परिमित सांस्थितिक समष्टि: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(7 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{more footnotes|date=September 2016}}
गणित में '''परिमित [[टोपोलॉजिकल स्पेस|सांस्थितिक समष्टि]]''' एक सांस्थितिक समष्टि है जिसके लिए मूल बिंदु [[सेट (गणित)|समुच्चय]] एक [[परिमित सेट|परिमित समुच्चय]] है अर्थात्, यह एक सांस्थितिक समष्टि है जिसमें सीमित रूप से कई तत्व होते हैं।
गणित में '''परिमित [[टोपोलॉजिकल स्पेस|सांस्थितिक समष्टि]]''' एक सांस्थितिक समष्टि है जिसके लिए अंतर्निहित बिंदु [[सेट (गणित)|समुच्चय]] एक [[परिमित सेट|परिमित समुच्चय]] है। अर्थात्, यह एक सांस्थितिक समष्टि है जिसमें केवल सीमित रूप से कई तत्व होते हैं।


परिमित सांस्थितिक रिक्त समष्टि का उपयोग प्रायः दिलचस्प घटनाओं के उदाहरण या प्रशंसनीय लगने वाले अनुमानों के प्रति उदाहरण प्रदान करने के लिए किया जाता है। [[विलियम थर्स्टन]] ने इस अर्थ में परिमित सांस्थिति के अध्ययन को "एक अजीब विषय कहा है जो विभिन्न प्रकार के प्रश्नों के लिए अच्छी जानकारी दे सकता है"।<ref>{{cite book | last = Thurston  | first = William P. | authorlink = William Thurston |date=April 1994  | title = गणित में प्रमाण और प्रगति पर| journal = [[Bulletin of the American Mathematical Society]]  | volume = 30  | issue = 2  | pages = 161–177  | arxiv = math/9404236 | doi = 10.1090/S0273-0979-1994-00502-6 }}</ref>
परिमित सांस्थितिक रिक्त समष्टि का उपयोग प्रायः मूल घटनाओं के उदाहरण या गणना करने वाले अनुमानों के लिए प्रति उदाहरण प्रदान करने के लिए किया जाता है। [[विलियम थर्स्टन]] ने इस अर्थ में परिमित सांस्थिति के अध्ययन को एक विचित्र विषय कहा है जो विभिन्न प्रकार के प्रश्नों के लिए अपेक्षाकृत अच्छी जानकारी दे सकता है।<ref>{{cite book | last = Thurston  | first = William P. | authorlink = William Thurston |date=April 1994  | title = गणित में प्रमाण और प्रगति पर| journal = [[Bulletin of the American Mathematical Society]]  | volume = 30  | issue = 2  | pages = 161–177  | arxiv = math/9404236 | doi = 10.1090/S0273-0979-1994-00502-6 }}</ref>
==एक सीमित समुच्चय पर सांस्थिति==
==परिमित समुच्चय पर सांस्थिति==
माना कि <math> X </math> एक परिमित समुच्चय है। <math> X  </math> पर एक [[टोपोलॉजी (संरचना)|सांस्थिति]] <math> P(X)  </math> का एक उपसमुच्चय <math> \tau </math> है जो कि <math> X  </math> का पावर समुच्चय है ऐसा है कि
माना कि <math> X </math> एक परिमित समुच्चय है और <math> X  </math> पर एक [[टोपोलॉजी (संरचना)|सांस्थिति]] <math> P(X)  </math> का एक उपसमुच्चय <math> \tau </math> है जो कि <math> X  </math> का घात समुच्चय है जैसे कि,
# <math> \varnothing \in \tau  </math> और <math> X\in \tau  </math>.
# <math> \varnothing \in \tau  </math> और <math> X\in \tau  </math>.
# अगर <math> U, V \in \tau  </math> तब <math> U \cup V \in \tau  </math>.
# यदि <math> U, V \in \tau  </math> तब <math> U \cup V \in \tau  </math>.
# अगर <math> U, V \in \tau  </math> तब <math> U \cap V \in \tau  </math>.
# यदि <math> U, V \in \tau  </math> तब <math> U \cap V \in \tau  </math>.


दूसरे शब्दों में, <math> P(X) </math> का एक उपसमुच्चय <math> \tau </math> एक सांस्थिति है यदि <math> \tau </math> में <math> \varnothing  </math> और <math>  X </math> दोनों सम्मिलित हैं और अपेक्षाकृत रूप से यूनियनों और [[प्रतिच्छेदन (सेट सिद्धांत)|समुच्चय सिद्धांत]] के तहत बंद है। <math> \tau  </math> के तत्वों को [[ खुला सेट |विवृत]] समुच्चय कहा जाता है।सांस्थितिक रिक्त समष्टि के सामान्य विवरण के लिए आवश्यक है कि एक सांस्थिति को विवृत समुच्चयों के मनमाने (परिमित या अनंत) संघों के तहत बंद किया जाए, लेकिन केवल सीमित रूप से कई विवृत समुच्चयों के प्रतिच्छेदन के तहत। यहाँ वह भेद अनावश्यक है। चूँकि किसी परिमित समुच्चय का घात समुच्चय परिमित होता है, इसलिए केवल परिमित रूप से अनेक विवृत समुच्चय हो सकते हैं (और केवल परिमित रूप से अनेक बंद समुच्चय भी हो सकते हैं)।
दूसरे शब्दों में <math> P(X) </math> का उपसमुच्चय <math> \tau </math> एक सांस्थिति है यदि <math> \tau </math> में <math> \varnothing  </math> और <math>  X </math> दोनों सम्मिलित हैं और अपेक्षाकृत रूप से यूनियनों और [[प्रतिच्छेदन (सेट सिद्धांत)|समुच्चय सिद्धांत]] के अंतर्गत विवृत है तब <math> \tau  </math> के तत्वों को [[ खुला सेट |विवृत]] समुच्चय कहा जाता है। सांस्थितिक रिक्त समष्टि के सामान्य विवरण के लिए आवश्यक है क्योकि एक सांस्थिति को विवृत समुच्चयों के अपेक्षाकृत परिमित या अनंत समुच्चय के अंतर्गत विवृत किया जा सकता है लेकिन केवल सीमित रूप से कई विवृत समुच्चयों के प्रतिच्छेदन के अंतर्गत यहाँ वह समुच्चय अनावश्यक है चूँकि किसी परिमित समुच्चय का घात समुच्चय परिमित होता है। इसलिए केवल परिमित रूप से अनेक विवृत समुच्चय हो सकते हैं और केवल परिमित रूप से अनेक विवृत समुच्चय भी हो सकते हैं।


एक परिमित समुच्चय पर एक सांस्थिति को <math> (P(X), \subset)  </math> के एक उप-जाल के रूप में भी सोचा जा सकता है जिसमें निचला तत्व <math>  \varnothing </math> और शीर्ष तत्व <math> X  </math> दोनों सम्मिलित हैं।
परिमित समुच्चय पर एक सांस्थिति को <math> (P(X), \subset)  </math> के एक उपसमुच्चय के रूप में भी जाना जा सकता है, जिसमें निचला तत्व <math>  \varnothing </math> और शीर्ष तत्व <math> X  </math> दोनों सम्मिलित होते हैं।


==उदाहरण==
==उदाहरण==
Line 17: Line 16:
===0 या 1 अंक===
===0 या 1 अंक===


[[खाली सेट|रिक्त समुच्चय]] ∅ पर एक अद्वितीय सांस्थिति है। एकमात्र विवृत समुच्चय रिक्त है। वास्तव में, यह ∅ का एकमात्र उपसमुच्चय है।
[[खाली सेट|रिक्त समुच्चय]] ∅ पर एक अद्वितीय सांस्थिति है। यह एकमात्र विवृत रिक्त समुच्चय है वास्तव में यह ∅ का एकमात्र उपसमुच्चय है। इसी प्रकार [[सिंगलटन सेट|सिंगलटन समुच्चय]] {a} पर एक अद्वितीय सांस्थिति है जहां विवृत समुच्चय {∅} और {a} हैं यह सांस्थिति असतत और [[तुच्छ टोपोलॉजी|तुच्छ]] दोनों है। हालांकि कुछ सिद्धांतों में इसे एक असतत समष्टि के रूप में भी जाना जाता है क्योंकि यह परिमित असतत रिक्त समष्टि के समुच्चय के साथ अधिक गुण साझा करता है।


इसी तरह, [[सिंगलटन सेट|सिंगलटन समुच्चय]] {ए} पर एक अद्वितीय सांस्थिति है। यहां विवृत समुच्चय ∅ और {a} हैं। यह सांस्थिति असतत और  [[तुच्छ टोपोलॉजी|तुच्छ सांस्थिति]] दोनों है, हालांकि कुछ मायनों में इसे एक असतत समष्टि के रूप में सोचना बेहतर है क्योंकि यह परिमित असतत रिक्त समष्टि के परिवार के साथ अधिक गुण साझा करता है।
किसी भी [[टोपोलॉजिकल रिक्त स्थान की श्रेणी|सांस्थितिक रिक्त समष्टि]] X के लिए ∅ से X तक एक अद्वितीय नियमित फलन होता है, अर्थात् [[खाली फ़ंक्शन|रिक्त फलन]] <math>  X </math> से सिंगलटन समष्टि {a} तक एक अद्वितीय नियमित फलन भी है अर्थात् {a} के लिए नियमित फलन श्रेणी सिद्धांत की भाषा में रिक्त समष्टि सांस्थितिक समष्टि की श्रेणी में एक प्रारंभिक फलन के रूप में कार्य करता है जबकि सिंगलटन समष्टि एक टर्मिनल फलन के रूप में कार्य करती है।
 
किसी भी [[टोपोलॉजिकल रिक्त स्थान की श्रेणी|सांस्थितिक रिक्त]] X के लिए ∅ से X तक एक अद्वितीय निरंतर फलन होता है, अर्थात् [[खाली फ़ंक्शन|रिक्त फलन]] <math>  X </math> से सिंगलटन समष्टि {} तक एक अद्वितीय निरंतर फलन भी है, अर्थात् के लिए निरंतर फलन। श्रेणी सिद्धांत की भाषा में रिक्त समष्टि सांस्थितिक समष्टि की श्रेणी में एक प्रारंभिक वस्तु के रूप में कार्य करता है जबकि सिंगलटन समष्टि एक टर्मिनल ऑब्जेक्ट के रूप में कार्य करता है।


===2 अंक===
===2 अंक===


मान लीजिए कि X = {a,b} 2 तत्वों वाला एक समुच्चय है। X पर चार अलग-अलग सांस्थिति हैं:
मान लीजिए कि X = {a,b}, 2 तत्वों वाला एक समुच्चय है जिसकी X पर चार अलग-अलग सांस्थितिकी हैं:
#{∅, {a,b<nowiki>}}</nowiki> (तुच्छ सांस्थिति)
#{∅, {a,b<nowiki>}}</nowiki> (तुच्छ सांस्थिति)
#{∅, {a}, {a,b<nowiki>}}</nowiki>
#{∅, {a}, {a,b<nowiki>}}</nowiki>
Line 31: Line 28:
#{∅, {a}, {b}, {a,b<nowiki>}}</nowiki> ([[असतत टोपोलॉजी|असतत सांस्थिति]])
#{∅, {a}, {b}, {a,b<nowiki>}}</nowiki> ([[असतत टोपोलॉजी|असतत सांस्थिति]])


उपरोक्त दूसरी और तीसरी सांस्थिति को आसानी से होमियोमोर्फिक के रूप में देखा जा सकता है। X से स्वयं तक का फलन जो a और b को स्वैप करता है, एक होमोमोर्फिज्म है। इनमें से एक के लिए एक सांस्थितिक समष्टि होमोमोर्फिक को सिएरपिंस्की समष्टि कहा जाता है। तो, वास्तव में, दो-बिंदु समुच्चय पर केवल तीन असमान सांस्थिति हैं: तुच्छ एक, असतत एक, और सिएरपिंस्की सांस्थिति।
उपरोक्त दूसरी और तीसरी सांस्थिति को आसानी से होमियोमोर्फिक के रूप में देखा जा सकता है। X का एक फलन जो a और b को स्वैप करता है वह एक होमोमोर्फिज्म फलन है। इनमें से {a} के लिए {a} सांस्थितिक समष्टि होमोमोर्फिक को सिएरपिंस्की समष्टि कहा जाता है। वास्तव में दो-बिंदु समुच्चय पर केवल तीन असमान तुच्छ, असतत और सिएरपिंस्की सांस्थितिकी हैं।


सिएरपिंस्की समष्टि {''a'',''b''} पर {''b''} ओपन के साथ विशेषज्ञता प्रीऑर्डर ''a'' ≤ ''a'', ''b'' ≤ ''b'' और ''a'' ≤ ''b'' द्वारा दिया गया है।
सिएरपिंस्की समष्टि {''a'',''b''} को {''b''} विवृत समुच्चय के साथ विशेष अनुक्रम ''a'' ≤ ''a'', ''b'' ≤ ''b'' और ''a'' ≤ ''b'' द्वारा दिया गया है।


===3 अंक===
===3 अंक===


मान लीजिए कि X = {a,b,c} तीन तत्वों वाला एक समुच्चय है। X पर 29 अलग-अलग सांस्थिति हैं लेकिन केवल 9 असमान सांस्थिति हैं:
मान लीजिए कि X = {a,b,c} तीन तत्वों वाला एक समुच्चय है जिसकी X पर 29 अलग-अलग सांस्थितिकी हैं लेकिन केवल 9 असमान सांस्थिति हैं:


# {∅, {''a'',''b'',''c''<nowiki>}}</nowiki>
# {∅, {''a'',''b'',''c''<nowiki>}}</nowiki>
Line 49: Line 46:
# {∅, {''a''}, {''b''}, {''c''}, {''a'',''b''}, {''a'',''c''}, {''b'',''c''}, {''a'',''b'',''c''<nowiki>}} (T</nowiki><sub>0</sub>)
# {∅, {''a''}, {''b''}, {''c''}, {''a'',''b''}, {''a'',''c''}, {''b'',''c''}, {''a'',''b'',''c''<nowiki>}} (T</nowiki><sub>0</sub>)


इनमें से अंतिम 5 सभी T<sub>0</sub> हैं। पहला तुच्छ है, जबकि 2, 3 और 4 में बिंदु a और b स्थलीय रूप से अप्रभेद्य हैं।
इनमें से अंतिम 5 सभी T<sub>0</sub> हैं। पहली सांस्थिति तुच्छ है, जबकि 2, 3 और 4 में बिंदु a और b स्थलीय रूप से अज्ञात हैं।


===4 अंक===
===4 अंक===


मान लीजिए कि X = {a,b,c,d} 4 तत्वों वाला एक समुच्चय है। एक्स पर 355 अलग-अलग सांस्थिति हैं लेकिन केवल 33 असमान सांस्थिति हैं:  
मान लीजिए कि X = {a,b,c,d} 4 तत्वों वाला एक समुच्चय है, जिसमे X पर 355 अलग-अलग सांस्थितिकी हैं लेकिन केवल 33 असमान सांस्थिति हैं:  


# {∅, {''a'', ''b'', ''c'', ''d''<nowiki>}}</nowiki>
# {∅, {''a'', ''b'', ''c'', ''d''<nowiki>}}</nowiki>
Line 93: Line 90:
==गुण==
==गुण==


===विशेषज्ञता पूर्वआदेश===
===विशेषज्ञता पूर्व-अनुक्रम===


एक परिमित समुच्चय
एक परिमित समुच्चय X पर पूर्व-अनुक्रम के साथ विभिन्न समानताए हैं। ध्यान दें कि X पर पूर्व-अनुक्रम X एक द्विआधारी संबंध है जो निजवाचक और सकर्मक (गणित) है। एक आवश्यक रूप से सीमित सांस्थितिक समष्टि X को देखते हुए हम X पर [[पूर्व आदेश|पूर्व-अनुक्रम]] को परिभाषित कर सकते हैं:
:x ≤ y यदि x ∈ cl{y}
जहां cl{y} सिंगलटन समुच्चय {y} के विवृत होने को दर्शाता है। इस पूर्व-अनुक्रम को X पर [[विशेषज्ञता प्रीऑर्डर|विशेषज्ञता पूर्व-अनुक्रम]] कहा जाता है। X का प्रत्येक विवृत समुच्चय U के संबंध में एक ऊपरी समुच्चय ''X'' होगा (अर्थात यदि x ∈ U और x ≤ y तो y ∈ U) यदि X परिमित समुच्चय है तो इसका विपरीत भी सत्य है। इसलिए परिमित समष्टि के लिए प्रत्येक ऊपरी समुच्चय X में एक विवृत समुच्चय है।


एक (आवश्यक रूप से सीमित नहीं) सांस्थितिक समष्टि एक्स को देखते हुए हम एक्स पर [[पूर्व आदेश]] को परिभाषित कर सकते हैं
माना कि दूसरी दिशा में जाने पर (X, ≤) एक पूर्व-आदेशित समुच्चय है। विवृत समुच्चयों को ≤ के संबंध में ऊपरी समुच्चय मानकर X पर एक सांस्थिति τ को परिभाषित करें। तब संबंध (X, τ) का विशेषज्ञता पूर्वक्रम होगा। इस प्रकार परिभाषित सांस्थिति को ≤ द्वारा निर्धारित [[अलेक्जेंडर टोपोलॉजी|अलेक्जेंडर सांस्थिति]] कहा जाता है।
:x y यदि और केवल यदि x ∈ cl{y}
जहां cl{y} सिंगलटन समुच्चय {y} के बंद होने को दर्शाता है। इस प्रीऑर्डर को एक्स पर [[विशेषज्ञता प्रीऑर्डर]] कहा जाता है। एक्स का प्रत्येक विवृत समुच्चय यू ≤ के संबंध में एक ऊपरी समुच्चय होगा (यानी यदि x ∈ U और x ≤ y तो y ∈ U)। अब यदि X परिमित है तो इसका विपरीत भी सत्य है, प्रत्येक ऊपरी समुच्चय X में विवृत है। इसलिए परिमित समष्टि के लिए


दूसरी दिशा में जाने पर, मान लीजिए (X, ≤) एक पूर्व-आदेशित समुच्चय है। विवृत समुच्चयों को ≤ के संबंध में ऊपरी समुच्चय मानकर एक्स पर एक सांस्थिति τ को परिभाषित करें। तब संबंध ≤ (X, τ) का विशेषज्ञता पूर्वक्रम होगा। इस प्रकार परिभाषित सांस्थिति को ≤ द्वारा निर्धारित [[अलेक्जेंडर टोपोलॉजी|अलेक्जेंडर सांस्थिति]] कहा जाता है।
पूर्व-अनुक्रम और परिमित सांस्थिति के बीच समानता की व्याख्या बिरखॉफ के प्रतिनिधित्व प्रमेय के एक संस्करण के रूप में की जा सकती है, जो परिमित वितरण समष्टि (सांस्थिति के विवृत समुच्चय) और आंशिक अनुक्रम (पूर्व-अनुक्रम के समतुल्य वर्गों का आंशिक क्रम) के बीच एक समानता है। यह समुच्चय रिक्त समष्टि के एक बड़े वर्ग के लिए भी कार्य करता है जिसे परिमित रूप से उत्पन्न समष्टि कहा जाता है। अंतिम रूप से उत्पन्न समष्टि को उन समष्टि के रूप में वर्णित किया जा सकता है जिनमें विवृत समुच्चयों का एक अपेक्षाकृत प्रतिच्छेदन विवृत है। परिमित सांस्थितिक रिक्त समष्टि परिमित रूप से उत्पन्न रिक्त समष्टि का एक विशेष वर्ग है।
 
प्रीऑर्डर और परिमित सांस्थिति के बीच समानता की व्याख्या बिरखॉफ के प्रतिनिधित्व प्रमेय के एक संस्करण के रूप में की जा सकती है, जो परिमित वितरण जाली (सांस्थिति के विवृत समुच्चय की जाली) और आंशिक ऑर्डर (प्रीऑर्डर के समतुल्य वर्गों का आंशिक क्रम) के बीच एक समानता है। यह पत्राचार रिक्त समष्टि के एक बड़े वर्ग के लिए भी काम करता है जिसे परिमित रूप से उत्पन्न समष्टि कहा जाता है। अंतिम रूप से उत्पन्न समष्टि को उन समष्टि के रूप में वर्णित किया जा सकता है जिनमें विवृत समुच्चयों का एक मनमाना प्रतिच्छेदन विवृत है। परिमित सांस्थितिक रिक्त समष्टि परिमित रूप से उत्पन्न रिक्त समष्टि का एक विशेष वर्ग है।


===संक्षिप्तता और गणनीयता===
===संक्षिप्तता और गणनीयता===


प्रत्येक परिमित सांस्थितिक समष्टि सघन होता है क्योंकि कोई भी विवृत आवरण पहले से ही परिमित होना चाहिए। वास्तव में, सघन समष्टि को प्रायः परिमित समष्टि के सामान्यीकरण के रूप में सोचा जाता है क्योंकि उनमें कई गुण समान होते हैं।
प्रत्येक परिमित सांस्थितिक समष्टि विवृत होती है क्योंकि कोई भी विवृत समुच्चय पहले से ही परिमित होना चाहिए। वास्तव में विवृत समष्टि को प्रायः परिमित समष्टि के सामान्यीकरण के रूप में जाना जाता है क्योंकि उनमें कई गुण समान होते हैं। प्रत्येक परिमित सांस्थितिक समष्टि सीमित रूप से कई विवृत समुच्चय और वियोज्य समुच्चय के रूप मे द्वितीय-गणनीय भी है।
 
प्रत्येक परिमित सांस्थितिक समष्टि द्वितीय-गणनीय भी है (केवल सीमित रूप से कई विवृत समुच्चय हैं) और वियोज्य (क्योंकि समष्टि स्वयं गणनीय है)।
 
===पृथक्करण अभिगृहीत===
 
यदि एक परिमित सांस्थितिक समष्टि T1 है (विशेष रूप से, यदि यह हॉसडॉर्फ है) तो यह वास्तव में, अलग होना चाहिए। ऐसा इसलिए है क्योंकि एक बिंदु का पूरक बंद बिंदुओं का एक सीमित संघ है और इसलिए बंद है। इसका तात्पर्य यह है कि प्रत्येक बिंदु विवृत होना चाहिए।
 
इसलिए, कोई भी परिमित सांस्थितिक समष्टि जो असतत नहीं है, वह T<sub>1</sub>, हॉसडॉर्फ या कुछ भी मजबूत नहीं हो सकता है।


हालाँकि, एक गैर-असतत परिमित समष्टि का T<sub>0</sub> होना संभव है। सामान्य तौर पर, दो बिंदु x और y सांस्थितिक रूप से अप्रभेद्य हैं यदि और केवल यदि x ≤ y और y ≤ x, जहां ≤ X पर विशेषज्ञता प्रीऑर्डर है। यह इस प्रकार है कि एक समष्टि X T<sub>0</sub> है यदि और केवल यदि X पर विशेषज्ञता प्रीऑर्डर ≤ है आंशिक आदेश है. एक सीमित समुच्चय पर कई आंशिक ऑर्डर होते हैं। प्रत्येक एक अद्वितीय T<sub>0</sub> सांस्थिति को परिभाषित करता है।
===पृथक्करण सिद्धांत===


इसी प्रकार, एक समष्टि R<sub>0</sub> है यदि और केवल यदि विशेषज्ञता प्रीऑर्डर एक तुल्यता संबंध है। किसी परिमित समुच्चय X पर किसी तुल्यता संबंध को देखते हुए संबद्ध सांस्थिति, चूँकि विभाजन सांस्थिति स्यूडोमेट्रिज़ेबल है, एक परिमित समष्टि R<sub>0</sub> है यदि और केवल यदि यह पूरी तरह से नियमित है।
परिमित सांस्थितिक समष्टि T<sub>1</sub> विशेष रूप से यदि यह हॉसडॉर्फ समुच्चय है तो यह वास्तव में अलग होना चाहिए। ऐसा इसलिए है क्योंकि एक बिंदु का पूरक विवृत बिंदुओं का एक सीमित संघ है और इसलिए विवृत है। इसका तात्पर्य यह है कि प्रत्येक बिंदु विवृत होना चाहिए। इसलिए कोई भी परिमित सांस्थितिक समष्टि जो असतत नहीं है वह T<sub>1</sub> हॉसडॉर्फ या समिश्र समष्टि नहीं हो सकती है।


गैर-असतत परिमित समष्टि भी [[सामान्य स्थान|सामान्य]] हो सकते हैं। किसी भी परिमित समुच्चय पर [[बहिष्कृत बिंदु टोपोलॉजी|बहिष्कृत बिंदु सांस्थिति]] एक पूरी तरह से सामान्य T<sub>0</sub> समष्टि है जो गैर-अलग नहीं है।
हालाँकि एक गैर-असतत परिमित समष्टि का T<sub>0</sub> होना संभव है। सामान्यतः दो बिंदु x और y सांस्थितिक रूप से अज्ञात हैं यदि और केवल यदि x ≤ y और y ≤ x, जहां ≤ X पर विशेषज्ञता पूर्व-अनुक्रम है। यह इस प्रकार है कि एक समष्टि X T<sub>0</sub> है यदि और केवल यदि X पर विशेषज्ञता पूर्व-अनुक्रम ≤ है तब आंशिक अनुक्रम मे सीमित समुच्चय पर कई आंशिकअनुक्रम होते हैं जो प्रत्येक अद्वितीय T<sub>0</sub> सांस्थिति को परिभाषित करते हैं।


===कनेक्टिविटी===
इसी प्रकार एक समष्टि R<sub>0</sub> है यदि और केवल यदि विशेषज्ञता पूर्व-अनुक्रम एक तुल्यता संबंध है तब किसी भी परिमित समुच्चय X पर किसी भी तुल्यता संबंध को देखते हुए संबद्ध सांस्थिति विभाजन सांस्थिति छद्म होती है। यह एक परिमित समष्टि R<sub>0</sub> है यदि और केवल यदि यह पूरी तरह से नियमित है। गैर-असतत परिमित समष्टि भी [[सामान्य स्थान|सामान्य]] हो सकती हैं यदि किसी भी परिमित समुच्चय पर [[बहिष्कृत बिंदु टोपोलॉजी|बहिष्कृत बिंदु सांस्थिति]] एक पूरी तरह से सामान्य T<sub>0</sub> समष्टि है जो गैर-समष्टि नहीं है।


एक परिमित समष्टि एक परिमित समष्टि X की कनेक्टिविटी को संबंधित ग्राफ Γ की कनेक्टिविटी (ग्राफ़ सिद्धांत) पर विचार करके समझा जा सकता है।
===सह-संबद्धता===


किसी भी सांस्थितिक समष्टि में, यदि x ≤ y है तो x से y तक एक पथ है। t > 0 के लिए कोई आसानी से f(0) = x और f(t) = y ले सकता है। यह सत्यापित करना आसान है कि f निरंतर है। यह इस प्रकार है कि एक परिमित सांस्थितिक समष्टि के पथ घटक संबंधित ग्राफ़ के ठीक (कमजोर रूप से) जुड़े हुए घटक हैं। अर्थात्, x से y तक एक सांस्थितिक पथ है यदि और केवल यदि Γ के संगत शीर्षों के बीच कोई अप्रत्यक्ष पथ है।
परिमित समष्टि X की संबद्धता को संबंधित आरेख Γ की संबद्धता (आरेख सिद्धांत) पर विचार करके समझा जा सकता है।


प्रत्येक परिमित समष्टि समुच्चय के बाद से [[स्थानीय रूप से पथ से जुड़ा हुआ|समष्टिीय रूप से पथ से जुड़ा हुआ]] है
किसी भी सांस्थितिक समष्टि में यदि x ≤ y है तो x से y तक एक पथ है जो t > 0 के लिए आसानी से f(0) = x और f(t) = y मान ले सकता है। यह सत्यापित करना आसान है कि f नियमित है। यह इस प्रकार है कि एक परिमित सांस्थितिक समष्टि के फलन से संबंधित आरेख के शुद्धता से संबद्ध हैं। अर्थात्, x से y तक एक सांस्थितिक पथ है यदि और केवल यदि Γ के संगत शीर्षों के बीच कोई अप्रत्यक्ष पथ नही है। प्रत्येक परिमित समष्टि समुच्चय के बाद से [[स्थानीय रूप से पथ से जुड़ा हुआ|संबद्ध समष्टि]] है:
:<math>\mathop{\uarr}x = \{y \in X : x \leq y\}</math>
:<math>\mathop{\uarr}x = \{y \in X : x \leq y\}</math>
x का एक पथ-जुड़ा हुआ विवृत पड़ोस है जो हर दूसरे पड़ोस में समाहित है। दूसरे शब्दों में, यह एकल समुच्चय x पर एक समष्टिीय आधार बनाता है।
विवृत समुच्चय x जो प्रत्येक दूसरी निकटम समष्टि में समाहित है। दूसरे शब्दों में, यह एकल समुच्चय x एक समष्टि आधार है। इसलिए एक परिमित समष्टि से संबद्ध है यह प्रत्येक घटक X में विवृत और सवृत दोनों है। परिमित समष्टि में समिश्र संबद्धता गुण हो सकते हैं। एक परिमित समष्टि X है:
 
*[[हाइपरकनेक्टेड स्पेस|हाइपरकनेक्टेड समष्टि]] - यदि जब विशेषज्ञता पूर्व-अनुक्रम के संबंध में कोई सबसे बड़ा तत्व होता है यह एक ऐसा तत्व होता है जिसकी समापन संपूर्ण समष्टि X है।
इसलिए, एक परिमित समष्टि तभी जुड़ा होता है जब वह पथ से जुड़ा हो। जुड़े हुए घटक बिल्कुल पथ घटक हैं। ऐसा प्रत्येक घटक X में बंद और विवृत दोनों है।
*[[अल्ट्राकनेक्टेड स्पेस|अल्ट्राकनेक्टेड समष्टि]] - यदि जब विशेषज्ञता पूर्व-अनुक्रम के संबंध में कम से कम तत्व होता है यह एक ऐसा तत्व होता है जिसकी एकमात्र निकटतम संपूर्ण समष्टि X है।
 
उदाहरण के लिए एक परिमित समष्टि पर [[विशेष बिंदु टोपोलॉजी|विशेष बिंदु सांस्थिति]] हाइपरकनेक्टेड है जबकि बहिष्कृत बिंदु सांस्थिति अल्ट्राकनेक्टेड है इसीलिए दोनों सिएरपिंस्की समष्टि है।
परिमित समष्टि में मजबूत कनेक्टिविटी गुण हो सकते हैं। एक परिमित समष्टि X है
*[[हाइपरकनेक्टेड स्पेस|हाइपरकनेक्टेड समष्टि]] यदि और केवल तभी जब विशेषज्ञता प्रीऑर्डर के संबंध में कोई सबसे बड़ा तत्व हो। यह एक ऐसा तत्व है जिसका समापन संपूर्ण समष्टि X है।
*[[अल्ट्राकनेक्टेड स्पेस|अल्ट्राकनेक्टेड समष्टि]] यदि और केवल तभी जब विशेषज्ञता प्रीऑर्डर के संबंध में कम से कम तत्व हो। यह एक ऐसा तत्व है जिसका एकमात्र पड़ोस संपूर्ण अंतरिक्ष X है।
उदाहरण के लिए, एक परिमित समष्टि पर [[विशेष बिंदु टोपोलॉजी|विशेष बिंदु सांस्थिति]] हाइपरकनेक्टेड है जबकि बहिष्कृत बिंदु सांस्थिति अल्ट्राकनेक्टेड है। सिएरपिंस्की समष्टि दोनों है।


===अतिरिक्त संरचना===
===अतिरिक्त संरचना===


एक परिमित सांस्थितिक समष्टि स्यूडोमेट्रिज़ेबल है यदि और केवल यदि यह R0 है। इस मामले में, एक संभावित छद्ममिति द्वारा दिया गया है
परिमित सांस्थितिक समष्टि छद्म समष्टि है यदि और केवल यदि यह R<sub>0</sub> है। इस स्थिति में एक संभावित छद्ममिति द्वारा दिया गया है:
:<math>d(x,y) = \begin{cases}0 & x\equiv y \\ 1 & x\not\equiv y\end{cases}</math>
:<math>d(x,y) = \begin{cases}0 & x\equiv y \\ 1 & x\not\equiv y\end{cases}</math>
जहां x ≡ y का अर्थ है x और y सांस्थितिक रूप से अप्रभेद्य हैं। एक परिमित सांस्थितिक समष्टि मेट्रिज़ेबल है यदि और केवल यदि यह असतत है।
जहां x ≡ y का अर्थ है x और y सांस्थितिक रूप से अप्रभेद्य हैं। एक परिमित सांस्थितिक समष्टि मेट्रिज़ेबल है यदि और केवल यदि यह असतत है। इसी प्रकार एक सांस्थितिक समष्टि एकरूपता योग्य है यदि और केवल यदि यह R<sub>0</sub> है। एक समान संरचना उपरोक्त छद्ममिति से प्रेरित छद्ममितीय एकरूपता हो सकती है।
 
इसी तरह, एक सांस्थितिक समष्टि एकरूपता योग्य है यदि और केवल यदि यह R<sub>0</sub> है। एक समान संरचना उपरोक्त छद्ममिति से प्रेरित छद्ममितीय एकरूपता होगी।


===बीजगणितीय सांस्थिति===
===बीजगणितीय सांस्थिति===


शायद आश्चर्यजनक रूप से, गैर-तुच्छ मौलिक समूहों के साथ सीमित सांस्थितिक समष्टि हैं। एक सरल उदाहरण छद्म वृत्त है, जो अंतरिक्ष X है जिसमें चार बिंदु हैं, जिनमें से दो विवृत हैं और जिनमें से दो बंद हैं। यूनिट सर्कल S<sub>1</sub> से इससे यह निष्कर्ष निकलता है कि छद्मवृत्त का मूल समूह अनंत चक्रीय है।
सामान्यतः बीजगणितीय सांस्थिति गैर-तुच्छ मौलिक समूहों के साथ सीमित सांस्थितिक समष्टि हैं इसका एक सरल उदाहरण छद्म वृत्त है, जो समष्टि X है जिसमें चार बिंदु हैं, जिनमें से दो विवृत हैं और जिनमें से दो सवृत हैं। इकाई वृत्त S<sub>1</sub> से यह निष्कर्ष निकलता है कि छद्मवृत्त का मूल समूह अनंत चक्रीय होता है।


अधिक आम तौर पर यह दिखाया गया है कि किसी भी परिमित अमूर्त सरल जटिल K के लिए, एक परिमित सांस्थितिक समष्टि XK और एक कमजोर होमोटॉपी तुल्यता f: |K| → XK जहां |K| K का ज्यामितीय बोध है। यह इस प्रकार है कि |K| के समरूप समूह और XK समरूपी हैं। वास्तव में, XK के अंतर्निहित समुच्चय को K ही माना जा सकता है, जिसमें सांस्थिति समावेशन आंशिक क्रम से जुड़ी है।
अधिक सामान्यतः यह दिखाया गया है कि किसी भी परिमित अमूर्त सरल समिश्र K के लिए एक परिमित सांस्थितिक समष्टि X<sub>K</sub> और दुर्बल होमोटॉपी तुल्यता f: |K| → X<sub>K</sub> जहां |K| का ज्यामितीय बोध है। यह इस प्रकार है कि |K| के समरूप समूह और X<sub>K</sub> के समरूपी हैं। वास्तव में, X<sub>K</sub> के अंतर्निहित समुच्चय को K ही माना जा सकता है, जिसमें सांस्थिति समावेशन आंशिक क्रम से संबद्ध होता है।


==एक सीमित समुच्चय पर सांस्थिति की संख्या==
==सीमित समुच्चय पर सांस्थिति की संख्या==


जैसा कि ऊपर चर्चा की गई है, एक सीमित समुच्चय पर सांस्थिति समुच्चय पर प्रीऑर्डर के साथ एक-से-एक पत्राचार में हैं, और टी0 सांस्थिति आंशिक ऑर्डर के साथ एक-से-एक पत्राचार में हैं। इसलिए, एक सीमित समुच्चय पर सांस्थिति की संख्या प्रीऑर्डर की संख्या के बराबर है और T<sub>0</sub> सांस्थिति की संख्या आंशिक ऑर्डर की संख्या के बराबर है।
जैसा कि ऊपर चर्चा की गई है एक सीमित समुच्चय पर सांस्थिति समुच्चय पूर्व-अनुक्रम के साथ संबद्ध हैं और T<sub>0</sub> सांस्थिति आंशिक अनुक्रम के साथ संबद्ध हैं। इसलिए एक सीमित समुच्चय पर सांस्थिति की संख्या पूर्व-अनुक्रम की संख्या के बराबर है और T<sub>0</sub> सांस्थिति की संख्या आंशिक अनुक्रम की संख्या के बराबर है।


नीचे दी गई तालिका n तत्वों वाले समुच्चय पर विशिष्ट (T<sub>0</sub>) सांस्थिति की संख्या सूचीबद्ध करती है। यह असमान (अर्थात गैर-होमियोमोर्फिक) सांस्थिति की संख्या को भी सूचीबद्ध करता है।
नीचे दी गई तालिका n तत्वों वाले समुच्चय पर विशिष्ट (T<sub>0</sub>) सांस्थिति की संख्या सूचीबद्ध करती है। यह असमान (अर्थात गैर-होमियोमोर्फिक) सांस्थिति की संख्या को भी सूचीबद्ध करती है।


{|class=wikitable style="margin: auto; text-align:right;"
{|class=wikitable style="margin: auto; text-align:right;"
|+style="margin-bottom:1ex;"| n अंक वाले समुच्चय पर सांस्थिति की संख्या
|+style="margin-bottom:1ex;"| n अंक वाले समुच्चय पर सांस्थिति की संख्या
!''n''!!अलग
!''n''!!विशिष्ट
टोपोलोजी
सांस्थिति
!विशिष्ट  
!विशिष्ट  


Line 210: Line 191:
| [[OEIS:A000798|A000798]] || [[OEIS:A001035|A001035]] || [[OEIS:A001930|A001930]] || [[OEIS:A000112|A000112]]
| [[OEIS:A000798|A000798]] || [[OEIS:A001035|A001035]] || [[OEIS:A001930|A001930]] || [[OEIS:A000112|A000112]]
|}
|}
मान लीजिए T(n) n बिंदुओं वाले समुच्चय पर अलग-अलग सांस्थिति की संख्या को दर्शाता है। मनमाना n के लिए T(n) की गणना करने का कोई ज्ञात सरल सूत्र नहीं है। [[पूर्णांक अनुक्रमों का ऑनलाइन विश्वकोश]] वर्तमान में n ≤ 18 के लिए T(n) को सूचीबद्ध करता है।
माना कि T(n), n बिंदुओं वाले समुच्चय पर अलग-अलग सांस्थिति की संख्या को दर्शाता है अपेक्षाकृत बिंदु n के लिए T(n) की गणना करने का कोई ज्ञात सरल सूत्र नहीं है। [[पूर्णांक अनुक्रमों का ऑनलाइन विश्वकोश]] वर्तमान में n ≤ 18 के लिए T(n) को सूचीबद्ध करता है।


N बिंदुओं वाले समुच्चय पर अलग-अलग T<sub>0</sub> सांस्थिति की संख्या, जिसे T<sub>0</sub>(n) दर्शाया गया है, सूत्र द्वारा T(n) से संबंधित है
N बिंदुओं वाले समुच्चय पर अलग-अलग T<sub>0</sub> सांस्थिति की संख्या, जिसे T<sub>0</sub>(n) द्वारा दर्शाया गया है निम्नलिखित सूत्र T(n) से संबंधित है:
:<math>T(n) = \sum_{k=0}^{n}S(n,k)\,T_0(k)</math>
:<math>T(n) = \sum_{k=0}^{n}S(n,k)\,T_0(k)</math>
जहां S(n,k) दूसरे प्रकार की स्टर्लिंग संख्या को दर्शाता है।
जहां S(n,k) दूसरे प्रकार की स्टर्लिंग संख्या को दर्शाता है।
Line 219: Line 200:


*[[परिमित ज्यामिति]]
*[[परिमित ज्यामिति]]
*[[परिमित मीट्रिक स्थान|परिमित मीट्रिक समष्टि]]
*[[परिमित मीट्रिक स्थान|परिमित आव्यूह समष्टि]]
*[[टोपोलॉजिकल कॉम्बिनेटरिक्स|सांस्थितिक कॉम्बिनेटरिक्स]]
*[[टोपोलॉजिकल कॉम्बिनेटरिक्स|सांस्थितिक साहचर्य]]


==संदर्भ==
==संदर्भ==
Line 254: Line 235:
==बाहरी संबंध==
==बाहरी संबंध==
*{{cite web |url=http://www.math.uchicago.edu/~may/MISC/FiniteSpaces.pdf |title=Notes and reading materials on finite topological spaces |first=J.P. |last=May |date=2003 |work=Notes for REU }}
*{{cite web |url=http://www.math.uchicago.edu/~may/MISC/FiniteSpaces.pdf |title=Notes and reading materials on finite topological spaces |first=J.P. |last=May |date=2003 |work=Notes for REU }}
[[Category: टोपोलॉजिकल रिक्त स्थान]] [[Category: साहचर्य]]


[[Category: Machine Translated Page]]
[[Category:All articles lacking in-text citations]]
[[Category:Articles lacking in-text citations from September 2016]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Created On 08/07/2023]]
[[Category:Created On 08/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:टोपोलॉजिकल रिक्त स्थान]]
[[Category:साहचर्य]]

Latest revision as of 15:46, 30 August 2023

गणित में परिमित सांस्थितिक समष्टि एक सांस्थितिक समष्टि है जिसके लिए मूल बिंदु समुच्चय एक परिमित समुच्चय है अर्थात्, यह एक सांस्थितिक समष्टि है जिसमें सीमित रूप से कई तत्व होते हैं।

परिमित सांस्थितिक रिक्त समष्टि का उपयोग प्रायः मूल घटनाओं के उदाहरण या गणना करने वाले अनुमानों के लिए प्रति उदाहरण प्रदान करने के लिए किया जाता है। विलियम थर्स्टन ने इस अर्थ में परिमित सांस्थिति के अध्ययन को एक विचित्र विषय कहा है जो विभिन्न प्रकार के प्रश्नों के लिए अपेक्षाकृत अच्छी जानकारी दे सकता है।[1]

परिमित समुच्चय पर सांस्थिति

माना कि एक परिमित समुच्चय है और पर एक सांस्थिति का एक उपसमुच्चय है जो कि का घात समुच्चय है जैसे कि,

  1. और .
  2. यदि तब .
  3. यदि तब .

दूसरे शब्दों में का उपसमुच्चय एक सांस्थिति है यदि में और दोनों सम्मिलित हैं और अपेक्षाकृत रूप से यूनियनों और समुच्चय सिद्धांत के अंतर्गत विवृत है तब के तत्वों को विवृत समुच्चय कहा जाता है। सांस्थितिक रिक्त समष्टि के सामान्य विवरण के लिए आवश्यक है क्योकि एक सांस्थिति को विवृत समुच्चयों के अपेक्षाकृत परिमित या अनंत समुच्चय के अंतर्गत विवृत किया जा सकता है लेकिन केवल सीमित रूप से कई विवृत समुच्चयों के प्रतिच्छेदन के अंतर्गत यहाँ वह समुच्चय अनावश्यक है चूँकि किसी परिमित समुच्चय का घात समुच्चय परिमित होता है। इसलिए केवल परिमित रूप से अनेक विवृत समुच्चय हो सकते हैं और केवल परिमित रूप से अनेक विवृत समुच्चय भी हो सकते हैं।

परिमित समुच्चय पर एक सांस्थिति को के एक उपसमुच्चय के रूप में भी जाना जा सकता है, जिसमें निचला तत्व और शीर्ष तत्व दोनों सम्मिलित होते हैं।

उदाहरण

0 या 1 अंक

रिक्त समुच्चय ∅ पर एक अद्वितीय सांस्थिति है। यह एकमात्र विवृत रिक्त समुच्चय है वास्तव में यह ∅ का एकमात्र उपसमुच्चय है। इसी प्रकार सिंगलटन समुच्चय {a} पर एक अद्वितीय सांस्थिति है जहां विवृत समुच्चय {∅} और {a} हैं यह सांस्थिति असतत और तुच्छ दोनों है। हालांकि कुछ सिद्धांतों में इसे एक असतत समष्टि के रूप में भी जाना जाता है क्योंकि यह परिमित असतत रिक्त समष्टि के समुच्चय के साथ अधिक गुण साझा करता है।

किसी भी सांस्थितिक रिक्त समष्टि X के लिए ∅ से X तक एक अद्वितीय नियमित फलन होता है, अर्थात् रिक्त फलन से सिंगलटन समष्टि {a} तक एक अद्वितीय नियमित फलन भी है अर्थात् {a} के लिए नियमित फलन श्रेणी सिद्धांत की भाषा में रिक्त समष्टि सांस्थितिक समष्टि की श्रेणी में एक प्रारंभिक फलन के रूप में कार्य करता है जबकि सिंगलटन समष्टि एक टर्मिनल फलन के रूप में कार्य करती है।

2 अंक

मान लीजिए कि X = {a,b}, 2 तत्वों वाला एक समुच्चय है जिसकी X पर चार अलग-अलग सांस्थितिकी हैं:

  1. {∅, {a,b}} (तुच्छ सांस्थिति)
  2. {∅, {a}, {a,b}}
  3. {∅, {b}, {a,b}}
  4. {∅, {a}, {b}, {a,b}} (असतत सांस्थिति)

उपरोक्त दूसरी और तीसरी सांस्थिति को आसानी से होमियोमोर्फिक के रूप में देखा जा सकता है। X का एक फलन जो a और b को स्वैप करता है वह एक होमोमोर्फिज्म फलन है। इनमें से {a} के लिए {a} सांस्थितिक समष्टि होमोमोर्फिक को सिएरपिंस्की समष्टि कहा जाता है। वास्तव में दो-बिंदु समुच्चय पर केवल तीन असमान तुच्छ, असतत और सिएरपिंस्की सांस्थितिकी हैं।

सिएरपिंस्की समष्टि {a,b} को {b} विवृत समुच्चय के साथ विशेष अनुक्रम aa, bb और ab द्वारा दिया गया है।

3 अंक

मान लीजिए कि X = {a,b,c} तीन तत्वों वाला एक समुच्चय है जिसकी X पर 29 अलग-अलग सांस्थितिकी हैं लेकिन केवल 9 असमान सांस्थिति हैं:

  1. {∅, {a,b,c}}
  2. {∅, {c}, {a,b,c}}
  3. {∅, {a,b}, {a,b,c}}
  4. {∅, {c}, {a,b}, {a,b,c}}
  5. {∅, {c}, {b,c}, {a,b,c}} (T0)
  6. {∅, {c}, {a,c}, {b,c}, {a,b,c}} (T0)
  7. {∅, {a}, {b}, {a,b}, {a,b,c}} (T0)
  8. {∅, {b}, {c}, {a,b}, {b,c}, {a,b,c}} (T0)
  9. {∅, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}} (T0)

इनमें से अंतिम 5 सभी T0 हैं। पहली सांस्थिति तुच्छ है, जबकि 2, 3 और 4 में बिंदु a और b स्थलीय रूप से अज्ञात हैं।

4 अंक

मान लीजिए कि X = {a,b,c,d} 4 तत्वों वाला एक समुच्चय है, जिसमे X पर 355 अलग-अलग सांस्थितिकी हैं लेकिन केवल 33 असमान सांस्थिति हैं:

  1. {∅, {a, b, c, d}}
  2. {∅, {a, b, c}, {a, b, c, d}}
  3. {∅, {a}, {a, b, c, d}}
  4. {∅, {a}, {a, b, c}, {a, b, c, d}}
  5. {∅, {a, b}, {a, b, c, d}}
  6. {∅, {a, b}, {a, b, c}, {a, b, c, d}}
  7. {∅, {a}, {a, b}, {a, b, c, d}}
  8. {∅, {a}, {b}, {a, b}, {a, b, c, d}}
  9. {∅, {a, b, c}, {d}, {a, b, c, d}}
  10. {∅, {a}, {a, b, c}, {a, d}, {a, b, c, d}}
  11. {∅, {a}, {a, b, c}, {d}, {a, d}, {a, b, c, d}}
  12. {∅, {a}, {b, c}, {a, b, c}, {a, d}, {a, b, c, d}}
  13. {∅, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}}
  14. {∅, {a, b}, {c}, {a, b, c}, {a, b, c, d}}
  15. {∅, {a, b}, {c}, {a, b, c}, {a, b, d}, {a, b, c, d}}
  16. {∅, {a, b}, {c}, {a, b, c}, {d}, {a, b, d}, {c, d}, {a, b, c, d}}
  17. {∅, {b, c}, {a, d}, {a, b, c, d}}
  18. {∅, {a}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  19. {∅, {a}, {a, b}, {a, c}, {a, b, c}, {a, b, c, d}} (T0)
  20. {∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, b, c, d}} (T0)
  21. {∅, {a}, {a, b}, {a, b, c}, {a, b, c, d}} (T0)
  22. {∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, c, d}} (T0)
  23. {∅, {a}, {a, b}, {c}, {a, c}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  24. {∅, {a}, {a, b}, {a, c}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  25. {∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  26. {∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  27. {∅, {a}, {b}, {a, b}, {b, c}, {a, b, c}, {a, d}, {a, b, d}, {a, b, c, d}} (T0)
  28. {∅, {a}, {a, b}, {a, c}, {a, b, c}, {a, d}, {a, b, d}, {a, c, d}, {a, b, c, d}} (T0)
  29. {∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, d}, {a, b, d}, {a, c, d}, {a, b, c, d}} (T0)
  30. {∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  31. {∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {a, d}, {a, b, d}, {a, c, d}, {a, b, c, d}} (T0)
  32. {∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {a, b, c, d}} (T0)
  33. {∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {d}, {a, d}, {b, d}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}} (T0)

इनमें से अंतिम 16 सभी T0 हैं।

गुण

विशेषज्ञता पूर्व-अनुक्रम

एक परिमित समुच्चय X पर पूर्व-अनुक्रम के साथ विभिन्न समानताए हैं। ध्यान दें कि X पर पूर्व-अनुक्रम X एक द्विआधारी संबंध है जो निजवाचक और सकर्मक (गणित) है। एक आवश्यक रूप से सीमित सांस्थितिक समष्टि X को देखते हुए हम X पर पूर्व-अनुक्रम को परिभाषित कर सकते हैं:

x ≤ y यदि x ∈ cl{y}

जहां cl{y} सिंगलटन समुच्चय {y} के विवृत होने को दर्शाता है। इस पूर्व-अनुक्रम को X पर विशेषज्ञता पूर्व-अनुक्रम कहा जाता है। X का प्रत्येक विवृत समुच्चय U के संबंध में एक ऊपरी समुच्चय X होगा (अर्थात यदि x ∈ U और x ≤ y तो y ∈ U) यदि X परिमित समुच्चय है तो इसका विपरीत भी सत्य है। इसलिए परिमित समष्टि के लिए प्रत्येक ऊपरी समुच्चय X में एक विवृत समुच्चय है।

माना कि दूसरी दिशा में जाने पर (X, ≤) एक पूर्व-आदेशित समुच्चय है। विवृत समुच्चयों को ≤ के संबंध में ऊपरी समुच्चय मानकर X पर एक सांस्थिति τ को परिभाषित करें। तब संबंध ≤ (X, τ) का विशेषज्ञता पूर्वक्रम होगा। इस प्रकार परिभाषित सांस्थिति को ≤ द्वारा निर्धारित अलेक्जेंडर सांस्थिति कहा जाता है।

पूर्व-अनुक्रम और परिमित सांस्थिति के बीच समानता की व्याख्या बिरखॉफ के प्रतिनिधित्व प्रमेय के एक संस्करण के रूप में की जा सकती है, जो परिमित वितरण समष्टि (सांस्थिति के विवृत समुच्चय) और आंशिक अनुक्रम (पूर्व-अनुक्रम के समतुल्य वर्गों का आंशिक क्रम) के बीच एक समानता है। यह समुच्चय रिक्त समष्टि के एक बड़े वर्ग के लिए भी कार्य करता है जिसे परिमित रूप से उत्पन्न समष्टि कहा जाता है। अंतिम रूप से उत्पन्न समष्टि को उन समष्टि के रूप में वर्णित किया जा सकता है जिनमें विवृत समुच्चयों का एक अपेक्षाकृत प्रतिच्छेदन विवृत है। परिमित सांस्थितिक रिक्त समष्टि परिमित रूप से उत्पन्न रिक्त समष्टि का एक विशेष वर्ग है।

संक्षिप्तता और गणनीयता

प्रत्येक परिमित सांस्थितिक समष्टि विवृत होती है क्योंकि कोई भी विवृत समुच्चय पहले से ही परिमित होना चाहिए। वास्तव में विवृत समष्टि को प्रायः परिमित समष्टि के सामान्यीकरण के रूप में जाना जाता है क्योंकि उनमें कई गुण समान होते हैं। प्रत्येक परिमित सांस्थितिक समष्टि सीमित रूप से कई विवृत समुच्चय और वियोज्य समुच्चय के रूप मे द्वितीय-गणनीय भी है।

पृथक्करण सिद्धांत

परिमित सांस्थितिक समष्टि T1 विशेष रूप से यदि यह हॉसडॉर्फ समुच्चय है तो यह वास्तव में अलग होना चाहिए। ऐसा इसलिए है क्योंकि एक बिंदु का पूरक विवृत बिंदुओं का एक सीमित संघ है और इसलिए विवृत है। इसका तात्पर्य यह है कि प्रत्येक बिंदु विवृत होना चाहिए। इसलिए कोई भी परिमित सांस्थितिक समष्टि जो असतत नहीं है वह T1 हॉसडॉर्फ या समिश्र समष्टि नहीं हो सकती है।

हालाँकि एक गैर-असतत परिमित समष्टि का T0 होना संभव है। सामान्यतः दो बिंदु x और y सांस्थितिक रूप से अज्ञात हैं यदि और केवल यदि x ≤ y और y ≤ x, जहां ≤ X पर विशेषज्ञता पूर्व-अनुक्रम है। यह इस प्रकार है कि एक समष्टि X T0 है यदि और केवल यदि X पर विशेषज्ञता पूर्व-अनुक्रम ≤ है तब आंशिक अनुक्रम मे सीमित समुच्चय पर कई आंशिकअनुक्रम होते हैं जो प्रत्येक अद्वितीय T0 सांस्थिति को परिभाषित करते हैं।

इसी प्रकार एक समष्टि R0 है यदि और केवल यदि विशेषज्ञता पूर्व-अनुक्रम एक तुल्यता संबंध है तब किसी भी परिमित समुच्चय X पर किसी भी तुल्यता संबंध को देखते हुए संबद्ध सांस्थिति विभाजन सांस्थिति छद्म होती है। यह एक परिमित समष्टि R0 है यदि और केवल यदि यह पूरी तरह से नियमित है। गैर-असतत परिमित समष्टि भी सामान्य हो सकती हैं यदि किसी भी परिमित समुच्चय पर बहिष्कृत बिंदु सांस्थिति एक पूरी तरह से सामान्य T0 समष्टि है जो गैर-समष्टि नहीं है।

सह-संबद्धता

परिमित समष्टि X की संबद्धता को संबंधित आरेख Γ की संबद्धता (आरेख सिद्धांत) पर विचार करके समझा जा सकता है।

किसी भी सांस्थितिक समष्टि में यदि x ≤ y है तो x से y तक एक पथ है जो t > 0 के लिए आसानी से f(0) = x और f(t) = y मान ले सकता है। यह सत्यापित करना आसान है कि f नियमित है। यह इस प्रकार है कि एक परिमित सांस्थितिक समष्टि के फलन से संबंधित आरेख के शुद्धता से संबद्ध हैं। अर्थात्, x से y तक एक सांस्थितिक पथ है यदि और केवल यदि Γ के संगत शीर्षों के बीच कोई अप्रत्यक्ष पथ नही है। प्रत्येक परिमित समष्टि समुच्चय के बाद से संबद्ध समष्टि है:

विवृत समुच्चय x जो प्रत्येक दूसरी निकटम समष्टि में समाहित है। दूसरे शब्दों में, यह एकल समुच्चय x एक समष्टि आधार है। इसलिए एक परिमित समष्टि से संबद्ध है यह प्रत्येक घटक X में विवृत और सवृत दोनों है। परिमित समष्टि में समिश्र संबद्धता गुण हो सकते हैं। एक परिमित समष्टि X है:

  • हाइपरकनेक्टेड समष्टि - यदि जब विशेषज्ञता पूर्व-अनुक्रम के संबंध में कोई सबसे बड़ा तत्व होता है यह एक ऐसा तत्व होता है जिसकी समापन संपूर्ण समष्टि X है।
  • अल्ट्राकनेक्टेड समष्टि - यदि जब विशेषज्ञता पूर्व-अनुक्रम के संबंध में कम से कम तत्व होता है यह एक ऐसा तत्व होता है जिसकी एकमात्र निकटतम संपूर्ण समष्टि X है।

उदाहरण के लिए एक परिमित समष्टि पर विशेष बिंदु सांस्थिति हाइपरकनेक्टेड है जबकि बहिष्कृत बिंदु सांस्थिति अल्ट्राकनेक्टेड है इसीलिए दोनों सिएरपिंस्की समष्टि है।

अतिरिक्त संरचना

परिमित सांस्थितिक समष्टि छद्म समष्टि है यदि और केवल यदि यह R0 है। इस स्थिति में एक संभावित छद्ममिति द्वारा दिया गया है:

जहां x ≡ y का अर्थ है x और y सांस्थितिक रूप से अप्रभेद्य हैं। एक परिमित सांस्थितिक समष्टि मेट्रिज़ेबल है यदि और केवल यदि यह असतत है। इसी प्रकार एक सांस्थितिक समष्टि एकरूपता योग्य है यदि और केवल यदि यह R0 है। एक समान संरचना उपरोक्त छद्ममिति से प्रेरित छद्ममितीय एकरूपता हो सकती है।

बीजगणितीय सांस्थिति

सामान्यतः बीजगणितीय सांस्थिति गैर-तुच्छ मौलिक समूहों के साथ सीमित सांस्थितिक समष्टि हैं इसका एक सरल उदाहरण छद्म वृत्त है, जो समष्टि X है जिसमें चार बिंदु हैं, जिनमें से दो विवृत हैं और जिनमें से दो सवृत हैं। इकाई वृत्त S1 से यह निष्कर्ष निकलता है कि छद्मवृत्त का मूल समूह अनंत चक्रीय होता है।

अधिक सामान्यतः यह दिखाया गया है कि किसी भी परिमित अमूर्त सरल समिश्र K के लिए एक परिमित सांस्थितिक समष्टि XK और दुर्बल होमोटॉपी तुल्यता f: |K| → XK जहां |K| का ज्यामितीय बोध है। यह इस प्रकार है कि |K| के समरूप समूह और XK के समरूपी हैं। वास्तव में, XK के अंतर्निहित समुच्चय को K ही माना जा सकता है, जिसमें सांस्थिति समावेशन आंशिक क्रम से संबद्ध होता है।

सीमित समुच्चय पर सांस्थिति की संख्या

जैसा कि ऊपर चर्चा की गई है एक सीमित समुच्चय पर सांस्थिति समुच्चय पूर्व-अनुक्रम के साथ संबद्ध हैं और T0 सांस्थिति आंशिक अनुक्रम के साथ संबद्ध हैं। इसलिए एक सीमित समुच्चय पर सांस्थिति की संख्या पूर्व-अनुक्रम की संख्या के बराबर है और T0 सांस्थिति की संख्या आंशिक अनुक्रम की संख्या के बराबर है।

नीचे दी गई तालिका n तत्वों वाले समुच्चय पर विशिष्ट (T0) सांस्थिति की संख्या सूचीबद्ध करती है। यह असमान (अर्थात गैर-होमियोमोर्फिक) सांस्थिति की संख्या को भी सूचीबद्ध करती है।

n अंक वाले समुच्चय पर सांस्थिति की संख्या
n विशिष्ट

सांस्थिति

विशिष्ट

T0 सांस्थिति

असमान

सांस्थिति

असमान

T0 सांस्थिति

0 1 1 1 1
1 1 1 1 1
2 4 3 3 2
3 29 19 9 5
4 355 219 33 16
5 6942 4231 139 63
6 209527 130023 718 318
7 9535241 6129859 4535 2045
8 642779354 431723379 35979 16999
9 63260289423 44511042511 363083 183231
10 8977053873043 6611065248783 4717687 2567284
OEIS A000798 A001035 A001930 A000112

माना कि T(n), n बिंदुओं वाले समुच्चय पर अलग-अलग सांस्थिति की संख्या को दर्शाता है अपेक्षाकृत बिंदु n के लिए T(n) की गणना करने का कोई ज्ञात सरल सूत्र नहीं है। पूर्णांक अनुक्रमों का ऑनलाइन विश्वकोश वर्तमान में n ≤ 18 के लिए T(n) को सूचीबद्ध करता है।

N बिंदुओं वाले समुच्चय पर अलग-अलग T0 सांस्थिति की संख्या, जिसे T0(n) द्वारा दर्शाया गया है निम्नलिखित सूत्र T(n) से संबंधित है:

जहां S(n,k) दूसरे प्रकार की स्टर्लिंग संख्या को दर्शाता है।

यह भी देखें

संदर्भ

  1. Thurston, William P. (April 1994). गणित में प्रमाण और प्रगति पर. pp. 161–177. arXiv:math/9404236. doi:10.1090/S0273-0979-1994-00502-6. {{cite book}}: |journal= ignored (help)


बाहरी संबंध