभाजन क्षेत्र]] के ऊर्ध्वाधिक्य के लिए; इस क्षेत्र का विस्तार आव्यूह p(A) को किसी भी विधि से नहीं बदलता है। | ||
=== न्यूनतम बहुपद === | === न्यूनतम बहुपद === | ||
वर्गीकृत आव्यूह A का [[न्यूनतम बहुपद (रैखिक बीजगणित)]] P वह एकमान्य मोनिक बहुपद है, जिसकी अवधि m कम से कम होती है, ऐसा कि P(A) = 0 होता है। वैकल्पिक रूप से, दी गई A को समाप्त करने वाले बहुपदों का सेट बहुपदों का आईडीयल I बनाता है, C[x] में बहुपदों के प्रमुख आईडीयल डोमेन, जिसमें घटाक संख्याओं के अनुरूप को उत्पन्न करने वाला मोनिक तत्व बिल्कुल P होता है। | |||
''λ''<sub>1</sub>, …, ''λ<sub>q</sub>'' को A के अलग-अलग इजनमानों का प्रतिनिधित्व करने वाले प्रतिष्ठित इजनमानों का आकार si होने पर प्रकट है। जॉर्डन रूप से स्पष्ट है कि A के न्यूनतम बहुपद का डिग्री Σ''s<sub>i</sub>'' होता है। | |||
जबकि जॉर्डन | जबकि जॉर्डन नियमित रूप न्यूनतम बहुपद को निर्धारित करता है, विपरीत बात यह है। इससे प्रारंभिक विभाजकों की धारणा होती है। वर्गीकृत आव्यूह A के प्रारंभिक विभाजक उसके जॉर्डन खंडों के वैशिष्ट्यक पहचानक बहुपद होते हैं। m के घटक अल्पकोण न्यूनतम बहुपद होते हैं, जो अलग-अलग इजनमानों के अनुरूप सबसे बड़े डिग्री के प्रारंभिक विभाजक होते हैं। | ||
प्रारंभिक विभाजक का डिग्री उससे संबंधित जॉर्डन खंड का आकार होता है, इसलिए उससे संबंधित नियामक उपस्थिति का आयाम। यदि सभी प्रारंभिक विभाजक रैखिक होते हैं, तो A वैज्ञानिक होता है। | |||
=== अपरिवर्तनीय उप- | === अपरिवर्तनीय उप-समिष्ट अपघटन === | ||
n × n आव्यूह A का जॉर्डन रूप खंडगदीय होता है, और इसलिए n आयामी यूक्लिडीय समिष्ट का स्वतंत्र उपविभाजन देता है। प्रत्येक जॉर्डन खंड ''J<sub>i</sub>'' का प्रतिनिधित्व करने वाला अविभाज्य उपसमिष्ट ''X<sub>i</sub>'' होता है। चिह्नित रूप में, हम लिखते हैं | |||
:<math>\mathbb{C}^n = \bigoplus_{i = 1}^k X_i</math> | :<math>\mathbb{C}^n = \bigoplus_{i = 1}^k X_i</math> | ||
जहां प्रत्येक | जहां प्रत्येक ''X<sub>i</sub>'', संबंधित जॉर्डन श्रृंखला के तारक के अंक की स्पैन होता है, और k जॉर्डन श्रृंखलाओं की संख्या होती है। | ||
जॉर्डन | जॉर्डन रूप के माध्यम से हम थोड़ा अलग उपविभाजन भी प्राप्त कर सकते हैं। इजनमान ''λ<sub>i</sub>'' के के लिए , उसके सबसे बड़े संबंधित जॉर्डन ब्लॉक का आकार ''s<sub>i</sub>'' को उसकी सूची कहते हैं और v(λi) के लिए चिह्नित किया जाता है। (इसलिए, न्यूनतम बहुपद का डिग्री सभी सूचकों के योग होता है.) ''Y<sub>i</sub>'' के लिए उपसमिष्ट ''Y<sub>i</sub>'' की परिभाषा कीजिए | ||
:<math> Y_i = \ker(\lambda_i I - A)^{v(\lambda_i)}.</math> | :<math> Y_i = \ker(\lambda_i I - A)^{v(\lambda_i)}.</math> | ||
इससे | इससे यह उपविभाजन देता है | ||
:<math>\mathbb{C}^n = \bigoplus_{i = 1}^l Y_i</math> | :<math>\mathbb{C}^n = \bigoplus_{i = 1}^l Y_i</math> | ||
जहां ''l,'' A के विभिन्न इजनमानों की संख्या होती है। अवचित्र रूप से, हम समान इजनमान के लिए जॉर्डन खंड अविभाज्य उपसमिष्ट को एकत्रित करते हैं। चरम स्थितियों में जब A पहचान मात्रिका का गुणक होता है, तब हमें ''k'' = ''n'' और ''l'' = 1 होता है। | |||
Yi पर परावर्तन को और सभी अन्य ''Y<sub>j</sub>'' (j ≠ i) के अतिरिक्त के रूप में विधायक परियोजना कहा जाता है, जिसे '''v<sub>''i''</sub>''' पर A का आधारभूत विधायक परियोजना के रूप में चिह्नित किया जाता है। स्पेक्ट्रल परियोजना एक-दूसरे के साथ अपरस्पष्टता करते हैं, जिसका अर्थ है कि ''P''(''λ<sub>i</sub>'' ; ''A'') ''P''(v<sub>''j''</sub> ; ''A'') = 0 यदि i ≠ j है। इसके अतिरिक्त, वे A के साथ संघात करते हैं और उनका योग पहचान मात्रिका होता है। J में हर vi को में बदलते हैं और अन्य सभी प्रविष्टियों को शून्य करते हैं, फिर P(vi ; J) मिलता है, और यदि ''U J U''<sup>−1</sup> समानता परिवर्तन है जिसके लिए A = ''U J U''<sup>−1</sup> होता है, तब ''P''(''λ<sub>i</sub>'' ; ''A'') = ''U P''(''λ<sub>i</sub>'' ; ''J'') होता है। यह सीमित आयामसे बाहर नहीं होते हैं। कॉम्पैक्ट ऑपरेटर्स के लिए उनके इस्पाती उपयोग के लिए नीचे देखें, और और सामान्य चर्चा के लिए [[होलोमोर्फिक कार्यात्मक कैलकुलस]] में नीचे देखें। | |||
दो | दो उपविभाजनों को समानता करते हुए, ध्यान दें कि सामान्य रूप में, l ≤ k होता है। जब A सामान्य होता है, तो प्रथम उपविभाजन में ''X<sub>i</sub>''<nowiki/>'s उपसमिष्ट एक-आयामी होते हैं और एक-दूसरे के लिए संघाती होते हैं। यह सामान्य ऑपरेटर्स के लिए स्पेक्ट्रल सिद्धांत है। दूसरा उपविभाजन आयामीय उपविभाजनों के लिए अधिक सरलतापूर्ण रूप से सामान्य संकुचित ऑपरेटर्स पर बढ़ता है। | ||
यहां सूचकांक | यहां नुकताचीन सूचकांक की कुछ गुणधर्मों का उल्लेख करना दिलचस्प हो सकता है। अधिक सामान्यतः, समान्य संख्या λ के लिए, उसकी सूचकांक को उस ऋणात्मक अथवा नानात्विक संख्या ν(λ) की अल्पतम अगतिशाखा के रूप में परिभाषित किया जा सकता है, जो यह सिद्ध करता है कि | ||
:<math>\ker(A-\lambda I)^{\nu(\lambda)} = \ker(A-\lambda I)^m, \; \forall m \geq \nu(\lambda) .</math> | :<math>\ker(A-\lambda I)^{\nu(\lambda)} = \ker(A-\lambda I)^m, \; \forall m \geq \nu(\lambda) .</math> | ||
इसलिए ''ν''(v) > 0 यदि और एकमात्र यदि λ A का इजनमान है। सीमित आयामी स्थितियों में, ν(λ) ≤ वैज्ञानिक अनुपात है। | |||
===समतल (सपाट) सामान्य रूप=== | ===समतल (सपाट) सामान्य रूप=== | ||
जॉर्डन | जॉर्डन रूप का उपयोग मात्रिकाओं की समकोण तक समरूपता के लिए साधारण रूप खोजने के लिए किया जाता है, जिसके परिणामस्वरूप साधारण मात्रिकाएँ मूल मात्रिका समिष्ट में न्यूनतम समिष्ट डिग्री की बीजगणित संख्याओं का समूह होता है। | ||
जॉर्डन | जॉर्डन रूप के लिए मात्रिका समरूपता के प्रतिनिधित्वकों के सेट, या विशाल मात्रिका समिष्ट में राष्ट्रीय गणितिक रूप में विभाजन के लिए, सामान्य रूप से रेखांकित या एफ़ाइन सबसमिष्ट नहीं बनाते हैं। | ||
[[व्लादिमीर अर्नोल्ड]] ने | [[व्लादिमीर अर्नोल्ड]] ने समस्या प्रस्तुत की<ref>{{Cite book |editor1-first=Vladimir I |editor1-last=Arnold |date=2004 | | ||
title = Arnold's problems| doi = 10.1007/b138219 | isbn = 978-3-540-20748-1 |page=127 |publisher = Springer-Verlag Berlin Heidelberg}}</ref> | title = Arnold's problems| doi = 10.1007/b138219 | isbn = 978-3-540-20748-1 |page=127 |publisher = Springer-Verlag Berlin Heidelberg}}</ref> क्षेत्र में मात्रिका समरूपता वर्गों के प्रतिनिधित्वकों का सेट एफाइन रैखिक उपस्थिति (फ्लैट) के संयोजन की समान्तर रूप हो। दूसरे शब्दों में, मात्रिका समरूपता वर्गों के सेट को प्रारंभिक मात्रिका सेट में सुरक्षित रूप से एक-विद्यमान करें जिससे इस संबद्धन की छवि - सभी साधारण मात्रिकाओं का सेट, सबसे कम संभावित डिग्री होता है - यह खिसे हुए रेखांकित उपविभाजनों का संयोजन होता है। | ||
यह बीजगणितिक विवृत क्षेत्रों के लिए पीटरिस डौगुलिस ने बीजगणित बंदों के निर्माण को समस्या का हल किया। मात्रिका के अद्वितीय निर्धारित विमान निरूपण का निर्माण जॉर्डन रूप को विचार करके प्रारंभ होता है।<ref name="originalpaper">{{cite journal | author = Peteris Daugulis |date=2012 | title = मैट्रिक्स संयुग्मन कक्षा का एक पैरामीट्रिजेशन एफ़िन विमानों के संघ के रूप में सेट होता है| | |||
pages = 709–721 | journal = Linear Algebra and Its Applications | volume = 436 | issue = 3 | | pages = 709–721 | journal = Linear Algebra and Its Applications | volume = 436 | issue = 3 | | ||
doi = 10.1016/j.laa.2011.07.032 |arxiv = 1110.0907 |s2cid=119649768 }}</ref> | doi = 10.1016/j.laa.2011.07.032 |arxiv = 1110.0907 |s2cid=119649768 }}</ref> | ||
== | == आव्यूह फ़ंक्शंस == | ||
{{Main| | {{Main|आव्यूह फ़ंक्शन}} | ||
जॉर्डन श्रृंखला का | जॉर्डन श्रृंखला का अनुक्रमणिका विविध और प्रयोजनों के लिए विस्तार को प्रेरित करता है। संख्यात्मक आव्यूहों के लिए, आव्यूह फ़ंक्शन मिलता है; इसे संकुचित ऑपरेटरों और होलोमोर्फिक कार्यात्मक विश्लेषण में विस्तारित किया जा सकता है, जैसा नीचे विवरण दिया गया है। | ||
जॉर्डन | जॉर्डन साधारण रूप सबसे आसान है आव्यूह फ़ंक्शनों की गणना के लिए (चूंकि यह कंप्यूटर की गणना के लिए सबसे अच्छा चयन नहीं हो सकता है)। f(z) संज्ञात्मकीय तार्किक चर का विश्लेषण हो। n×n जॉर्डन ब्लॉक J पर फ़ंक्शन का लागू होना, जिसमें इजीनमान λ होता है, ऊपरी त्रिकोणीय आव्यूह देता है। | ||
:<math> | :<math> | ||
Line 289: | Line 283: | ||
0 & 0 & 0 & 0 & f(\lambda) | 0 & 0 & 0 & 0 & f(\lambda) | ||
\end{bmatrix},</math> | \end{bmatrix},</math> | ||
जिससे परिणामी आव्यूह के k-th सुपरडायागोनल के तत्व <math>\tfrac{f^{(k)}(\lambda)}{k!}</math> हों। सामान्य जॉर्डन नियमित रूप की आव्यूह के लिए उपरोक्त संवेदनशीलता को प्रत्येक जॉर्डन ब्लॉक पर लागू किया जाना चाहिए। | |||
निम्नलिखित उदाहरण पावर फ़ंक्शन f(z)=z | निम्नलिखित उदाहरण पावर फ़ंक्शन f(z)=z<sup>n</sup> के अनुप्रयोग को दिखाता है: | ||
:<math> | :<math> | ||
\begin{bmatrix} | \begin{bmatrix} | ||
Line 307: | Line 301: | ||
0 & 0 & 0 & 0 & \lambda_2^n | 0 & 0 & 0 & 0 & \lambda_2^n | ||
\end{bmatrix},</math> | \end{bmatrix},</math> | ||
यहां बाइनोमियल संख्याओं की परिभाषा है <math display="inline">\binom{n}{k}=\prod_{i=1}^k \frac{n+1-i}{i}</math> यहां n के लिए पूर्णांक पॉजिटिव है, तो इसका मान आम परिभाषा के समान होता है। n के लिए ऋणात्मक मान के लिए पहचान <math display="inline">\binom{-n} k = (-1)^k\binom{n+k-1}{k}</math> का उपयोग किया जा सकता है। | |||
== [[कॉम्पैक्ट ऑपरेटर]] == | == [[कॉम्पैक्ट ऑपरेटर]] == | ||
जॉर्डन सामान्य फॉर्म के अनुरूप परिणाम [[बनच स्थान]] पर कॉम्पैक्ट ऑपरेटरों के लिए होता है। | जॉर्डन सामान्य फॉर्म के अनुरूप परिणाम [[बनच स्थान|बनच समिष्ट]] पर कॉम्पैक्ट ऑपरेटरों के लिए होता है। इसलिए कॉम्पैक्ट ऑपरेटरों पर प्रतिबंधित होता है क्योंकि हर बिंदु x को कॉम्पैक्ट ऑपरेटर T के स्पेक्ट्रम का अवधारणीय बिंदु कहा जाता है; एकमात्र अपवाद यह है जब x स्पेक्ट्रम का सीमा बिंदु है। यह सामान्यतः बाध्य ऑपरेटरों के लिए सत्य नहीं है। इस सामान्यीकरण की विचार देने के लिए, हम पहले कार्यकला विश्लेषण को कार्यात्मक विश्लेषण की भाषा में पुनः रचते हैं। | ||
=== होलोमोर्फिक कार्यात्मक कैलकुलस === | === होलोमोर्फिक कार्यात्मक कैलकुलस === | ||
{{ Details| | {{Details|होलोमोर्फिक कार्यात्मक कैलकुलस}} | ||
X बैनाक समिष्ट हो, L(X) X पर सीमित ऑपरेटर्स हों, और σ(T) T ∈ L(X) का स्पेक्ट्रम हो। होलोमोर्फिक कार्यात्मक विश्लेषण निम्न रूप में परिभाषित होता है: | |||
सीमित ऑपरेटर T को ठीक करें। σ(T) को सम्मलित करने वाले किसी संवृत सेट G पर [[होलोमोर्फिक फ़ंक्शन]]का परिवार Hol(T) को विचार करें। Γ = {γ<sub>i</sub>} संख्यात्मक [[जॉर्डन वक्र|जॉर्डन]] परिसंचय हो जिसमें σ(T) Γ के भीतर होता है, हम f(T) को निम्न रूप में परिभाषित करते हैं। | |||
: <math>f(T) = \frac 1 {2 \pi i} \int_\Gamma f(z)(z - T)^{-1} \, dz.</math> | : <math>f(T) = \frac 1 {2 \pi i} \int_\Gamma f(z)(z - T)^{-1} \, dz.</math> | ||
संवृत सेट G, f के साथ भिन्न हो सकता है और इसे कनेक्ट करने की आवश्यकता नहीं है। इंटीग्रल को रीमैन योग की सीमा के रूप में परिभाषित किया गया है, जैसा कि अदिश स्थितियों में होता है। यद्यपि इंटीग्रल निरंतर एफ के लिए समझ में आता है, हम शास्त्रीय फ़ंक्शन सिद्धांत (उदाहरण के लिए, कॉची इंटीग्रल फॉर्मूला) से मशीनरी को लागू करने के लिए होलोमोर्फिक फ़ंक्शंस तक सीमित रखते हैं। यह धारणा कि σ(T) Γ के अंदर स्थित है, यह सुनिश्चित करता है कि f(T) अच्छी तरह से परिभाषित है; यह Γ की पसंद पर निर्भर नहीं है। कार्यात्मक कैलकुलस, Hol(T) से L(X) तक की मैपिंग Φ है | |||
: <math>\; \Phi(f) = f(T).</math> | : <math>\; \Phi(f) = f(T).</math> | ||
हमें इस कार्यात्मक कैलकुलस के निम्नलिखित गुणों की आवश्यकता होगी: | हमें इस कार्यात्मक कैलकुलस के निम्नलिखित गुणों की आवश्यकता होगी: | ||
# Φ बहुपद कार्यात्मक कलन का विस्तार करता है। | # Φ बहुपद कार्यात्मक कलन का विस्तार करता है। | ||
# | # स्पेक्ट्रल मैपिंग सिद्धांत सत्य होता है: σ(f(T)) = f(σ(T))।. | ||
# Φ | # Φ बीजगणित मानक होता है। | ||
=== परिमित-आयामी | === परिमित-आयामी स्थिति === | ||
परिमित-आयामी | परिमित-आयामी स्थितियों में, σ(T) = {λ<sub>''i''</sub>} कंप्लेक्स समतल में सीमित अस्पष्ट समूह होता है। लेट ei ऐसा फ़ंक्शन हो जो λi के कुछ संवृत पड़ोस में 1 होता है और अन्यथा 0 होता है। कार्यकलाप की गुणधर्म 3 के के लिए , | ||
:<math>e_i(T)</math> | :<math>e_i(T)</math> | ||
प्रक्षेपण होता है। इसके अतिरिक्त, ν<sub>i</sub> λ<sub>''i''</sub> का सूचकांक होता है और | |||
:<math>f(z)= (z - \lambda_i)^{\nu_i}.</math> | :<math>f(z)= (z - \lambda_i)^{\nu_i}.</math> | ||
विद्युतमान अनुक्रमणिका के अनुसार हमें बताता है | |||
:<math> f(T) e_i (T) = (T - \lambda_i)^{\nu_i} e_i (T)</math> | :<math> f(T) e_i (T) = (T - \lambda_i)^{\nu_i} e_i (T)</math> | ||
स्पेक्ट्रम {0} | का स्पेक्ट्रम {0} होता है। गुणधर्म 1 के के लिए , f(T) को सीधे जॉर्डन रूप में निर्धारित किया जा सकता है, और निरीक्षण से, हम देखते हैं कि ऑपरेटर f(T)e<sub>i</sub>(टी) शून्य आव्यूह है. | ||
गुणधर्म 3 के के लिए , ''f''(''T'') ''e<sub>i</sub>''(''T'') = ''e<sub>i</sub>''(''T'') ''f''(''T'')। इसलिए ''e<sub>i</sub>''(''T'') सीधे उन उपस्थिति पर प्रक्षेपण होता है | |||
:<math>\operatorname{Ran} e_i (T) = \ker(T - \lambda_i)^{\nu_i}.</math> | :<math>\operatorname{Ran} e_i (T) = \ker(T - \lambda_i)^{\nu_i}.</math> | ||
संबंध | |||
:<math>\sum_i e_i = 1</math> | :<math>\sum_i e_i = 1</math> | ||
से हमें मिलता है | |||
:<math>\mathbb{C}^n = \bigoplus_i \; \operatorname{Ran} e_i (T) = \bigoplus_i \ker(T - \lambda_i)^{\nu_i}</math> | :<math>\mathbb{C}^n = \bigoplus_i \; \operatorname{Ran} e_i (T) = \bigoplus_i \ker(T - \lambda_i)^{\nu_i}</math> | ||
जहां सूचकांक I, T के विशिष्ट | जहां सूचकांक I, T के विशिष्ट इगनवैल्यूज के माध्यम से चलता है। यह अपरिवर्तनीय उप-समिष्ट अपघटन है | ||
:<math>\mathbb{C}^n = \bigoplus_i Y_i</math> | :<math>\mathbb{C}^n = \bigoplus_i Y_i</math> | ||
पिछले | यह पिछले अनुभाग में दिए गए अविचलित उपस्थिति विभाजन है। प्रत्येक e_i(T) λi के लिए जोर्डन श्रृंखलाओं के उपस्थिति के के लिए निर्धारित सशर्त पर्यायों की ओर प्रक्षेपण होता है। अन्य शब्दों में, e_i(T) = P(λi;T)। ऑपरेटर e_i(T) की इस स्पष्ट पहचान के लिए पटलिका के लिए स्पष्ट रूप दिया जाता है। | ||
आव्यूह के लिए लौरेंट श्रृंखला प्रतिस्थापन का स्पष्ट रूप भी देता है: | |||
सभी f ∈ Hol(T) के लिए, | |||
:<math>f(T) = \sum_{\lambda_i \in \sigma(T)} \sum_{k = 0}^{\nu_i -1} \frac{f^{(k)}}{k!} (T - \lambda_i)^k e_i (T).</math> | :<math>f(T) = \sum_{\lambda_i \in \sigma(T)} \sum_{k = 0}^{\nu_i -1} \frac{f^{(k)}}{k!} (T - \lambda_i)^k e_i (T).</math> | ||
ध्यान दें कि f(T) का | ध्यान दें कि f(T) का व्यक्तिगतीकरण सीमित योग है क्योंकि, हर अवस्था में, हमने f की टेलर श्रृंखला को v<sub>''i''</sub> के लिए केंद्रित चुना है। | ||
=== ऑपरेटर के ध्रुव === | |||
T सीमित ऑपरेटर हो, λ T के σ(T) का अलगावित बिंदु हों। (जैसा कि पहले कहा गया है, जब T संकुचित होता है, तो उसके स्पेक्ट्रम में हर बिंदु अलगावित बिंदु होता है, एकमात्र सीमा बिंदु 0 का सीमा बिंदु हो सकता है।) | |||
ऑपरेटर T का बिंदु λ अग्रेय अवधि ν के साथ पोल कहलाता है यदि अग्निस्थापना समारेखी RT के लिए परिभाषित होती है | |||
:<math> R_T(\lambda) = (\lambda - T)^{-1}</math> | :<math> R_T(\lambda) = (\lambda - T)^{-1}</math> | ||
λ पर | जो λ पर ν का [[ध्रुव (जटिल विश्लेषण)]] होता है। | ||
हम दिखाएंगे कि, | हम दिखाएंगे कि, सीमित आयाम स्थितियों में, इजीनमान की आदेश उसके सूचकांक के साथ मेल खाती है। परिणाम संकुचित ऑपरेटर के लिए भी सत्य होता है। | ||
λ के केंद्रित चक्र के पास आयामी इलाके A की विचार करें जिसमें ऐसा पर्याप्त छोटा त्रिज्या ε हो कि संवृत वर्तुल Bε(λ) और σ(T) के प्राप्ति का छेद {λ} हों। आयामी RT A पर होलोमोर्फिक होती है। गणितीय कार्यकला से परिणाम का विस्तार करके, RT के पास A पर [[लॉरेंट श्रृंखला]] का प्रतिनिधित्व होती है: | |||
:<math>R_T(z) = \sum_{-\infty}^\infty a_m (\lambda - z)^m</math> | :<math>R_T(z) = \sum_{-\infty}^\infty a_m (\lambda - z)^m</math> | ||
जहां | |||
:<math>a_{-m} = - \frac{1}{2 \pi i} \int_C (\lambda - z) ^{m-1} (z - T)^{-1} d z</math> और C λ पर | :<math>a_{-m} = - \frac{1}{2 \pi i} \int_C (\lambda - z) ^{m-1} (z - T)^{-1} d z</math> और C छोटा चक्र λ को केंद्रित है। | ||
:पिछले चर्चा के आधार पर, हमने दिखाया है | |||
:<math> a_{-m} = -(\lambda - T)^{m-1} e_\lambda (T)</math> जहाँ <math> e_\lambda</math> 1 पर है <math> B_\varepsilon(\lambda)</math> और अन्यत्र 0. | |||
किन्तु हमने देखा है कि सबसे छोटा धनात्मक पूर्णांक m ऐसा होता है | |||
:<math>a_{-m} \neq 0</math> और <math>a_{-l} = 0 \; \; \forall \; l \geq m</math> | :<math>a_{-m} \neq 0</math> और <math>a_{-l} = 0 \; \; \forall \; l \geq m</math> | ||
जहां ν(λ) इसके सबसे छोटा धनात्मक पूर्णांक होता है। दूसरे शब्दों में, फ़ंक्शन RT के पास λ पर ν(λ) की पूर्णांक का पोल होता है। | |||
== संख्यात्मक विश्लेषण == | == संख्यात्मक विश्लेषण == | ||
यदि | यदि आव्यूह A में कई इगनवैल्यूज हैं, या कई इगनवैल्यूज वाले आव्यूह के निकट है, तो इसका जॉर्डन सामान्य रूप गड़बड़ी के प्रति बहुत संवेदनशील है। उदाहरण के लिए आव्यूह पर विचार करें | ||
:<math> A = \begin{bmatrix} 1 & 1 \\ \varepsilon & 1 \end{bmatrix}. </math> | :<math> A = \begin{bmatrix} 1 & 1 \\ \varepsilon & 1 \end{bmatrix}. </math> | ||
यदि ε = 0, तो जॉर्डन सामान्य रूप सरल है | यदि ε = 0, तो जॉर्डन सामान्य रूप सरल है | ||
:<math> \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}. </math> | :<math> \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}. </math> | ||
यद्यपि, ε ≠ 0 के लिए, जॉर्डन सामान्य रूप है | |||
:<math> \begin{bmatrix} 1+\sqrt\varepsilon & 0 \\ 0 & 1-\sqrt\varepsilon \end{bmatrix}. </math> | :<math> \begin{bmatrix} 1+\sqrt\varepsilon & 0 \\ 0 & 1-\sqrt\varepsilon \end{bmatrix}. </math> | ||
यह [[शर्त संख्या]] जॉर्डन | यह [[शर्त संख्या]] के कारण, जॉर्डन मानक रूप के लिए मजबूत संख्यात्मक एल्गोरिदम विकसित करना बहुत जटिल हो जाता है, क्योंकि परिणाम में निर्धारित किया जाता है कि क्या दो इजीनमान को समान माना जाता है या नहीं। इसी कारण [[संख्यात्मक विश्लेषण]] में जॉर्डन मानक रूप टाल सामान्यतः दिया जाता है; स्थिर [[शूर अपघटन]]<ref>See Golub & Van Loan (2014), §7.6.5; or Golub & Wilkinson (1976) for details.</ref> या छद्म [[छद्मस्पेक्ट्रम]]<ref>See Golub & Van Loan (2014), §7.9</ref> उत्तम विकल्प हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 402: | Line 394: | ||
* [[कानूनी फॉर्म]] | * [[कानूनी फॉर्म]] | ||
* [[फ्रोबेनियस सामान्य रूप]] | * [[फ्रोबेनियस सामान्य रूप]] | ||
* जॉर्डन | * जॉर्डन आव्यूह | ||
*जॉर्डन-शेवेल्ली अपघटन | *जॉर्डन-शेवेल्ली अपघटन | ||
* [[मैट्रिक्स अपघटन]] | * [[मैट्रिक्स अपघटन|आव्यूह अपघटन]] | ||
*[[मोडल मैट्रिक्स]] | *[[मोडल मैट्रिक्स|मोडल आव्यूह]] | ||
* अजीब विहित रूप | * अजीब विहित रूप | ||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
<references/> | <references/> | ||
==संदर्भ== | ==संदर्भ== | ||
Line 434: | Line 425: | ||
{{refend}} | {{refend}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | |||
[[Category:Created On 06/07/2023]] | [[Category:Created On 06/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:मैट्रिक्स अपघटन]] | |||
[[Category:मैट्रिक्स सामान्य रूप]] | |||
[[Category:मैट्रिक्स सिद्धांत]] | |||
[[Category:लीनियर अलजेब्रा]] |
Latest revision as of 21:40, 15 July 2023
रैखिक बीजगणित में, जॉर्डन सामान्य रूप जिसे जॉर्डन विहित रूप (जेसीएफ) के रूप में भी जाना जाता है,[1][2]यह विशेष रूप का ऊपरी त्रिकोणीय आव्यूह है जिसे जॉर्डन आव्यूह कहा जाता है जो कुछ आधार (रैखिक बीजगणित) के संबंध में परिमित-आयामी सदिश स्थल पर रैखिक ऑपरेटर का प्रतिनिधित्व करता है। ऐसे आव्यूह में प्रत्येक गैर-शून्य ऑफ-विकर्ण प्रविष्टि 1 के समान होती है, मुख्य विकर्ण के ठीक ऊपर ( अतिविकर्ण पर), और बाईं ओर और उनके नीचे समान विकर्ण प्रविष्टियां होती हैं।
मान लीजिए V क्षेत्र (गणित) K पर सदिश समष्टि है। फिर आधार जिसके संबंध में आव्यूह का आवश्यक रूप उपस्थित है, यदि आव्यूह के सभी इगनवैल्यूज K में हैं, या समकक्ष यदि ऑपरेटर की विशेषता बहुपद है K पर रैखिक गुणनखंडों में विभाजित हो जाता है। यदि K बीजगणितीय रूप से विवृत है (उदाहरण के लिए, यदि यह जटिल संख्याओं का क्षेत्र है) तो इसलिए यह स्थिति सदैव संतुष्ट होती है। सामान्य रूप की विकर्ण प्रविष्टियाँ इगनवैल्यूज (ऑपरेटर के) हैं, और प्रत्येक होने की संख्या को की बीजगणितीय बहुलता कहा जाता है।
यदि ऑपरेटर मूल रूप से वर्ग आव्यूह M के लिए दिया गया है, तो इसके जॉर्डन सामान्य रूप को M का जॉर्डन सामान्य रूप भी कहा जाता है। किसी भी वर्ग आव्यूह में जॉर्डन सामान्य रूप होता है यदि गुणांक के क्षेत्र को सभी इगनवैल्यूज से युक्त आव्यूह तक बढ़ाया जाता है, इसके नाम के अतिरिक्त, किसी दिए गए M के लिए सामान्य रूप पूरी तरह से अद्वितीय नहीं है, क्योंकि यह जॉर्डन ब्लॉक से बना ब्लॉक विकर्ण आव्यूह है, जिसका क्रम निश्चित नहीं है; समान के लिए ब्लॉकों को साथ समूहित करना पारंपरिक है, किन्तु इगनवैल्यूज के बीच कोई क्रम नहीं लगाया जाता है, न ही किसी दिए गए के लिए ब्लॉकों के बीच, चूंकि बाद वाले को कमजोर रूप से घटते आकार के आधार पर ऑर्डर किया जा सकता है।
जॉर्डन-चेवेल्ली अपघटन उस आधार के संबंध में विशेष रूप से सरल है जिसके लिए ऑपरेटर अपने जॉर्डन को सामान्य रूप लेता है। विकर्णीय आव्यूह के लिए विकर्ण रूप, उदाहरण के लिए सामान्य आव्यूह, जॉर्डन सामान्य रूप का विशेष स्थिति है।[3][4][5]
जॉर्डन सामान्य रूप का नाम केमिली जॉर्डन के नाम पर रखा गया है, जिन्होंने पहली बार 1870 में जॉर्डन अपघटन प्रमेय को बताया था।[6]
सिंहावलोकन
संकेतन
कुछ पाठ्यपुस्तकें उपविकर्ण पर होती हैं; अर्थात, सुपरविकर्ण के अतिरिक्त मुख्य विकर्ण के ठीक नीचे होती है। आइगेनवैल्यू अभी भी मुख्य विकर्ण पर हैं।[7][8]
प्रेरणा
n × n आव्यूह A विकर्णीय आव्यूह है यदि और एकमात्र ईजेनसमिष्ट के आयामों का योग n है। या, समकक्ष रूप से, यदि और एकमात्र यदि A में n रैखिक रूप से स्वतंत्र इगनवेक्टर्स हैं। सभी आव्यूह विकर्णीय नहीं होते; वे आव्यूह जो विकर्णीय नहीं होते, दोषपूर्ण आव्यूह कहलाते हैं। निम्नलिखित आव्यूह पर विचार करें:
बहुलता सहित, A के इगनवैल्यूज λ = 1, 2, 4, 4 हैं। 4 के अनुरूप इगनसमिष्ट का हमेल आयाम 1 (और 2 नहीं) है, इसलिए A विकर्णीय नहीं है। यद्यपि, व्युत्क्रमणीय आव्यूह P इस प्रकार है कि J = P−1AP, कहां
गणित का सवाल अधिकतर विकर्ण है. यह ए का जॉर्डन सामान्य रूप है। नीचे दिया गया अनुभाग उदाहरण गणना का विवरण भरता है।
संमिश्र आव्यूह
सामान्यतः, वर्ग जटिल आव्यूह ए ब्लॉक विकर्ण आव्यूह के समान (रैखिक बीजगणित) होता है
जहां प्रत्येक ब्लॉक Ji प्रपत्र का वर्ग आव्यूह है
तो व्युत्क्रमणीय आव्यूह P उपस्थित है जैसे कि P−1AP = J ऐसा है कि J की एकमात्र गैर-शून्य प्रविष्टियाँ विकर्ण और अतिविकर्ण पर हैं। J को A का 'जॉर्डन सामान्य रूप' कहा जाता है। प्रत्येक Ji A का जॉर्डन ब्लॉक कहा जाता है। किसी दिए गए जॉर्डन ब्लॉक में, सुपर डायगोनल पर प्रत्येक प्रविष्टि 1 है।
इस परिणाम को मानते हुए, हम निम्नलिखित गुण निकाल सकते हैं:
- बहुलताओं की गणना करते हुए, J के इगनवैल्यूज , और इसलिए A के, विकर्ण प्रविष्टियाँ हैं।
- λ दिया गया हैi, इसकी ज्यामितीय बहुलता ker(A − λ का आयाम हैi I), जहां I पहचान आव्यूह है, और यह λi के अनुरूप जॉर्डन ब्लॉक की संख्या है।[9]
- λ के अनुरूप सभी जॉर्डन ब्लॉकों के आकार का योगi इसकी बीजगणितीय बहुलता है.[9]* A विकर्णीय है यदि और एकमात्र यदि, A के प्रत्येक λ के लिए, इसकी ज्यामितीय और बीजगणितीय बहुलताएं मेल खाती हैं। विशेष रूप से, इस स्थितियों में जॉर्डन ब्लॉक 1 × 1 आव्यूह हैं; अर्थात् अदिश होता है।
- λ के अनुरूप जॉर्डन ब्लॉक λI + N के रूप का है, जहां N निलपोटेंट आव्यूह है जिसे Nij = δi,j−1 के रूप में परिभाषित किया गया है (जहाँ δ क्रोनकर डेल्टा है)। F(A) की गणना करते समय N की शून्य क्षमता का उपयोग किया जा सकता है जहां जटिल विश्लेषणात्मक कार्य है। उदाहरण के लिए, सिद्धांत रूप में जॉर्डन फॉर्म घातीय exp(A) के लिए बंद-फॉर्म अभिव्यक्ति दे सकता है।
- कम से कम j आकार के λ के अनुरूप जॉर्डन ब्लॉकों की संख्या मंद केर (A − λI)j है− dim ker(A − λI)j−1. इस प्रकार, j आकार के जॉर्डन ब्लॉकों की संख्या है
- λi दिया गया है, न्यूनतम बहुपद में इसकी बहुलता इसके सबसे बड़े जॉर्डन ब्लॉक के आकार के समान है।
उदाहरण
आव्यूह पर विचार करें पिछले अनुभाग के उदाहरण से. जॉर्डन सामान्य रूप कुछ आव्यूह समानता के लिए प्राप्त किया जाता है:
- वह है,
होने देना कॉलम वैक्टर हैं , , तब
हमने देखा कि
के लिए अपने पास , वह है, का इगनसदिशहै के अनुरूप . के लिए , दोनों पक्षों को गुणा करने पर देता है
किन्तु , इसलिए
इस प्रकार, सदिश जैसे A के सामान्यीकृत इगनवेक्टर्स कहलाते हैं।
उदाहरण: सामान्य रूप प्राप्त करना
यह उदाहरण दिखाता है कि किसी दिए गए आव्यूह के जॉर्डन सामान्य रूप की गणना कैसे करें।
आव्यूह पर विचार करें
जिसका उल्लेख लेख की प्रारंभ में किया गया है।
A का अभिलक्षणिक बहुपद है
इससे पता चलता है कि बीजगणितीय बहुलता के अनुसार इगनवैल्यूज 1, 2, 4 और 4 हैं। 1 के अनुरूप इगनसमिष्ट समीकरण Av = λv को हल करके पाया जा सकता है। यह कॉलम सदिश v = (−1, 1, 0, 0)T के लिए फैलाया गया है. इसी प्रकार, 2 के संगत इगनसमिष्ट को w = (1, −1, 0, 1)T के लिए फैलाया गया है। अंत में, 4 के अनुरूप इगनसमिष्ट भी एक-आयामी है (भले ही यह दोहरा है) और x = (1, 0, −1, 1)T के लिए फैला हुआ है तो, तीनों इगनवैल्यूज में से प्रत्येक की ज्यामितीय बहुलता (अर्थात, दिए गए के इगनसमिष्ट का आयाम) है। इसलिए, 4 के समान दो इगनवैल्यूज एकल जॉर्डन ब्लॉक के अनुरूप हैं, और आव्यूह ए का जॉर्डन सामान्य रूप आव्यूह जोड़ प्रत्यक्ष योग है
तीन सामान्यीकृत ईजेनवेक्टर जॉर्डन श्रृंखलाएं हैं। दो की लंबाई है: {v} और {w}, जो क्रमशः इगनवैल्यूज 1 और 2 के अनुरूप हैं। 4 के अनुरूप लंबाई दो की श्रृंखला है। इस श्रृंखला को खोजने के लिए, गणना करें
जहां I 4 × 4 पहचान आव्यूह है। उपरोक्त अवधि में सदिश चुनें जो A − 4I के कर्नेल में नहीं है; उदाहरण के लिए, y = (1,0,0,0)टी. अब, (A − 4I)y = x और (A − 4I)x = 0, इसलिए {y, x} 4 के अनुरूप लंबाई दो की श्रृंखला है।
संक्रमण आव्यूह P इस प्रकार है कि P−1AP = J इन सदिशों को दूसरे के बगल में रखकर इस प्रकार बनाया जाता है
गणना से पता चलता है कि समीकरण P−1AP = J वास्तव में कायम है।
यदि हमने उस क्रम को बदल दिया है जिसमें चेन वैक्टर दिखाई देते हैं, अर्थात, v, w और {x, y} के क्रम को साथ बदलते हुए, जॉर्डन ब्लॉकों को आपस में बदल दिया जाएगा। यद्यपि, जॉर्डन रूप जॉर्डन रूपों के समकक्ष हैं।
सामान्यीकृत ईजेनवेक्टर
λ दिया गया है, प्रत्येक संबंधित जॉर्डन ब्लॉक रैखिक रूप से स्वतंत्र वैक्टर pi, i = 1, ...,b की 'जॉर्डन श्रृंखला' को जन्म देता है जहां b जॉर्डन ब्लॉक का आकार है। 'जनरेटर', या 'लीड वेक्टर', pb श्रृंखला का सामान्यीकृत इगनसदिशहै जैसे कि (A − λI)bpb = 0। सदिश p1 = (A − λI)b−1pb λ के अनुरूप साधारण इगनसदिशहै। pi सामान्यतः pi−1की पूर्व छवि है A - λ'I' के अंतर्गत। तो लीड सदिश A - λ'I' से गुणा करके श्रृंखला उत्पन्न करता है।[10][2]इसलिए यह कथन कि प्रत्येक वर्ग आव्यूह ए को जॉर्डन में सामान्य रूप में रखा जा सकता है, इस दावे के समान है कि अंतर्निहित सदिश समिष्ट का आधार जॉर्डन श्रृंखलाओं से बना है।
प्रमाण
हम प्रेरण के लिए प्रमाण देते हैं कि किसी भी जटिल-मूल्य वर्ग आव्यूह ए को जॉर्डन सामान्य रूप में रखा जा सकता है। चूँकि अंतर्निहित सदिश समिष्ट दिखाया जा सकता है[11] इगनवैल्यूज से जुड़े अपरिवर्तनीय उप-समिष्ट का प्रत्यक्ष योग होने के लिए, A को एकमात्र λ माना जा सकता है। 1×1 स्थिति है. मान लीजिए A n × n आव्यूह है। A - λ'I' के फलन की सीमा, जिसे Ran(A - λ'I के लिए निरूपित किया जाता है, A का अपरिवर्तनीय उपसमिष्ट है। इसके अतिरिक्त, चूँकि λ A का है, Ran(A - λ) का आयाम 'I'), r, n से बिल्कुल कम है, इसलिए, आगमनात्मक परिकल्पना के अनुसार, Ran(A - λ'I') का आधार है (रैखिक बीजगणित) {p1, …, p r}जॉर्डन श्रृंखलाओं से बना है।
इसके बाद कर्नेल (रैखिक बीजगणित) पर विचार करें, अर्थात, रैखिक उपसमिष्ट केर (A − λ'I')। अगर
वांछित परिणाम रैंक-शून्यता प्रमेय से तुरंत प्राप्त होता है। (यह स्थिति होगा, उदाहरण के लिए, यदि A हर्मिटियन आव्यूह था।)
अन्यथा, यदि
माना Q का आयाम s ≤ r है। Q में प्रत्येक सदिश इगनसदिशहै, इसलिए Ran(A − λ'I') में s रैखिक रूप से स्वतंत्र इगनवेक्टर्स के अनुरूप s जॉर्डन श्रृंखला होनी चाहिए। इसलिए आधार {p1, ..., pr} में s सदिश होना चाहिए, मान लीजिए {pr−s+1, ..., pr}, जो इन जॉर्डन श्रृंखलाओं के प्रमुख वैक्टर हैं। हम इन लीड वैक्टरों की पूर्वछवियाँ लेकर श्रृंखलाओं का विस्तार कर सकते हैं। (यह मुख्य कदम है।) चलो qi ऐसा हो कि
सेट {qi}, रैखिक रूप से स्वतंत्र सेट की पूर्वछवियाँ होने के नाते {pi} A - λ 'I' के अनुसार, भी रैखिक रूप से स्वतंत्र है। स्पष्टतः qi का कोई गैर-तुच्छ रैखिक संयोजन नहीं है {pi}i=r−s+1, ..., r के लिए ker(A − λI) में स्थित हो सकता है रैखिक रूप से स्वतंत्र है. इसके अतिरिक्त, q का कोई गैर-तुच्छ रैखिक संयोजन नहीं हैi Ran(A − λ 'I') से संबंधित हो सकता है क्योंकि तब यह मूल वैक्टर p1, ..., pr, का रैखिक संयोजन होगा और इस रैखिक संयोजन में मूल वैक्टर का योगदान होगा जो कि केर (A- λI) में नहीं है क्योंकि अन्यथा यह केर (A- λI) से संबंधित होगा। दोनों रैखिक संयोजनों पर A- λI की कार्रवाई तब लीड वैक्टर के गैर-तुच्छ रैखिक संयोजन और गैर-लीड वैक्टर के ऐसे रैखिक संयोजन की समानता उत्पन्न करेगी, जो (p1, ..., pr) की रैखिक स्वतंत्रता का खंडन करेगी।
अंततः, हम कोई भी रैखिकतः स्वतंत्र समुच्चय {चुन सकते हैं z 1, ..., zt} जिसका प्रक्षेपण फैला हुआ है
प्रत्येक zi 1 लंबाई की जॉर्डन श्रृंखला बनाता है। निर्माण से, तीन सेटों का मिलन {p1, ..., pr}, {qr−s +1, ..., qr}, और {z1, ..., zt} रैखिक रूप से स्वतंत्र है, और इसके सदस्य मिलकर जॉर्डन श्रृंखला बनाते हैं। अंत में, रैंक-शून्यता प्रमेय के लिए , संघ की कार्डिनैलिटी n है। दूसरे शब्दों में, हमें जॉर्डन श्रृंखलाओं से बना आधार मिला है, और इससे पता चलता है कि A को जॉर्डन के सामान्य रूप में रखा जा सकता है।
विशिष्टता
यह दिखाया जा सकता है कि किसी दिए गए आव्यूह A का जॉर्डन सामान्य रूप जॉर्डन ब्लॉक के क्रम तक अद्वितीय है।
आइजेनवैल्यू की बीजगणितीय और ज्यामितीय बहुलताओं को जानना A के जॉर्डन सामान्य रूप को निर्धारित करने के लिए पर्याप्त नहीं है। यह मानते हुए कि आइजेनवैल्यू λ की बीजगणितीय बहुलता M(λ) ज्ञात है, जॉर्डन फॉर्म की संरचना को रैंकों का विश्लेषण करके पता लगाया जा सकता है। शक्तियां (A- λI)m(λ). इसे देखने के लिए, मान लीजिए कि n × n आव्यूह A का एकमात्र λ है। तो m(λ) = n. सबसे छोटा पूर्णांक k1 ऐसा है कि
A के जॉर्डन रूप में सबसे बड़े जॉर्डन ब्लॉक का आकार है (यह संख्या k1 इसे λ का सूचकांक भी कहा जाता है। निम्नलिखित अनुभाग में चर्चा देखें।) की रैंक
k1 आकार के जॉर्डन ब्लॉकों की संख्या है. इसी प्रकार, का पद
k आकार के जॉर्डन ब्लॉकों की संख्या दोगुनी है1 साथ ही k1- 1 आकार के जॉर्डन ब्लॉकों की संख्या सामान्य स्थिति समान है।
इसका उपयोग जॉर्डन रूप की विशिष्टता दिखाने के लिए किया जा सकता है। जहाँ J1 और J2 के दो जॉर्डन A सामान्य रूप बनें। फिर J1 और J2 समान हैं और इनका स्पेक्ट्रम भी समान है, जिसमें आइगेनवैल्यू की बीजगणितीय बहुलताएं भी सम्मलित हैं। पिछले पैराग्राफ में उल्लिखित प्रक्रिया का उपयोग इन आव्यूह की संरचना निर्धारित करने के लिए किया जा सकता है। चूँकि आव्यूह की रैंक समानता परिवर्तन के लिए संरक्षित होती है, J1 और J2 के जॉर्डन ब्लॉकों के बीच आपत्ति होती है. यह कथन की विशिष्टता वाले भाग को सिद्ध करता है।
वास्तविक आव्यूह
यदि A वास्तविक आव्यूह है, तो इसका जॉर्डन रूप अभी भी गैर-वास्तविक हो सकता है। जैसा कि ऊपर चर्चा की गई है, इसे जटिल इगनवैल्यूज और सुपरडायगोनल पर प्रस्तुत करने के अतिरिक्त, वास्तविक उलटा आव्यूह P उपस्थित है जैसे कि P−1 AP = J वास्तविक ब्लॉक विकर्ण आव्यूह है जिसमें प्रत्येक ब्लॉक वास्तविक जॉर्डन ब्लॉक है।[12] वास्तविक जॉर्डन ब्लॉक या तो जटिल जॉर्डन ब्लॉक के समान होता है (यदि संबंधित वास्तविक है), या स्वयं ब्लॉक आव्यूह है, जिसमें 2×2 ब्लॉक सम्मलित हैं (गैर-वास्तविक आइजेनवैल्यू के लिए)। फॉर्म की दी गई बीजगणितीय बहुलता के साथ) होता है। ।
और गुणन का वर्णन करें जटिल तल में. सुपरडायगोनल ब्लॉक 2×2 पहचान आव्यूह हैं और इसलिए इस प्रतिनिधित्व में आव्यूह आयाम जटिल जॉर्डन फॉर्म से बड़े हैं। पूर्ण वास्तविक जॉर्डन ब्लॉक के लिए दिया गया है
यह वास्तविक जॉर्डन स्वरूप जटिल जॉर्डन स्वरूप का परिणाम है। वास्तविक आव्यूह के लिए गैर-वास्तविक ईजेनसदिशऔर सामान्यीकृत ईजेनसदिशको सदैव जटिल संयुग्म जोड़े बनाने के लिए चुना जा सकता है। वास्तविक और काल्पनिक भाग (सदिश और उसके संयुग्म का रैखिक संयोजन) लेते हुए, नए आधार के संबंध में आव्यूह का यह रूप है।
फ़ील्ड में प्रविष्टियों के साथ आव्यूह
जॉर्डन घटना को किसी भी वर्गीकृत आव्यूह M के लिए विस्तारित किया जा सकता है जिसके अंश क्षेत्र K में होते हैं। परिणाम के अनुसार, किसी भी M को योग के रूप में लिखा जा सकता है, जहां D अर्धसरल ऑपरेटर है, N शून्यभूत है, और DN = ND है। इसे जॉर्डन-चेवली विघटन कहा जाता है। जब भी K M के इजनमानों को सम्मिलित करता है, विशेष रूप से जब K बीजगणितीय विवृत होता है, नियमित रूप जॉर्डन-चेवली विघटन को जॉर्डन ब्लॉकों के प्रत्यक्ष योग के रूप में स्पष्ट रूप से व्यक्त किया जा सकता है।
K को चरण संख्याओं के रूप में अंशों की ज्यामिति जहां 1 ≤ k ≤ m के लिए (M − λI)k के कर्नलों की आयामों को जानना, M के जॉर्डन रूप को निर्धारित करने में सहायता करता है, यहां m ईजनमान की बहुपदिता है। हम विचार करके K[x]-मॉड्यूल के रूप में उपस्थित सदिश समिष्ट V को K-रेखांकितता के रूप में देख सकते हैं, जिसमें x की क्रिया को M के अनुप्रयोग के रूप में माना जाता है और K-रेखांकितता के लिए विस्तार किया जाता है। तब पॉलिनोमियल (x − λ)k M के तत्व विभाजक होते हैं, और जॉर्डन नियमित रूप को प्राथमिकताओं से जुड़े ब्लॉकों के लिए प्रस्तुत करने में लगे होते हैं।
जॉर्डन सामान्य रूप का प्रमाण सामान्यतः प्रमुख आदर्श डोमेन पर अंतिम रूप से उत्पन्न मॉड्यूल के लिए संरचना प्रमेय के रिंग (गणित) K[x] के अनुप्रयोग के रूप में किया जाता है, जिसका यह परिणाम होता है।
परिणाम
जॉर्डन नियमित रूप को स्वतंत्रता सूत्र का तथ्य के रूप में देखा जा सकता है जो वर्गीकरण आव्यूहों के लिए होता है, और इसलिए रूप से कई महत्वपूर्ण परिणाम रूप में उसके परिणाम के रूप में देखे जा सकते हैं।
स्पेक्ट्रल मैपिंग प्रमेय
जॉर्डन नियमित रूप का उपयोग करके, सीधी गणना से प्रारम्भिक विभाजक के लिए स्पेक्ट्रल मैपिंग सूत्र मिलता है: A n × n आव्यूह हो, जिसके इजनमान हैं λ1, ..., λn, तो किसी भी बहुपद p के लिए, p(A) के इजनमान होंगे p(λ1), ..., p(λn)।
अभिलक्षणिक बहुपद
A का लक्षणिक बहुपद है समान आव्यूहों का ही लक्षणिक बहुपद होता है। इसलिए यहां का ith मूल है और इसकी अवधिकता है, क्योंकि यह स्पष्ट रूप से A के जॉर्डन रूप का लक्षणिक बहुपद है।
केली-हैमिल्टन प्रमेय
केली-हैमिल्टन उपन्यास के अनुसार, हर आव्यूह A अपनी लक्षणिक समीकरण को पूरा करती है: यदि p A A का लक्षणिक बहुपद है, तो यह जॉर्डन रूप में सीधी गणना के माध्यम से दिखाया जा सकता है, क्योंकि यदि λ ई अवधिकता का इजनमान है, तो इसका जॉर्डन खंड J ई निश्चित रूप से संपूर्ण करता है यदि यहां संपूर्ण खंड को एक-दूसरे को प्रभावित नहीं करते हैं, तो का i वाला नुकताचीन खंड होता है । इसलिए .
जॉर्डन रूप को यहां माना जा सकता है कि यह आव्यूह की मूलभूत ज्यामिति का क्षेत्र होता है, उदाहरण के लिए p के विभाजन क्षेत्र के ऊर्ध्वाधिक्य के लिए; इस क्षेत्र का विस्तार आव्यूह p(A) को किसी भी विधि से नहीं बदलता है।
न्यूनतम बहुपद
वर्गीकृत आव्यूह A का न्यूनतम बहुपद (रैखिक बीजगणित) P वह एकमान्य मोनिक बहुपद है, जिसकी अवधि m कम से कम होती है, ऐसा कि P(A) = 0 होता है। वैकल्पिक रूप से, दी गई A को समाप्त करने वाले बहुपदों का सेट बहुपदों का आईडीयल I बनाता है, C[x] में बहुपदों के प्रमुख आईडीयल डोमेन, जिसमें घटाक संख्याओं के अनुरूप को उत्पन्न करने वाला मोनिक तत्व बिल्कुल P होता है।
λ1, …, λq को A के अलग-अलग इजनमानों का प्रतिनिधित्व करने वाले प्रतिष्ठित इजनमानों का आकार si होने पर प्रकट है। जॉर्डन रूप से स्पष्ट है कि A के न्यूनतम बहुपद का डिग्री Σsi होता है।
जबकि जॉर्डन नियमित रूप न्यूनतम बहुपद को निर्धारित करता है, विपरीत बात यह है। इससे प्रारंभिक विभाजकों की धारणा होती है। वर्गीकृत आव्यूह A के प्रारंभिक विभाजक उसके जॉर्डन खंडों के वैशिष्ट्यक पहचानक बहुपद होते हैं। m के घटक अल्पकोण न्यूनतम बहुपद होते हैं, जो अलग-अलग इजनमानों के अनुरूप सबसे बड़े डिग्री के प्रारंभिक विभाजक होते हैं।
प्रारंभिक विभाजक का डिग्री उससे संबंधित जॉर्डन खंड का आकार होता है, इसलिए उससे संबंधित नियामक उपस्थिति का आयाम। यदि सभी प्रारंभिक विभाजक रैखिक होते हैं, तो A वैज्ञानिक होता है।
अपरिवर्तनीय उप-समिष्ट अपघटन
n × n आव्यूह A का जॉर्डन रूप खंडगदीय होता है, और इसलिए n आयामी यूक्लिडीय समिष्ट का स्वतंत्र उपविभाजन देता है। प्रत्येक जॉर्डन खंड Ji का प्रतिनिधित्व करने वाला अविभाज्य उपसमिष्ट Xi होता है। चिह्नित रूप में, हम लिखते हैं
जहां प्रत्येक Xi, संबंधित जॉर्डन श्रृंखला के तारक के अंक की स्पैन होता है, और k जॉर्डन श्रृंखलाओं की संख्या होती है।
जॉर्डन रूप के माध्यम से हम थोड़ा अलग उपविभाजन भी प्राप्त कर सकते हैं। इजनमान λi के के लिए , उसके सबसे बड़े संबंधित जॉर्डन ब्लॉक का आकार si को उसकी सूची कहते हैं और v(λi) के लिए चिह्नित किया जाता है। (इसलिए, न्यूनतम बहुपद का डिग्री सभी सूचकों के योग होता है.) Yi के लिए उपसमिष्ट Yi की परिभाषा कीजिए
इससे यह उपविभाजन देता है
जहां l, A के विभिन्न इजनमानों की संख्या होती है। अवचित्र रूप से, हम समान इजनमान के लिए जॉर्डन खंड अविभाज्य उपसमिष्ट को एकत्रित करते हैं। चरम स्थितियों में जब A पहचान मात्रिका का गुणक होता है, तब हमें k = n और l = 1 होता है।
Yi पर परावर्तन को और सभी अन्य Yj (j ≠ i) के अतिरिक्त के रूप में विधायक परियोजना कहा जाता है, जिसे vi पर A का आधारभूत विधायक परियोजना के रूप में चिह्नित किया जाता है। स्पेक्ट्रल परियोजना एक-दूसरे के साथ अपरस्पष्टता करते हैं, जिसका अर्थ है कि P(λi ; A) P(vj ; A) = 0 यदि i ≠ j है। इसके अतिरिक्त, वे A के साथ संघात करते हैं और उनका योग पहचान मात्रिका होता है। J में हर vi को में बदलते हैं और अन्य सभी प्रविष्टियों को शून्य करते हैं, फिर P(vi ; J) मिलता है, और यदि U J U−1 समानता परिवर्तन है जिसके लिए A = U J U−1 होता है, तब P(λi ; A) = U P(λi ; J) होता है। यह सीमित आयामसे बाहर नहीं होते हैं। कॉम्पैक्ट ऑपरेटर्स के लिए उनके इस्पाती उपयोग के लिए नीचे देखें, और और सामान्य चर्चा के लिए होलोमोर्फिक कार्यात्मक कैलकुलस में नीचे देखें।
दो उपविभाजनों को समानता करते हुए, ध्यान दें कि सामान्य रूप में, l ≤ k होता है। जब A सामान्य होता है, तो प्रथम उपविभाजन में Xi's उपसमिष्ट एक-आयामी होते हैं और एक-दूसरे के लिए संघाती होते हैं। यह सामान्य ऑपरेटर्स के लिए स्पेक्ट्रल सिद्धांत है। दूसरा उपविभाजन आयामीय उपविभाजनों के लिए अधिक सरलतापूर्ण रूप से सामान्य संकुचित ऑपरेटर्स पर बढ़ता है।
यहां नुकताचीन सूचकांक की कुछ गुणधर्मों का उल्लेख करना दिलचस्प हो सकता है। अधिक सामान्यतः, समान्य संख्या λ के लिए, उसकी सूचकांक को उस ऋणात्मक अथवा नानात्विक संख्या ν(λ) की अल्पतम अगतिशाखा के रूप में परिभाषित किया जा सकता है, जो यह सिद्ध करता है कि
इसलिए ν(v) > 0 यदि और एकमात्र यदि λ A का इजनमान है। सीमित आयामी स्थितियों में, ν(λ) ≤ वैज्ञानिक अनुपात है।
समतल (सपाट) सामान्य रूप
जॉर्डन रूप का उपयोग मात्रिकाओं की समकोण तक समरूपता के लिए साधारण रूप खोजने के लिए किया जाता है, जिसके परिणामस्वरूप साधारण मात्रिकाएँ मूल मात्रिका समिष्ट में न्यूनतम समिष्ट डिग्री की बीजगणित संख्याओं का समूह होता है।
जॉर्डन रूप के लिए मात्रिका समरूपता के प्रतिनिधित्वकों के सेट, या विशाल मात्रिका समिष्ट में राष्ट्रीय गणितिक रूप में विभाजन के लिए, सामान्य रूप से रेखांकित या एफ़ाइन सबसमिष्ट नहीं बनाते हैं।
व्लादिमीर अर्नोल्ड ने समस्या प्रस्तुत की[13] क्षेत्र में मात्रिका समरूपता वर्गों के प्रतिनिधित्वकों का सेट एफाइन रैखिक उपस्थिति (फ्लैट) के संयोजन की समान्तर रूप हो। दूसरे शब्दों में, मात्रिका समरूपता वर्गों के सेट को प्रारंभिक मात्रिका सेट में सुरक्षित रूप से एक-विद्यमान करें जिससे इस संबद्धन की छवि - सभी साधारण मात्रिकाओं का सेट, सबसे कम संभावित डिग्री होता है - यह खिसे हुए रेखांकित उपविभाजनों का संयोजन होता है।
यह बीजगणितिक विवृत क्षेत्रों के लिए पीटरिस डौगुलिस ने बीजगणित बंदों के निर्माण को समस्या का हल किया। मात्रिका के अद्वितीय निर्धारित विमान निरूपण का निर्माण जॉर्डन रूप को विचार करके प्रारंभ होता है।[14]
आव्यूह फ़ंक्शंस
जॉर्डन श्रृंखला का अनुक्रमणिका विविध और प्रयोजनों के लिए विस्तार को प्रेरित करता है। संख्यात्मक आव्यूहों के लिए, आव्यूह फ़ंक्शन मिलता है; इसे संकुचित ऑपरेटरों और होलोमोर्फिक कार्यात्मक विश्लेषण में विस्तारित किया जा सकता है, जैसा नीचे विवरण दिया गया है।
जॉर्डन साधारण रूप सबसे आसान है आव्यूह फ़ंक्शनों की गणना के लिए (चूंकि यह कंप्यूटर की गणना के लिए सबसे अच्छा चयन नहीं हो सकता है)। f(z) संज्ञात्मकीय तार्किक चर का विश्लेषण हो। n×n जॉर्डन ब्लॉक J पर फ़ंक्शन का लागू होना, जिसमें इजीनमान λ होता है, ऊपरी त्रिकोणीय आव्यूह देता है।
जिससे परिणामी आव्यूह के k-th सुपरडायागोनल के तत्व हों। सामान्य जॉर्डन नियमित रूप की आव्यूह के लिए उपरोक्त संवेदनशीलता को प्रत्येक जॉर्डन ब्लॉक पर लागू किया जाना चाहिए।
निम्नलिखित उदाहरण पावर फ़ंक्शन f(z)=zn के अनुप्रयोग को दिखाता है:
यहां बाइनोमियल संख्याओं की परिभाषा है यहां n के लिए पूर्णांक पॉजिटिव है, तो इसका मान आम परिभाषा के समान होता है। n के लिए ऋणात्मक मान के लिए पहचान का उपयोग किया जा सकता है।
कॉम्पैक्ट ऑपरेटर
जॉर्डन सामान्य फॉर्म के अनुरूप परिणाम बनच समिष्ट पर कॉम्पैक्ट ऑपरेटरों के लिए होता है। इसलिए कॉम्पैक्ट ऑपरेटरों पर प्रतिबंधित होता है क्योंकि हर बिंदु x को कॉम्पैक्ट ऑपरेटर T के स्पेक्ट्रम का अवधारणीय बिंदु कहा जाता है; एकमात्र अपवाद यह है जब x स्पेक्ट्रम का सीमा बिंदु है। यह सामान्यतः बाध्य ऑपरेटरों के लिए सत्य नहीं है। इस सामान्यीकरण की विचार देने के लिए, हम पहले कार्यकला विश्लेषण को कार्यात्मक विश्लेषण की भाषा में पुनः रचते हैं।
होलोमोर्फिक कार्यात्मक कैलकुलस
X बैनाक समिष्ट हो, L(X) X पर सीमित ऑपरेटर्स हों, और σ(T) T ∈ L(X) का स्पेक्ट्रम हो। होलोमोर्फिक कार्यात्मक विश्लेषण निम्न रूप में परिभाषित होता है:
सीमित ऑपरेटर T को ठीक करें। σ(T) को सम्मलित करने वाले किसी संवृत सेट G पर होलोमोर्फिक फ़ंक्शनका परिवार Hol(T) को विचार करें। Γ = {γi} संख्यात्मक जॉर्डन परिसंचय हो जिसमें σ(T) Γ के भीतर होता है, हम f(T) को निम्न रूप में परिभाषित करते हैं।
संवृत सेट G, f के साथ भिन्न हो सकता है और इसे कनेक्ट करने की आवश्यकता नहीं है। इंटीग्रल को रीमैन योग की सीमा के रूप में परिभाषित किया गया है, जैसा कि अदिश स्थितियों में होता है। यद्यपि इंटीग्रल निरंतर एफ के लिए समझ में आता है, हम शास्त्रीय फ़ंक्शन सिद्धांत (उदाहरण के लिए, कॉची इंटीग्रल फॉर्मूला) से मशीनरी को लागू करने के लिए होलोमोर्फिक फ़ंक्शंस तक सीमित रखते हैं। यह धारणा कि σ(T) Γ के अंदर स्थित है, यह सुनिश्चित करता है कि f(T) अच्छी तरह से परिभाषित है; यह Γ की पसंद पर निर्भर नहीं है। कार्यात्मक कैलकुलस, Hol(T) से L(X) तक की मैपिंग Φ है
हमें इस कार्यात्मक कैलकुलस के निम्नलिखित गुणों की आवश्यकता होगी:
- Φ बहुपद कार्यात्मक कलन का विस्तार करता है।
- स्पेक्ट्रल मैपिंग सिद्धांत सत्य होता है: σ(f(T)) = f(σ(T))।.
- Φ बीजगणित मानक होता है।
परिमित-आयामी स्थिति
परिमित-आयामी स्थितियों में, σ(T) = {λi} कंप्लेक्स समतल में सीमित अस्पष्ट समूह होता है। लेट ei ऐसा फ़ंक्शन हो जो λi के कुछ संवृत पड़ोस में 1 होता है और अन्यथा 0 होता है। कार्यकलाप की गुणधर्म 3 के के लिए ,
प्रक्षेपण होता है। इसके अतिरिक्त, νi λi का सूचकांक होता है और
विद्युतमान अनुक्रमणिका के अनुसार हमें बताता है
का स्पेक्ट्रम {0} होता है। गुणधर्म 1 के के लिए , f(T) को सीधे जॉर्डन रूप में निर्धारित किया जा सकता है, और निरीक्षण से, हम देखते हैं कि ऑपरेटर f(T)ei(टी) शून्य आव्यूह है.
गुणधर्म 3 के के लिए , f(T) ei(T) = ei(T) f(T)। इसलिए ei(T) सीधे उन उपस्थिति पर प्रक्षेपण होता है
संबंध
से हमें मिलता है
जहां सूचकांक I, T के विशिष्ट इगनवैल्यूज के माध्यम से चलता है। यह अपरिवर्तनीय उप-समिष्ट अपघटन है
यह पिछले अनुभाग में दिए गए अविचलित उपस्थिति विभाजन है। प्रत्येक e_i(T) λi के लिए जोर्डन श्रृंखलाओं के उपस्थिति के के लिए निर्धारित सशर्त पर्यायों की ओर प्रक्षेपण होता है। अन्य शब्दों में, e_i(T) = P(λi;T)। ऑपरेटर e_i(T) की इस स्पष्ट पहचान के लिए पटलिका के लिए स्पष्ट रूप दिया जाता है।
आव्यूह के लिए लौरेंट श्रृंखला प्रतिस्थापन का स्पष्ट रूप भी देता है:
सभी f ∈ Hol(T) के लिए,
ध्यान दें कि f(T) का व्यक्तिगतीकरण सीमित योग है क्योंकि, हर अवस्था में, हमने f की टेलर श्रृंखला को vi के लिए केंद्रित चुना है।
ऑपरेटर के ध्रुव
T सीमित ऑपरेटर हो, λ T के σ(T) का अलगावित बिंदु हों। (जैसा कि पहले कहा गया है, जब T संकुचित होता है, तो उसके स्पेक्ट्रम में हर बिंदु अलगावित बिंदु होता है, एकमात्र सीमा बिंदु 0 का सीमा बिंदु हो सकता है।)
ऑपरेटर T का बिंदु λ अग्रेय अवधि ν के साथ पोल कहलाता है यदि अग्निस्थापना समारेखी RT के लिए परिभाषित होती है
जो λ पर ν का ध्रुव (जटिल विश्लेषण) होता है।
हम दिखाएंगे कि, सीमित आयाम स्थितियों में, इजीनमान की आदेश उसके सूचकांक के साथ मेल खाती है। परिणाम संकुचित ऑपरेटर के लिए भी सत्य होता है।
λ के केंद्रित चक्र के पास आयामी इलाके A की विचार करें जिसमें ऐसा पर्याप्त छोटा त्रिज्या ε हो कि संवृत वर्तुल Bε(λ) और σ(T) के प्राप्ति का छेद {λ} हों। आयामी RT A पर होलोमोर्फिक होती है। गणितीय कार्यकला से परिणाम का विस्तार करके, RT के पास A पर लॉरेंट श्रृंखला का प्रतिनिधित्व होती है:
जहां
- और C छोटा चक्र λ को केंद्रित है।
- पिछले चर्चा के आधार पर, हमने दिखाया है
- जहाँ 1 पर है और अन्यत्र 0.
किन्तु हमने देखा है कि सबसे छोटा धनात्मक पूर्णांक m ऐसा होता है
- और
जहां ν(λ) इसके सबसे छोटा धनात्मक पूर्णांक होता है। दूसरे शब्दों में, फ़ंक्शन RT के पास λ पर ν(λ) की पूर्णांक का पोल होता है।
संख्यात्मक विश्लेषण
यदि आव्यूह A में कई इगनवैल्यूज हैं, या कई इगनवैल्यूज वाले आव्यूह के निकट है, तो इसका जॉर्डन सामान्य रूप गड़बड़ी के प्रति बहुत संवेदनशील है। उदाहरण के लिए आव्यूह पर विचार करें
यदि ε = 0, तो जॉर्डन सामान्य रूप सरल है
यद्यपि, ε ≠ 0 के लिए, जॉर्डन सामान्य रूप है
यह शर्त संख्या के कारण, जॉर्डन मानक रूप के लिए मजबूत संख्यात्मक एल्गोरिदम विकसित करना बहुत जटिल हो जाता है, क्योंकि परिणाम में निर्धारित किया जाता है कि क्या दो इजीनमान को समान माना जाता है या नहीं। इसी कारण संख्यात्मक विश्लेषण में जॉर्डन मानक रूप टाल सामान्यतः दिया जाता है; स्थिर शूर अपघटन[15] या छद्म छद्मस्पेक्ट्रम[16] उत्तम विकल्प हैं।
यह भी देखें
- विहित आधार
- कानूनी फॉर्म
- फ्रोबेनियस सामान्य रूप
- जॉर्डन आव्यूह
- जॉर्डन-शेवेल्ली अपघटन
- आव्यूह अपघटन
- मोडल आव्यूह
- अजीब विहित रूप
टिप्पणियाँ
- ↑ Shilov defines the term Jordan canonical form and in a footnote says that Jordan normal form is synonymous. These terms are sometimes shortened to Jordan form. (Shilov) The term Classical canonical form is also sometimes used in the sense of this article. (James & James, 1976)
- ↑ 2.0 2.1 Holt & Rumynin (2009, p. 9)
- ↑ Beauregard & Fraleigh (1973, pp. 270–274)
- ↑ Golub & Van Loan (1996, p. 353)
- ↑ Nering (1970, pp. 113–118)
- ↑ Brechenmacher, "Histoire du théorème de Jordan de la décomposition matricielle (1870-1930). Formes de représentation et méthodes de décomposition", Thesis, 2007
- ↑ Cullen (1966, p. 114)
- ↑ Franklin (1968, p. 122)
- ↑ 9.0 9.1 Horn & Johnson (1985, §3.2.1)
- ↑ Bronson (1970, pp. 189, 194)
- ↑ Roe Goodman and Nolan R. Wallach, Representations and Invariants of Classical Groups, Cambridge UP 1998, Appendix B.1.
- ↑ Horn & Johnson (1985, Theorem 3.4.5)
- ↑ Arnold, Vladimir I, ed. (2004). Arnold's problems. Springer-Verlag Berlin Heidelberg. p. 127. doi:10.1007/b138219. ISBN 978-3-540-20748-1.
- ↑ Peteris Daugulis (2012). "मैट्रिक्स संयुग्मन कक्षा का एक पैरामीट्रिजेशन एफ़िन विमानों के संघ के रूप में सेट होता है". Linear Algebra and Its Applications. 436 (3): 709–721. arXiv:1110.0907. doi:10.1016/j.laa.2011.07.032. S2CID 119649768.
- ↑ See Golub & Van Loan (2014), §7.6.5; or Golub & Wilkinson (1976) for details.
- ↑ See Golub & Van Loan (2014), §7.9
संदर्भ
- Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Co., ISBN 0-395-14017-X
- Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490
- Cullen, Charles G. (1966), Matrices and Linear Transformations, Reading: Addison-Wesley, LCCN 66021267
- Dunford, N.; Schwartz, J. T. (1958), Linear Operators, Part I: General Theory, Interscience
- Finkbeiner II, Daniel T. (1978), Introduction to Matrices and Linear Transformations (3rd ed.), W. H. Freeman and Company
- Franklin, Joel N. (1968), Matrix Theory, Englewood Cliffs: Prentice-Hall, LCCN 68016345
- Golub, Gene H.; Van Loan, Charles F. (1996), Matrix Computations (3rd ed.), Baltimore: Johns Hopkins University Press, ISBN 0-8018-5414-8
- Golub, Gene H.; Wilkinson, J. H. (1976). "Ill-conditioned eigensystems and the computation of the Jordan normal form". SIAM Review. 18 (4): 578–619. doi:10.1137/1018113.
- Holt, Derek; Rumynin, Dmitriy (2009), Algebra I – Advanced Linear Algebra (MA251) Lecture Notes (PDF)
- Horn, Roger A.; Johnson, Charles R. (1985), Matrix Analysis, Cambridge University Press, ISBN 978-0-521-38632-6
- James, Glenn; James, Robert C. (1976), Mathematics Dictionary (2nd ed.), Van Nostrand Reinhold
- MacLane, Saunders; Birkhoff, Garrett (1967), Algebra, Macmillan Publishers
- Michel, Anthony N.; Herget, Charles J. (1993), Applied Algebra and Functional Analysis, Dover Publications
- Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: Wiley, LCCN 76091646
- Shafarevich, I. R.; Remizov, A. O. (2012), Linear Algebra and Geometry, Springer, ISBN 978-3-642-30993-9
- Shilov, Georgi E. (1977), Linear Algebra, Dover Publications
- Jordan Canonical Form article at mathworld.wolfram.com