क्विंटिक फलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Polynomial function of degree 5}}
{{short description|Polynomial function of degree 5}}
[[File:Quintic polynomial.svg|thumb|right|233px|घात 5 के बहुपद का ग्राफ़, 3 वास्तविक शून्य (मूल) और 4 क्रांतिक बिंदु (गणित) के साथ।]]गणित में, क्विंटिक कार्य फॉर्म का एक [[फ़ंक्शन (गणित)|कार्य (गणित)]] है
[[File:Quintic polynomial.svg|thumb|right|233px|घात 5 के बहुपद का लेखाचित्र    , 3 वास्तविक शून्य (मूल) और 4 क्रांतिक बिंदु (गणित) के साथ।]]गणित में, क्विंटिक कार्य, एक [[फ़ंक्शन (गणित)|कार्य (गणित)]] का प्रपत्र है


:<math>g(x)=ax^5+bx^4+cx^3+dx^2+ex+f,\,</math>
:<math>g(x)=ax^5+bx^4+cx^3+dx^2+ex+f,\,</math>
जहाँ {{mvar|a}}, {{mvar|b}}, {{mvar|c}}, {{mvar|d}}, {{mvar|e}} और {{mvar|f}} एक क्षेत्र (गणित) के सदस्य हैं, प्रायः [[तर्कसंगत संख्या]]एं, [[वास्तविक संख्या]]एं या [[जटिल संख्या]]एं, और {{mvar|a}} अशून्य है. दूसरे शब्दों में, एक क्विंटिक कार्य को [[बहुपद]] पांच की डिग्री के बहुपद द्वारा परिभाषित किया जाता है।
जहाँ {{mvar|a}}, {{mvar|b}}, {{mvar|c}}, {{mvar|d}}, {{mvar|e}} और {{mvar|f}} एक क्षेत्र (गणित) के सदस्य हैं, प्रायः [[तर्कसंगत संख्या]]एं, [[वास्तविक संख्या]]एं या [[जटिल संख्या]]एं, और {{mvar|a}} अशून्य है. दूसरे शब्दों में, एक क्विंटिक कार्य को [[बहुपद]] पांच की डिग्री के बहुपद द्वारा परिभाषित किया जाता है।


क्योंकि उनके पास एक विषम डिग्री है, सामान्य क्विंटिक कार्य ग्राफ़ किए जाने पर सामान्य [[घन फलन]] के समान दिखाई देते हैं, अतिरिक्त इसके कि उनके पास एक अतिरिक्त [[मैक्सिमा और मिनिमा]] और एक अतिरिक्त स्थानीय न्यूनतम हो सकता है। क्विंटिक कार्य का व्युत्पन्न एक [[चतुर्थक फलन]] है।
क्योंकि उनके पास एक विषम डिग्री है, सामान्य क्विंटिक कार्य लेखाचित्र किए जाने पर सामान्य [[घन फलन]] के समान दिखाई देते हैं, सिवाए इसके कि उनके पास एक अतिरिक्त [[मैक्सिमा और मिनिमा]] और एक अतिरिक्त स्थानीय न्यूनतम हो सकता है। क्विंटिक कार्य का व्युत्पन्न एक [[चतुर्थक फलन]] है।


सेटिंग {{math|''g''(''x'') {{=}} 0}} और मान रहे हैं {{math|''a'' ≠ 0}} फॉर्म का एक क्विंटिक समीकरण तैयार करता है:
सेटिंग {{math|''g''(''x'') {{=}} 0}} और मान लिजिये  {{math|''a'' ≠ 0}} एक क्विंटिक समीकरण का प्रपत्र तैयार करता है:
:<math>ax^5+bx^4+cx^3+dx^2+ex+f=0.\,</math> Nth_root (nth मूल) के संदर्भ में क्विंटिक समीकरणों को हल करना 16 वीं शताब्दी से बीजगणित में एक बड़ी समस्या थी, जब [[घन समीकरण]] और [[चतुर्थक समीकरण]] हल किए गए थे, 19 वीं शताब्दी के पहले भाग तक, जब इस तरह के सामान्य समाधान की असंभवता साबित हुई थी हाबिल-रफिनी प्रमेय के साथ।
:<math>ax^5+bx^4+cx^3+dx^2+ex+f=0.\,</math>  
:16वीं शताब्दी से, जब घन और चतुर्थक समीकरण हल किए गए थे, रेडिकल (एनवें मूल) के संदर्भ में क्विंटिक समीकरणों को हल करना बीजगणित में एक बड़ी समस्या थी, 19वीं शताब्दी के पूर्वार्ध तक, तब हाबिल-रफ़िनी प्रमेय द्वारा इस तरह के सामान्य समाधान की असंभवता साबित हुई थी


==क्विंटिक समीकरण की जड़ें ढूँढना==
==क्विंटिक समीकरण की जड़ें ढूँढना==
Line 14: Line 15:
किसी दिए गए बहुपद के फलन का  (शून्य) ज्ञात करना एक प्रमुख गणितीय समस्या रही है।
किसी दिए गए बहुपद के फलन का  (शून्य) ज्ञात करना एक प्रमुख गणितीय समस्या रही है।


रैखिक समीकरण, [[द्विघात समीकरण]], घन समीकरण और चतुर्थक समीकरणों को मूलकों में [[गुणन]]खंडन द्वारा हल करना सदैव किया जा सकता है, चाहे मूल तर्कसंगत हों या अपरिमेय, वास्तविक हों या जटिल; ऐसे सूत्र हैं जो आवश्यक समाधान देते हैं। यद्पि, परिमेय पर सामान्य क्विंटिक समीकरणों के समाधान के लिए कोई बीजगणितीय अभिव्यक्ति (अर्थात् मूलांक के संदर्भ में) नहीं है; इस कथन को एबेल-रफ़िनी प्रमेय के रूप में जाना जाता है, जिसे पहली बार 1799 में प्रतिपादित किया गया था और 1824 में पूरी तरह से सिद्ध किया गया था। यह परिणाम उच्च डिग्री के समीकरणों के लिए भी लागू होता है। क्विंटिक का एक उदाहरण जिसकी जड़ों को रेडिकल के रूप में व्यक्त नहीं किया जा सकता है {{math| ''x''{{sup|5}} − ''x'' + 1 {{=}} 0}}.
रैखिक समीकरण, [[द्विघात समीकरण]], घन समीकरण और चतुर्थक समीकरणों को मूलकों में [[गुणन]]खंडन द्वारा सदैव हल किया जा सकता है, चाहे मूल तर्कसंगत हों या अपरिमेय, वास्तविक हों या जटिल; ऐसे सूत्र हैं जो आवश्यक समाधान देते हैं। यद्पि, परिमेय पर सामान्य क्विंटिक समीकरणों के समाधान के लिए कोई बीजगणितीय अभिव्यक्ति (अर्थात् मूलांक के संदर्भ में) नहीं है; इस कथन को एबेल-रफ़िनी प्रमेय के प्रपत्र में जाना जाता है, जिसे पहली बार 1799 में प्रतिपादित किया गया था और 1824 में पूरी तरह से सिद्ध किया गया था। यह परिणाम उच्च डिग्री के समीकरणों के लिए भी लागू होता है। क्विंटिक का एक उदाहरण जिसकी जड़ों को रेडिकल के प्रपत्र में व्यक्त नहीं किया जा सकता है {{math| ''x''{{sup|5}} − ''x'' + 1 {{=}} 0}}.


कुछ क्विंटिक्स को रेडिकल के संदर्भ में हल किया जा सकता है। यद्पि, समाधान प्रायः व्यवहार में उपयोग करने के लिए बहुत जटिल है। इसके बजाय, संख्यात्मक सन्निकटन की गणना एक रूट-फाइंडिंग एल्गोरिदम #बहुपदों की जड़ों को ढूंढना|बहुपदों के लिए रूट-फाइंडिंग एल्गोरिदम का उपयोग करके की जाती है।
कुछ क्विंटिक्स को रेडिकल के संदर्भ में हल किया जा सकता है। यद्पि, समाधान प्रायः व्यवहार में उपयोग करने के लिए बहुत जटिल है। इसके बजाय, संख्यात्मक सन्निकटन की गणना एक बहुपदों की जड़ों को ढूंढन, |बहुपदों के लिए रूट-फाइंडिंग एल्गोरिदम का उपयोग करके की जाती है।


==समाधानयोग्य क्विंटिक्स==
==समाधानयोग्य क्विंटिक्स==
Line 31: Line 32:
समीकरण दिया गया है
समीकरण दिया गया है
:<math> ax^5+bx^4+cx^3+dx^2+ex+f=0,</math>
:<math> ax^5+bx^4+cx^3+dx^2+ex+f=0,</math>
त्सचिर्नहौस परिवर्तन {{math|''x'' {{=}} ''y'' − {{sfrac|''b''|5''a''}}}}, जो क्विंटिक को दबाता है (अर्थात डिग्री चार के पद को हटा देता है), समीकरण देता है
तस्किरनहाउस परिवर्तन {{math|''x'' {{=}} ''y'' − {{sfrac|''b''|5''a''}}}}, जो क्विंटिक को दबाता है (अर्थात डिग्री चार के पद को हटा देता है), समीकरण देता है


:<math> y^5+p y^3+q y^2+r y+s=0</math>,
:<math> y^5+p y^3+q y^2+r y+s=0</math>,
Line 41: Line 42:
r &= \frac{125a^3e-50a^2bd+15ab^2c-3b^4}{125a^4}\\
r &= \frac{125a^3e-50a^2bd+15ab^2c-3b^4}{125a^4}\\
s &= \frac{3125 a^4f-625a^3 be+125a^2b^2 d-25ab^3 c+4 b^5}{3125a^5}\end{align}</math>
s &= \frac{3125 a^4f-625a^3 be+125a^2b^2 d-25ab^3 c+4 b^5}{3125a^5}\end{align}</math>
दोनों क्विंटिक्स रेडिकल द्वारा हल करने योग्य हैं यदि और केवल यदि वे तर्कसंगत गुणांक या बहुपद के साथ निम्न डिग्री के समीकरणों में कारक हैं {{math|''P''<sup>2</sup> − 1024 ''z'' Δ}}, नामित {{vanchor|केली का संकल्पक}}, में एक तर्कसंगत जड़ है {{mvar|z}}, कहाँ
दोनों क्विंटिक्स रेडिकल द्वारा हल करने योग्य हैं यदि और केवल यदि वे तर्कसंगत गुणांक या बहुपद के साथ निम्न डिग्री के समीकरणों में कारक हैं {{math|''P''<sup>2</sup> − 1024 ''z'' Δ}}, नामित {{vanchor|केली का संकल्पक}}, में एक तर्कसंगत जड़ है {{mvar|z}}, जहाँ


:<math>\begin{align}  
:<math>\begin{align}  
Line 58: Line 59:
केली का परिणाम हमें यह परीक्षण करने की अनुमति देता है कि क्या क्विंटिक हल करने योग्य है। यदि ऐसा घटना  है, तो इसकी जड़ों को ढूंढना एक अधिक कठिन समस्या है, जिसमें जड़ों को क्विंटिक के गुणांक और केली के रिसोल्वेंट की तर्कसंगत जड़ को सम्मिलित करने वाले रेडिकल के संदर्भ में व्यक्त करना सम्मिलित है।
केली का परिणाम हमें यह परीक्षण करने की अनुमति देता है कि क्या क्विंटिक हल करने योग्य है। यदि ऐसा घटना  है, तो इसकी जड़ों को ढूंढना एक अधिक कठिन समस्या है, जिसमें जड़ों को क्विंटिक के गुणांक और केली के रिसोल्वेंट की तर्कसंगत जड़ को सम्मिलित करने वाले रेडिकल के संदर्भ में व्यक्त करना सम्मिलित है।


1888 में, [[जॉर्ज पैक्सटन यंग]] ने स्पष्ट सूत्र प्रदान किए बिना, हल करने योग्य क्विंटिक समीकरण को कैसे हल किया जाए, इसका वर्णन किया;<ref>George Paxton Young, "Solvable Quintic Equations with Commensurable Coefficients", ''American Journal of Mathematics'' '''10''':99–130 (1888), {{JSTOR|2369502}}</ref> 2004 में, [[डेनियल लाजार्ड]] ने तीन पेज का एक फॉर्मूला लिखा।<ref>{{harvtxt|Lazard|2004|p=207}}</ref>
1888 में, [[जॉर्ज पैक्सटन यंग]] ने स्पष्ट सूत्र प्रदान किए बिना, हल करने योग्य क्विंटिक समीकरण को कैसे हल किया जाए, इसका वर्णन किया;<ref>George Paxton Young, "Solvable Quintic Equations with Commensurable Coefficients", ''American Journal of Mathematics'' '''10''':99–130 (1888), {{JSTOR|2369502}}</ref> 2004 में, [[डेनियल लाजार्ड]] ने तीन पेज का एक सूत्र लिखा।<ref>{{harvtxt|Lazard|2004|p=207}}</ref>
===ब्रिंग-जेरार्ड फॉर्म में क्विंटिक्स ===
===ब्रिंग-जेरार्ड प्रपत्र में क्विंटिक्स ===


प्रपत्र के हल करने योग्य क्विंटिक्स के कई पैरामीट्रिक निरूपण हैं {{math|''x''<sup>5</sup> + ''ax'' + ''b'' {{=}} 0}}, ब्रिंग-जेरार्ड फॉर्म कहा जाता है।
प्रपत्र के हल करने योग्य क्विंटिक्स के कई पैरामीट्रिक निप्रपत्रण हैं {{math|''x''<sup>5</sup> + ''ax'' + ''b'' {{=}} 0}}, ब्रिंग-जेरार्ड प्रपत्र      कहा जाता है।


19वीं सदी के उत्तरार्ध के दौरान, जॉन स्टुअर्ट ग्लैशन, जॉर्ज पैक्सटन यंग और [[कार्ल रनगे]] ने ऐसा मानकीकरण दिया: ब्रिंग-जेरार्ड फॉर्म में तर्कसंगत गुणांक के साथ एक अपरिवर्तनीय बहुपद क्विंटिक, हल करने योग्य है यदि और केवल यदि दोनों में से कोई एक {{math|''a'' {{=}} 0}} या लिखा जा सकता है
19वीं सदी के उत्तरार्ध के दौरान, जॉन स्टुअर्ट ग्लैशन, जॉर्ज पैक्सटन यंग और [[कार्ल रनगे]] ने ऐसा मानकीकरण दिया: ब्रिंग-जेरार्ड प्रपत्र में तर्कसंगत गुणांक के साथ एक अपरिवर्तनीय बहुपद क्विंटिक, हल करने योग्य है यदि और केवल यदि दोनों में से कोई एक {{math|''a'' {{=}} 0}} या लिखा जा सकता है
:<math>x^5 + \frac{5\mu^4(4\nu + 3)}{\nu^2 + 1}x + \frac{4\mu^5(2\nu + 1)(4\nu + 3)}{\nu^2 + 1} = 0</math>
:<math>x^5 + \frac{5\mu^4(4\nu + 3)}{\nu^2 + 1}x + \frac{4\mu^5(2\nu + 1)(4\nu + 3)}{\nu^2 + 1} = 0</math>
कहाँ {{math|''μ''}} और {{math|''ν''}} तर्कसंगत हैं.
कहाँ {{math|''μ''}} और {{math|''ν''}} तर्कसंगत हैं.
Line 75: Line 76:
प्रतिस्थापन {{math|''c'' {{=}} {{sfrac|−''m''|''l''<sup>5</sup>}}}}, {{math|''e'' {{=}} {{sfrac|1|''l''}}}} स्पीयरमैन-विलियम्स मानकीकरण में किसी को विशेष घटना  को बाहर नहीं करने की अनुमति मिलती है {{math|''a'' {{=}} 0}}, निम्नलिखित परिणाम दे रहा है:
प्रतिस्थापन {{math|''c'' {{=}} {{sfrac|−''m''|''l''<sup>5</sup>}}}}, {{math|''e'' {{=}} {{sfrac|1|''l''}}}} स्पीयरमैन-विलियम्स मानकीकरण में किसी को विशेष घटना  को बाहर नहीं करने की अनुमति मिलती है {{math|''a'' {{=}} 0}}, निम्नलिखित परिणाम दे रहा है:


अगर {{mvar|a}} और {{mvar|b}} परिमेय संख्याएँ, समीकरण हैं {{math|''x''<sup>5</sup> + ''ax'' + ''b'' {{=}} 0}} रैडिकल द्वारा हल करने योग्य है यदि या तो इसका बायां भाग तर्कसंगत गुणांक वाले 5 से कम डिग्री वाले बहुपदों का उत्पाद है या दो तर्कसंगत संख्याएं मौजूद हैं {{mvar|l}} और {{mvar|m}} ऐसा है कि
अगर {{mvar|a}} और {{mvar|b}} परिमेय संख्याएँ, समीकरण हैं {{math|''x''<sup>5</sup> + ''ax'' + ''b'' {{=}} 0}} रैडिकल द्वारा हल करने योग्य है यदि या तो इसका बायां भाग तर्कसंगत गुणांक वाले 5 से कम डिग्री वाले बहुपदों का उत्पाद है या दो तर्कसंगत संख्याएं उपस्थित हैं {{mvar|l}} और {{mvar|m}} ऐसा है कि
:<math>a=\frac{5 l (3 l^5-4 m)}{m^2+l^{10}}\qquad b=\frac{4(11 l^5+2 m)}{m^2+l^{10}}.</math>
:<math>a=\frac{5 l (3 l^5-4 m)}{m^2+l^{10}}\qquad b=\frac{4(11 l^5+2 m)}{m^2+l^{10}}.</math>


===समाधान योग्य पंचक की जड़ें===
===समाधान योग्य पंचक की जड़ें===
एक बहुपद समीकरण मूलकों द्वारा हल किया जा सकता है यदि उसका गैलोज़ समूह एक [[हल करने योग्य समूह]] है। इरेड्यूसिबल क्विंटिक्स के मामले में, गैलोज़ समूह [[सममित समूह]] का एक उपसमूह है {{math|''S''<sub>5</sub>}} पांच तत्व सेट के सभी क्रमपरिवर्तन, जो हल करने योग्य है यदि और केवल यदि यह समूह का उपसमूह है {{math|''F''<sub>5</sub>}}, आदेश की {{math|20}}, चक्रीय क्रमपरिवर्तन द्वारा उत्पन्न {{math|(1 2 3 4 5)}} और {{math|(1 2 4 3)}}.
एक बहुपद समीकरण मूलकों द्वारा हल किया जा सकता है यदि उसका गैलोज़ समूह एक [[हल करने योग्य समूह]] है। इरेड्यूसिबल क्विंटिक्स के घटना में, गैलोज़ समूह [[सममित समूह]] का एक उपसमूह है {{math|''S''<sub>5</sub>}} पांच तत्व सेट के सभी क्रमपरिवर्तन, जो हल करने योग्य है यदि और केवल यदि यह समूह का उपसमूह है {{math|''F''<sub>5</sub>}}, आदेश की {{math|20}}, चक्रीय क्रमपरिवर्तन द्वारा उत्पन्न {{math|(1 2 3 4 5)}} और {{math|(1 2 4 3)}}.


यदि क्विंटिक हल करने योग्य है, तो समाधानों में से एक को बीजगणितीय अभिव्यक्ति द्वारा दर्शाया जा सकता है जिसमें पांचवां मूल और अधिकतम दो वर्गमूल सम्मिलित होते हैं, जो आम तौर पर नेस्टेड मूलांक होते हैं। अन्य समाधान या तो पांचवें मूल को बदलकर या पांचवें मूल की सभी घटनाओं को [[एकता की जड़]] की समान शक्ति से गुणा करके प्राप्त किया जा सकता है, जैसे कि
यदि क्विंटिक हल करने योग्य है, तो समाधानों में से एक को बीजगणितीय अभिव्यक्ति द्वारा दर्शाया जा सकता है जिसमें पांचवां मूल और अधिकतम दो वर्गमूल सम्मिलित होते हैं, जो प्रायः नेस्टेड मूलांक होते हैं। अन्य समाधान या तो पांचवें मूल को बदलकर या पांचवें मूल की सभी घटनाओं को [[एकता की जड़]] की समान शक्ति से गुणा करके प्राप्त किया जा सकता है, जैसे कि
:<math>\frac{\sqrt{-10-2\sqrt{5}}+\sqrt{5}-1}{4}.</math>
:<math>\frac{\sqrt{-10-2\sqrt{5}}+\sqrt{5}-1}{4}.</math>
वास्तव में, एकता के सभी चार आदिम पांचवें मूलों को वर्गमूलों के चिह्नों को उचित रूप से बदलकर प्राप्त किया जा सकता है; अर्थात्, अभिव्यक्ति
वास्तव में, एकता के सभी चार आदिम पांचवें मूलों को वर्गमूलों के चिह्नों को उचित प्रपत्र से बदलकर प्राप्त किया जा सकता है; अर्थात्, अभिव्यक्ति
:<math>\frac{\alpha\sqrt{-10-2\beta\sqrt{5}}+\beta\sqrt{5}-1}{4},</math>
:<math>\frac{\alpha\sqrt{-10-2\beta\sqrt{5}}+\beta\sqrt{5}-1}{4},</math>
कहाँ <math> \alpha, \beta \in \{-1,1\}</math>, एकता की चार विशिष्ट आदिम पाँचवीं जड़ें उत्पन्न करता है।
कहाँ <math> \alpha, \beta \in \{-1,1\}</math>, एकता की चार विशिष्ट आदिम पाँचवीं जड़ें उत्पन्न करता है।


इसका तात्पर्य यह है कि किसी हल करने योग्य क्विंटिक की सभी जड़ों को लिखने के लिए चार अलग-अलग वर्गमूलों की आवश्यकता हो सकती है। यहां तक ​​कि पहले मूल के लिए जिसमें अधिकतम दो वर्गमूल सम्मिलित होते हैं, रेडिकल के संदर्भ में समाधान की अभिव्यक्ति प्रायः अत्यधिक जटिल होती है। यद्पि, जब किसी वर्गमूल की आवश्यकता नहीं होती है, तो समीकरण के लिए पहले समाधान का रूप अपेक्षाकृत सरल हो सकता है {{math|''x''<sup>5</sup> − 5''x''<sup>4</sup> + 30''x''<sup>3</sup> − 50''x''<sup>2</sup> + 55''x'' − 21 {{=}} 0}}, जिसके लिए एकमात्र वास्तविक समाधान है
इसका तात्पर्य यह है कि किसी हल करने योग्य क्विंटिक की सभी जड़ों को लिखने के लिए चार अलग-अलग वर्गमूलों की आवश्यकता हो सकती है। यहां तक ​​कि पहले मूल के लिए जिसमें अधिकतम दो वर्गमूल सम्मिलित होते हैं, रेडिकल के संदर्भ में समाधान की अभिव्यक्ति प्रायः अत्यधिक जटिल होती है। यद्पि, जब किसी वर्गमूल की आवश्यकता नहीं होती है, तो समीकरण के लिए पहले समाधान का प्रपत्र अपेक्षाकृत सरल हो सकता है {{math|''x''<sup>5</sup> − 5''x''<sup>4</sup> + 30''x''<sup>3</sup> − 50''x''<sup>2</sup> + 55''x'' − 21 {{=}} 0}}, जिसके लिए एकमात्र वास्तविक समाधान है


: <math>x=1+\sqrt[5]{2}-\left(\sqrt[5]{2}\right)^2+\left(\sqrt[5]{2}\right)^3-\left(\sqrt[5]{2}\right)^4.</math>
: <math>x=1+\sqrt[5]{2}-\left(\sqrt[5]{2}\right)^2+\left(\sqrt[5]{2}\right)^3-\left(\sqrt[5]{2}\right)^4.</math>
Line 99: Line 100:


:<math>y^4+4y^3+\frac{4}{5}y^2-\frac{8}{5^3}y-\frac{1}{5^5}=0\,.</math>
:<math>y^4+4y^3+\frac{4}{5}y^2-\frac{8}{5^3}y-\frac{1}{5^5}=0\,.</math>
अधिक सामान्यतः, यदि कोई समीकरण {{math|1=''P''(''x'') = 0}} प्राइम डिग्री का {{math|''p''}} तर्कसंगत गुणांक के साथ रेडिकल में हल करने योग्य है, तो कोई सहायक समीकरण परिभाषित कर सकता है {{math|1=''Q''(''y'') = 0}} डिग्री का {{math|''p'' – 1}}, तर्कसंगत गुणांकों के साथ भी, जैसे कि प्रत्येक मूल {{math|''P''}} का योग है {{math|''p''}}-की जड़ों की जड़ें {{math|''Q''}}. इन {{math|''p''}}-वीं जड़ें [[जोसेफ-लुई लैग्रेंज]] और उनके उत्पादों द्वारा पेश की गईं {{math|''p''}} को प्रायः [[लैग्रेंज रिसॉल्वेंट]] कहा जाता है। की गणना {{math|''Q''}} और इसकी जड़ों का उपयोग समाधान के लिए किया जा सकता है {{math|1=''P''(''x'') = 0}}. यद्पि ये {{math|''p''}}-वें मूलों की गणना स्वतंत्र रूप से नहीं की जा सकती है (इससे पता चलेगा {{math|''p''<sup>''p''–1</sup>}} के स्थान पर जड़ें {{math|''p''}}). इस प्रकार एक सही समाधान के लिए इन सभी को व्यक्त करना आवश्यक है {{math|''p''}}-उनमें से एक की अवधि में जड़ें। गैलोइस सिद्धांत से पता चलता है कि यह सदैव सैद्धांतिक रूप से संभव है, भले ही परिणामी सूत्र किसी भी उपयोग के लिए बहुत बड़ा हो।
अधिक सामान्यतः, यदि तर्कसंगत गुणांक के साथ अभाज्य डिग्री  {{math|''p''}} का एक कोई समीकरण {{math|1=''P''(''x'') = 0}} रेडिकल में हल करने योग्य है, तो कोई सहायक समीकरण {{math|1=''Q''(''y'') = 0}} डिग्री का {{math|''p'' – 1}} परिभाषित कर सकता है , वह भी तर्कसंगत गुणांकों के साथ भी, जैसे कि {{math|''P''}} का प्रत्येक मूल {{math|''Q''}} की जड़ों के {{math|''p''}}-वीं मूलों का योग है ये  {{math|''p''}}-वीं मूल [[जोसेफ-लुई लैग्रेंज]] द्वारा प्रस्तुत किए गए थे, और {{math|''p''}} द्वारा उनके उत्पादों को प्रायः [[लैग्रेंज रिसॉल्वेंट]] कहा जाता है। {{math|''Q''}} और इसकी जड़ों का उपयोग {{math|1=''P''(''x'') = 0}} समाधान के लिए किया जा सकता है यद्पि ये {{math|''p''}}-वें मूलों की गणना स्वतंत्र प्रपत्र से नहीं की जा सकती है (इससे पता चलेगा {{math|''p''}} के स्थान पर जड़ें {{math|''p''<sup>''p''–1</sup>}} ). इस प्रकार एक सही समाधान के लिए इन सभी {{math|''p''}} -मूलों को उनमें से किसी एक के पद में व्यक्त करना आवश्यक है। गैलोइस सिद्धांत से पता चलता है कि यह सदैव सैद्धांतिक प्रपत्र से संभव है, भले ही परिणामी सूत्र किसी भी उपयोग के लिए बहुत बड़ा हो।


यह संभव है कि की कुछ जड़ें {{math|''Q''}} तर्कसंगत हैं (जैसा कि इस खंड के पहले उदाहरण में है) या कुछ शून्य हैं। इन घटनाओं में, जड़ों के लिए सूत्र बहुत सरल है, जैसे कि हल करने योग्य डी मोइवर क्विंटिक के लिए{{anchor|de Moivre quintic}}
यह संभव है कि की कुछ जड़ें {{math|''Q''}} तर्कसंगत हैं (जैसा कि इस खंड के पहले उदाहरण में है) या कुछ शून्य हैं। इन घटनाओं में, जड़ों के लिए सूत्र बहुत सरल है, जैसे कि हल करने योग्य डी मोइवर क्विंटिक के लिए{{anchor|de Moivre quintic}}
Line 110: Line 111:


:<math>x_k = \omega^k\sqrt[5]{y_i} -\frac{a}{\omega^k\sqrt[5]{y_i}},</math>
:<math>x_k = \omega^k\sqrt[5]{y_i} -\frac{a}{\omega^k\sqrt[5]{y_i}},</math>
कहां क्यों<sub>i</sub>सहायक द्विघात समीकरण का कोई मूल है और ω एकता के चार आदिम मूलों में से कोई एक है। इसे आसानी से हल करने योग्य [[सेप्टिक समीकरण]] और अन्य विषम डिग्री बनाने के लिए सामान्यीकृत किया जा सकता है, जरूरी नहीं कि यह अभाज्य हो।
जहां yi सहायक द्विघात समीकरण का कोई मूल है और ω एकता के चार आदिम 5वें मूलों में से कोई एक है। इसे आसानी से हल करने योग्य [[सेप्टिक समीकरण]] और अन्य विषम डिग्री बनाने के लिए सामान्यीकृत किया जा सकता है, जरूरी नहीं कि यह अभाज्य हो।


===अन्य हल करने योग्य क्विंटिक्स===
===अन्य हल करने योग्य क्विंटिक्स===


ब्रिंग-जेरार्ड फॉर्म में असीमित रूप से कई हल करने योग्य क्विंटिक्स हैं जिन्हें पिछले अनुभाग में पैरामीटराइज़ किया गया है।
ब्रिंग-जेरार्ड प्रपत्र में असीमित प्रपत्र से कई हल करने योग्य क्विंटिक्स हैं जिन्हें पिछले अनुभाग में पैरामीटराइज़ किया गया है।


चर की स्केलिंग तक, आकृति के ठीक पाँच हल करने योग्य क्विंटिक्स होते हैं <math>x^5+ax^2+b</math>, जो हैं<ref>{{cite web |first=Noam |last=Elkies |title=Trinomials {{nobr|a x{{sup|n}} + b x + c}} with interesting Galois groups |url=http://www.math.harvard.edu/~elkies/trinomial.html |publisher=[[Harvard University]]}}</ref> (जहाँ s एक स्केलिंग कारक है):
चर की स्केलिंग तक, आकृति के ठीक पाँच हल करने योग्य क्विंटिक्स होते हैं <math>x^5+ax^2+b</math>, जो हैं<ref>{{cite web |first=Noam |last=Elkies |title=Trinomials {{nobr|a x{{sup|n}} + b x + c}} with interesting Galois groups |url=http://www.math.harvard.edu/~elkies/trinomial.html |publisher=[[Harvard University]]}}</ref> (जहाँ s एक स्केलिंग कारक है):
Line 155: Line 156:
| <math> x^5-20 x^3 +170 x + 208</math>||
| <math> x^5-20 x^3 +170 x + 208</math>||
|}
|}
हल करने योग्य क्विंटिक्स का एक अनंत अनुक्रम बनाया जा सकता है, जिनकी जड़ें योग हैं {{mvar|n}}[[एकता की जड़ें]], साथ {{nobr|{{math|''n'' {{=}} 10''k'' + 1}}}} एक अभाज्य संख्या होना:
हल करने योग्य क्विंटिक्स का एक अनंत अनुक्रम बनाया जा सकता है, जिनकी जड़ें योग हैं {{mvar|n}} [[एकता की जड़ें]], साथ एक अभाज्य संख्या होना:  {{nobr|{{math|''n'' {{=}} 10''k'' + 1}}}}  


:{|
:{|
Line 170: Line 171:
|}
|}
हल करने योग्य क्विंटिक्स के दो मानकीकृत परिवार भी हैं:
हल करने योग्य क्विंटिक्स के दो मानकीकृत परिवार भी हैं:
कोंडो-ब्रूमर क्विंटिक,
कोंडो-ब्रूमर क्विंटिक,


Line 182: Line 184:
:
:
::<math> c = \tfrac{1}{2} \left[\, b(a + 4m) - p(a - 4m) - a^2m  \,\right] \;.</math>
::<math> c = \tfrac{1}{2} \left[\, b(a + 4m) - p(a - 4m) - a^2m  \,\right] \;.</math>
===[[ एक अपरिवर्तनीय मौका ]]===
===[[ एक अपरिवर्तनीय मौका ]]===


घन समीकरणों के अनुरूप, हल करने योग्य क्विंटिक्स होते हैं जिनमें पांच वास्तविक जड़ें होती हैं जिनके सभी मूल समाधानों में जटिल संख्याओं की जड़ें सम्मिलित होती हैं। यह क्विंटिक के लिए कैसस इरेड्यूसिबिलिस है, जिसकी चर्चा डुमिट में की गई है।<ref>David S. Dummit [http://www.emba.uvm.edu/~dummit/quintics/solvable.pdf Solving Solvable Quintics]</ref>{{rp|p.17}} वास्तव में, यदि एक इरेड्यूसेबल क्विंटिक की सभी जड़ें वास्तविक हैं, तो किसी भी जड़ को वास्तविक रेडिकल के संदर्भ में पूरी तरह से व्यक्त नहीं किया जा सकता है (जैसा कि सभी बहुपद डिग्री के लिए सच है जो 2 की शक्तियां नहीं हैं)।
घन समीकरणों के अनुप्रपत्र , हल करने योग्य क्विंटिक्स होते हैं जिनमें पांच वास्तविक जड़ें होती हैं जिनके सभी मूल समाधानों में जटिल संख्याओं की जड़ें सम्मिलित होती हैं। यह क्विंटिक के लिए कैसस इरेड्यूसिबिलिस है, जिसकी चर्चा डुमिट में की गई है।<ref>David S. Dummit [http://www.emba.uvm.edu/~dummit/quintics/solvable.pdf Solving Solvable Quintics]</ref>{{rp|p.17}} वास्तव में, यदि एक इरेड्यूसेबल क्विंटिक की सभी जड़ें वास्तविक हैं, तो किसी भी जड़ को वास्तविक रेडिकल के संदर्भ में पूरी तरह से व्यक्त नहीं किया जा सकता है (जैसा कि सभी बहुपद डिग्री के लिए सच है जो 2 की शक्तियां नहीं हैं)।


==कट्टरपंथियों से परे==
==कट्टरपंथियों से परे==


1835 के आसपास, [[जॉर्ज जेरार्ड]] ने प्रदर्शित किया कि क्विंटिक्स को [[ अल्ट्रारैडिकल ]]्स (जिसे ब्रिंग रेडिकल्स के रूप में भी जाना जाता है) का उपयोग करके हल किया जा सकता है, जो कि अद्वितीय वास्तविक जड़ है। {{math|''t''<sup>5</sup> + ''t'' − ''a'' {{=}} 0}} वास्तविक संख्याओं के लिए {{math|''a''}}. 1858 में [[चार्ल्स हर्मिट]] ने दिखाया कि त्रिकोणमितीय कार्यों के माध्यम से घन समीकरणों को हल करने के अधिक परिचित दृष्टिकोण के समान दृष्टिकोण का उपयोग करके ब्रिंग रेडिकल को जैकोबी [[थीटा फ़ंक्शन|थीटा कार्य]] और उनके संबंधित [[अण्डाकार मॉड्यूलर फ़ंक्शन|अण्डाकार मॉड्यूलर कार्य]] के संदर्भ में चित्रित किया जा सकता है। लगभग उसी समय, [[लियोपोल्ड क्रोनकर]] ने समूह सिद्धांत का उपयोग करते हुए, [[फ्रांसेस्को ब्रियोस्ची]] की तरह, हर्मिट के परिणाम प्राप्त करने का एक सरल तरीका विकसित किया। बाद में, [[फ़ेलिक्स क्लेन]] एक ऐसी विधि लेकर आए, जो [[विंशतिफलक]], गैलोइस सिद्धांत और अण्डाकार मॉड्यूलर कार्यों की समरूपता से संबंधित है, जो हर्माइट के समाधान में चित्रित हैं, उन्होंने यह स्पष्टीकरण दिया कि उन्हें आखिर क्यों दिखना चाहिए, और संदर्भ में अपना स्वयं का समाधान विकसित किया सामान्यीकृत हाइपरजियोमेट्रिक फ़ंक्शंस का।<ref>{{Harv|Klein|1888}}; a modern exposition is given in {{Harv|Tóth|2002|loc=Section 1.6, Additional Topic: Klein's Theory of the Icosahedron, [https://books.google.com/books?id=i76mmyvDHYUC&pg=PA66 p. 66]}}</ref> इसी तरह की घटनाएँ डिग्री में घटित होती हैं {{math|7}} (सेप्टिक समीकरण) और {{math|11}}, जैसा कि क्लेन द्वारा अध्ययन किया गया और चर्चा की गई {{slink|Icosahedral symmetry|Related geometries}}.
1835 के आसपास, [[जॉर्ज जेरार्ड]] ने प्रदर्शित किया कि क्विंटिक्स को [[ अल्ट्रारैडिकल ]]्स (जिसे ब्रिंग रेडिकल्स के प्रपत्र में भी जाना जाता है) का उपयोग करके हल किया जा सकता है, जो कि अद्वितीय वास्तविक जड़ है। {{math|''t''<sup>5</sup> + ''t'' − ''a'' {{=}} 0}} वास्तविक संख्याओं के लिए {{math|''a''}}. 1858 में [[चार्ल्स हर्मिट]] ने दिखाया कि त्रिकोणमितीय कार्यों के माध्यम से घन समीकरणों को हल करने के अधिक परिचित दृष्टिकोण के समान दृष्टिकोण का उपयोग करके ब्रिंग रेडिकल को जैकोबी [[थीटा फ़ंक्शन|थीटा कार्य]] और उनके संबंधित [[अण्डाकार मॉड्यूलर फ़ंक्शन|अण्डाकार मॉड्यूलर कार्य]] के संदर्भ में चित्रित किया जा सकता है। लगभग उसी समय, [[लियोपोल्ड क्रोनकर]] ने समूह सिद्धांत का उपयोग करते हुए, [[फ्रांसेस्को ब्रियोस्ची]] की तरह, हर्मिट के परिणाम प्राप्त करने का एक सरल तरीका विकसित किया। बाद में, [[फ़ेलिक्स क्लेन]] एक ऐसी विधि लेकर आए, जो [[विंशतिफलक]], गैलोइस सिद्धांत और अण्डाकार मॉड्यूलर कार्यों की समप्रपत्रता से संबंधित है, जो हर्माइट के समाधान में चित्रित हैं, उन्होंने यह स्पष्टीकरण दिया कि उन्हें आखिर क्यों दिखना चाहिए, और संदर्भ में अपना स्वयं का समाधान विकसित किया सामान्यीकृत हाइपरजियोमेट्रिक फ़ंक्शंस का।<ref>{{Harv|Klein|1888}}; a modern exposition is given in {{Harv|Tóth|2002|loc=Section 1.6, Additional Topic: Klein's Theory of the Icosahedron, [https://books.google.com/books?id=i76mmyvDHYUC&pg=PA66 p. 66]}}</ref> इसी तरह की घटनाएँ डिग्री में घटित होती हैं {{math|7}} (सेप्टिक समीकरण) और {{math|11}}, जैसा कि क्लेन द्वारा अध्ययन किया गया और चर्चा की गई {{slink|इकोसाहेड्रल समरूपता|संबंधित ज्यामिति}}.


=== रेडिकल लाओ के साथ हल करना ===
=== रेडिकल लाओ के साथ हल करना ===
{{main article|Bring radical}}
{{main article|कट्टरपंथी लाओ}}


एक त्सचिर्नहौस परिवर्तन, जिसकी गणना एक चतुर्थक समीकरण को हल करके की जा सकती है, फॉर्म के सामान्य क्विंटिक समीकरण को कम कर देता है
एक त्सचिर्नहौस परिवर्तन, जिसकी गणना एक चतुर्थक समीकरण को हल करके की जा सकती है, प्रपत्र के सामान्य क्विंटिक समीकरण को कम कर देता है
:<math>x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 = 0\,</math> ब्रिंग-जेरार्ड सामान्य रूप में {{math|''x''<sup>5</sup> − ''x'' + ''t'' {{=}} 0}}.
:<math>x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 = 0\,</math> ब्रिंग-जेरार्ड सामान्य प्रपत्र      में {{math|''x''<sup>5</sup> − ''x'' + ''t'' {{=}} 0}}.


इस समीकरण की जड़ें मूलकों द्वारा व्यक्त नहीं की जा सकतीं। यद्पि, 1858 में, चार्ल्स हर्मिट ने [[अण्डाकार कार्य]]ों के संदर्भ में इस समीकरण का पहला ज्ञात समाधान प्रकाशित किया।<ref name="hermite">{{cite journal
इस समीकरण की जड़ें मूलकों द्वारा व्यक्त नहीं की जा सकतीं। यद्पि, 1858 में, चार्ल्स हर्मिट ने [[अण्डाकार कार्य]]ों के संदर्भ में इस समीकरण का पहला ज्ञात समाधान प्रकाशित किया।<ref name="hermite">{{cite journal
Line 225: Line 225:
  | issue = I
  | issue = I
  | pages = 1150–1152}}</ref>
  | pages = 1150–1152}}</ref>
समतुल्य समाधान मिले।
समतुल्य समाधान मिले।


Line 232: Line 233:
एक खगोलीय कक्षा के [[लैग्रेंजियन बिंदु]]ओं के स्थानों को हल करने में, जिसमें दोनों वस्तुओं का द्रव्यमान नगण्य है, इसमें एक क्विंटिक को हल करना सम्मिलित है।
एक खगोलीय कक्षा के [[लैग्रेंजियन बिंदु]]ओं के स्थानों को हल करने में, जिसमें दोनों वस्तुओं का द्रव्यमान नगण्य है, इसमें एक क्विंटिक को हल करना सम्मिलित है।


अधिक सटीक रूप से, एल के स्थान<sub>2</sub> और मैं<sub>1</sub> निम्नलिखित समीकरणों के समाधान हैं, जहां एक तिहाई पर दो द्रव्यमानों का गुरुत्वाकर्षण बल (उदाहरण के लिए, गैया जांच और एल पर [[जेम्स वेब स्पेस टेलीस्कोप]] जैसे उपग्रहों पर सूर्य और पृथ्वी)<sub>2</sub> और एल पर [[सौर और हेलिओस्फेरिक वेधशाला]]<sub>1</sub>) सूर्य के चारों ओर पृथ्वी के साथ समकालिक कक्षा में होने के लिए उपग्रह को आवश्यक अभिकेन्द्रीय बल प्रदान करता है:
अधिक सटीक प्रपत्र से, एल<sub>2</sub> और एल<sub>1</sub> के स्थान  निम्नलिखित समीकरणों के समाधान हैं, जहां एक तिहाई पर दो द्रव्यमानों का गुरुत्वाकर्षण बल (उदाहरण के लिए, गैया जांच और एल पर [[जेम्स वेब स्पेस टेलीस्कोप]] जैसे उपग्रहों पर सूर्य और पृथ्वी एल<sub>2</sub> और [[सौर और हेलिओस्फेरिक वेधशाला|सौर और हेलिओस्फेरिक वेधशाला पर]]) एल<sub>1</sub>) सूर्य के चारों ओर पृथ्वी के साथ समकालिक कक्षा में होने के लिए उपग्रह को आवश्यक अभिकेन्द्रीय बल प्रदान करता है:


: <math>\frac{G m M_S}{(R \pm r)^2} \pm \frac{G m M_E}{r^2} = m \omega^2 (R \pm r)</math>
: <math>\frac{G m M_S}{(R \pm r)^2} \pm \frac{G m M_E}{r^2} = m \omega^2 (R \pm r)</math>
± चिन्ह L से मेल खाता है<sub>2</sub> और मैं<sub>1</sub>, क्रमश; G [[गुरुत्वाकर्षण स्थिरांक]] है, ω [[कोणीय वेग]] है, r पृथ्वी से उपग्रह की दूरी है, R सूर्य से पृथ्वी की दूरी है (अर्थात, पृथ्वी की कक्षा की अर्ध-प्रमुख धुरी), और m, M<sub>E</sub>, और एम<sub>S</sub>उपग्रह, पृथ्वी और सूर्य के संबंधित द्रव्यमान हैं।
± चिन्ह एल<sub>2</sub> और एल<sub>1</sub> से मेल खाता है, क्रमश; G [[गुरुत्वाकर्षण स्थिरांक]] है, ω [[कोणीय वेग]] है, r पृथ्वी से उपग्रह की दूरी है, R सूर्य से पृथ्वी की दूरी है (अर्थात, पृथ्वी की कक्षा की अर्ध-प्रमुख धुरी), और m, M<sub>E</sub>, और एम<sub>S</sub>उपग्रह, पृथ्वी और सूर्य के संबंधित द्रव्यमान हैं।


केप्लर के तीसरे नियम का उपयोग करना <math>\omega^2=\frac{4 \pi^2}{P^2}=\frac{G (M_S+M_E)}{R^3}</math> और सभी पदों को पुनर्व्यवस्थित करने से क्विंटिक प्राप्त होता है
केप्लर के तीसरे नियम का उपयोग करना <math>\omega^2=\frac{4 \pi^2}{P^2}=\frac{G (M_S+M_E)}{R^3}</math> और सभी पदों को पुनर्व्यवस्थित करने से क्विंटिक प्राप्त होता है
Line 250: Line 251:
\end{align}</math> .
\end{align}</math> .


इन दो क्विंटिक्स को हल करने से परिणाम मिलते हैं {{math|1=''r'' = 1.501 x 10<sup>9</sup> ''m''}} एल के लिए<sub>2</sub> और {{math|1=''r'' = 1.491 x 10<sup>9</sup> ''m''}} एल के लिए<sub>1</sub>. लैग्रेंजियन बिंदुओं पर वस्तुओं की सूची|सूर्य-पृथ्वी लैग्रैन्जियन बिंदु एल<sub>2</sub> और मैं<sub>1</sub> प्रायः पृथ्वी से 1.5 मिलियन किमी दूर दिया जाता है।
इन दो क्विंटिक्स को हल करने से परिणाम मिलते हैं एल<sub>2</sub> के लिए  {{math|1=''r'' = 1.501 x 10<sup>9</sup> ''m''}} और एल<sub>1</sub> के लिए {{math|1=''r'' = 1.491 x 10<sup>9</sup> ''m''}} प्राप्त होता है। सूर्य-पृथ्वी लैग्रैन्जियन बिंदु एल<sub>2</sub> और एल<sub>1</sub> प्रायः को पृथ्वी से 1.5 मिलियन किमी दूर दिया जाता है।


यदि छोटी वस्तु का द्रव्यमान (M<sub>E</sub>) बड़ी वस्तु (एम) के द्रव्यमान से बहुत छोटा है<sub>S</sub>), तो क्विंटिक समीकरण को बहुत कम किया जा सकता है और एल<sub>1</sub> और मैं<sub>2</sub> [[पहाड़ी क्षेत्र]] की त्रिज्या लगभग इस प्रकार दी गई है:
यदि छोटी वस्तु (एम<sub></sub>) का द्रव्यमान बड़ी वस्तु (एम<sub>एस</sub>) के द्रव्यमान से बहुत छोटा है), तो क्विंटिक समीकरण को बहुत कम किया जा सकता है और एल<sub>1</sub> और एल<sub>2</sub> [[पहाड़ी क्षेत्र]] की त्रिज्या लगभग इस प्रकार दी गई है:


: <math>r \approx R \sqrt[3]{\frac{M_E}{3 M_S}}</math>
: <math>r \approx R \sqrt[3]{\frac{M_E}{3 M_S}}</math>
उससे भी पैदावार होती है {{math|1=''r'' = 1.5 x 10<sup>9</sup> ''m''}} एल पर उपग्रहों के लिए<sub>1</sub> और मैं<sub>2</sub> सूर्य-पृथ्वी प्रणाली में.
इससे सूर्य-पृथ्वी प्रणाली में एल<sub>1</sub> और एल<sub>2</sub> पर उपग्रहों के लिए r = 1.5 x 109 मीटर भी प्राप्त होता है।


==यह भी देखें==
==यह भी देखें==
Line 267: Line 268:


==संदर्भ==
==संदर्भ==
* Charles Hermite, "Sur la résolution de l'équation du cinquème degré", ''Œuvres de Charles Hermite'', '''2''':5–21, Gauthier-Villars, 1908.
* चार्ल्स हर्माइट, "सुर ला रेजोल्यूशन डे ल इक्वेशन डु सिनक्वेम डेग्रे", वुवर्स डी चार्ल्स हर्माइट, 2:5-21, गौथियर-विलर्स, 1908।.
* {{cite book |first=Felix |last=Klein |url=https://archive.org/details/cu31924059413439 |title=Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree |translator-first=George Gavin |translator-last=Morrice |publisher=Trübner & Co. |date=1888 |isbn=0-486-49528-0}}
* {{cite book |first=फ़ेलिक्स |last=क्लीन |url=https://archive.org/details/cu31924059413439 |title=इकोसाहेड्रोन और पांचवीं डिग्री के समीकरणों के समाधान पर व्याख्यान |translator-first=जॉर्ज गेविन |translator-last=मॉरिस |publisher=ट्रुबनेर एंड कंपनी |date=1888 |isbn=0-486-49528-0}}
* Leopold Kronecker, "Sur la résolution de l'equation du cinquième degré, extrait d'une lettre adressée à M. Hermite", ''Comptes Rendus de l'Académie des Sciences'', '''46''':1:1150–1152 1858.
* लियोपोल्ड क्रोनकर, "सुर ला रेजोल्यूशन डे ल इक्वेशन डू सिनक्विएम डिग्री, एक्स्ट्राइट डी'यून लेट्रे एड्रेसी ए एम. हरमाइट", कॉम्पटेस रेंडस डी ल'अकाडेमी डेस साइंसेज, 46:1:1150–1152 1858.
* Blair Spearman and Kenneth S. Williams, "Characterization of solvable quintics {{math|''x''<sup>5</sup> + ''ax'' + ''b''}}, ''American Mathematical Monthly'', '''101''':986–992 (1994).
* ब्लेयर स्पीयरमैन और केनेथ एस. विलियम्स, "सॉल्वेबल क्विंटिक्स का लक्षण वर्णन x5 + ax + b, अमेरिकन मैथमैटिकल मंथली, 101:986-992 (1994).
* Ian Stewart, ''Galois Theory'' 2nd Edition, Chapman and Hall, 1989. {{isbn|0-412-34550-1}}. Discusses Galois Theory in general including a proof of insolvability of the general quintic.
* इयान स्टीवर्ट, गैलोज़ थ्योरी दूसरा संस्करण, चैपमैन और हॉल, 1989{{isbn|0-412-34550-1}}. सामान्य क्विंटिक की अघुलनशीलता के प्रमाण सहित सामान्य प्रपत्र      से गैलोइस सिद्धांत पर चर्चा करता है
* [[Jörg Bewersdorff]], ''Galois theory for beginners: A historical perspective'', American Mathematical Society, 2006. {{isbn|0-8218-3817-2}}. Chapter 8 ({{webarchive|url=https://web.archive.org/web/20100331181637/http://www.ams.org/bookstore/pspdf/stml-35-prev.pdf|title=The solution of equations of the fifth degree|date=31 March 2010}}) gives a description of the solution of solvable quintics {{math|''x''<sup>5</sup> + ''cx'' + ''d''}}.
* [[Jörg Bewersdorff|जोर्ग बेवर्सडॉर्फ]], शुरुआती लोगों के लिए गैलोइस सिद्धांत: एक ऐतिहासिक परिप्रेक्ष्य, अमेरिकन गणितीय सोसायटी, 2006, {{isbn|0-8218-3817-2}}. अध्याय 8 ({{webarchive|url=https://web.archive.org/web/20100331181637/http://www.ams.org/bookstore/pspdf/stml-35-prev.pdf|title=पाँचवीं डिग्री के समीकरणों का समाधान|date=31 मार्च 2010}}) हल करने योग्य क्विंटिक्स x5 + cx + d के समाधान का विवरण देता है।
* Victor S. Adamchik and David J. Jeffrey, "Polynomial transformations of Tschirnhaus, Bring and Jerrard," ''ACM SIGSAM Bulletin'', Vol. 37, No. 3, September 2003, pp.&nbsp;90–94.
* विक्टर एस. एडमचिक और डेविड जे. जेफरी, "सचिर्नहौस, ब्रिंग और जेरार्ड के बहुपद परिवर्तन," एसीएम सिग्सैम बुलेटिन, वॉल्यूम। 37, संख्या 3, सितम्बर 2003, पृ. 90-94।
* Ehrenfried Walter von Tschirnhaus, "A method for removing all intermediate terms from a given equation," ''ACM SIGSAM Bulletin'', Vol. 37, No. 1, March 2003, pp.&nbsp;1–3.
* एहरनफ्राइड वाल्टर वॉन त्सचिर्नहौस, "किसी दिए गए समीकरण से सभी मध्यवर्ती शब्दों को हटाने की एक विधि," एसीएम सिग्सैम बुलेटिन, वॉल्यूम। 37, नंबर 1, मार्च 2003, पृ. 1-3.
* {{Cite book | last1 = Lazard | first1 = Daniel | chapter = Solving quintics in radicals | title = The Legacy of Niels Henrik Abel | editor1 = [[Olav Arnfinn Laudal]] | editor2 = [[Ragni Piene]] | location = Berlin | pages = 207&ndash;225 | year = 2004 | isbn = 3-540-43826-2 | url = http://www.loria.fr/publications/2002/A02-R-449/A02-R-449.ps | archive-url = https://web.archive.org/web/20050106213419/http://www.loria.fr/publications/2002/A02-R-449/A02-R-449.ps | archive-date=January 6, 2005 }}
* {{Cite book | last1 = लाजार्ड | first1 = डैनियल | chapter = रेडिकल में क्विंटिक्स को हल करना | title = नील्स हेनरिक एबेल की विरासत | editor1 = [[ओलाव अर्नफिन लाउडल]] | editor2 = [[रागनी पिएने]] | location = बर्लिन | pages = 207-225 | year = 2004 | isbn = 3-540-43826-2 | url = http://www.loria.fr/publications/2002/A02-R-449/A02-R-449.ps | archive-url = https://web.archive.org/web/20050106213419/http://www.loria.fr/publications/2002/A02-R-449/A02-R-449.ps | archive-date=6 जनवरी 2005 }}
* {{citation | title = Finite Möbius groups, minimal immersions of spheres, and moduli| first = Gábor | last = Tóth | year = 2002 }}
* {{citation | title = परिमित मोबियस समूह, गोले का न्यूनतम विसर्जन, और मॉड्यूलि| first = गबोर | last = टोथ | year = 2002 }}
 
 
==बाहरी संबंध==
==बाहरी संबंध==
* [http://mathworld.wolfram.com/QuinticEquation.html Mathworld - Quintic Equation] – more details on methods for solving Quintics.
* [http://mathworld.wolfram.com/QuinticEquation.html मैथवर्ल्ड - क्विंटिक समीकरण] – क्विंटिक्स को हल करने के तरीकों पर अधिक विवरण।
* [http://www.emba.uvm.edu/~dummit/quintics/solvable.pdf Solving Solvable Quintics] – a method for solving solvable quintics due to David S. Dummit.
* [http://www.emba.uvm.edu/~dummit/quintics/solvable.pdf सॉल्व करने योग्य क्विंटिक्स को हल करना] – डेविड एस. डुमिट के कारण हल करने योग्य क्विंटिक्स को हल करने की एक विधि।
* [https://web.archive.org/web/20090226035640/http://www.sigsam.org/bulletin/articles/143/tschirnhaus.pdf A method for removing all intermediate terms from a given equation] - a recent English translation of Tschirnhaus' 1683 paper.
* [https://web.archive.org/web/20090226035640/http://www.sigsam.org/bulletin/articles/143/tschirnhaus.pdf किसी दिए गए समीकरण से सभी मध्यवर्ती पदों को हटाने की एक विधि] - त्सचिर्नहौस के 1683 पेपर का हालिया अंग्रेजी अनुवाद।


{{Polynomials}}
{{Polynomials}}
{{Interwiki extra|qid=Q768390}}
{{Interwiki extra|qid=Q768390}}


{{DEFAULTSORT:Quintic Equation}}[[Category: समीकरण]] [[Category: गैलोइस सिद्धांत]] [[Category: बहुपद फलन]]
{{DEFAULTSORT:Quintic Equation}}
 
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Quintic Equation]]
[[Category:Created On 01/07/2023]]
[[Category:CS1 errors]]
[[Category:Collapse templates|Quintic Equation]]
[[Category:Created On 01/07/2023|Quintic Equation]]
[[Category:Lua-based templates|Quintic Equation]]
[[Category:Machine Translated Page|Quintic Equation]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Quintic Equation]]
[[Category:Pages with maths render errors|Quintic Equation]]
[[Category:Pages with script errors|Quintic Equation]]
[[Category:Sidebars with styles needing conversion|Quintic Equation]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi|Quintic Equation]]
[[Category:Templates Vigyan Ready|Quintic Equation]]
[[Category:Templates generating microformats|Quintic Equation]]
[[Category:Templates that add a tracking category|Quintic Equation]]
[[Category:Templates that are not mobile friendly|Quintic Equation]]
[[Category:Templates that generate short descriptions|Quintic Equation]]
[[Category:Templates using TemplateData|Quintic Equation]]
[[Category:Webarchive template wayback links|Quintic Equation]]
[[Category:Wikipedia metatemplates|Quintic Equation]]
[[Category:गैलोइस सिद्धांत|Quintic Equation]]
[[Category:बहुपद फलन|Quintic Equation]]
[[Category:समीकरण|Quintic Equation]]

Latest revision as of 20:54, 15 July 2023

घात 5 के बहुपद का लेखाचित्र , 3 वास्तविक शून्य (मूल) और 4 क्रांतिक बिंदु (गणित) के साथ।

गणित में, क्विंटिक कार्य, एक कार्य (गणित) का प्रपत्र है

जहाँ a, b, c, d, e और f एक क्षेत्र (गणित) के सदस्य हैं, प्रायः तर्कसंगत संख्याएं, वास्तविक संख्याएं या जटिल संख्याएं, और a अशून्य है. दूसरे शब्दों में, एक क्विंटिक कार्य को बहुपद पांच की डिग्री के बहुपद द्वारा परिभाषित किया जाता है।

क्योंकि उनके पास एक विषम डिग्री है, सामान्य क्विंटिक कार्य लेखाचित्र किए जाने पर सामान्य घन फलन के समान दिखाई देते हैं, सिवाए इसके कि उनके पास एक अतिरिक्त मैक्सिमा और मिनिमा और एक अतिरिक्त स्थानीय न्यूनतम हो सकता है। क्विंटिक कार्य का व्युत्पन्न एक चतुर्थक फलन है।

सेटिंग g(x) = 0 और मान लिजिये a ≠ 0 एक क्विंटिक समीकरण का प्रपत्र तैयार करता है:

16वीं शताब्दी से, जब घन और चतुर्थक समीकरण हल किए गए थे, रेडिकल (एनवें मूल) के संदर्भ में क्विंटिक समीकरणों को हल करना बीजगणित में एक बड़ी समस्या थी, 19वीं शताब्दी के पूर्वार्ध तक, तब हाबिल-रफ़िनी प्रमेय द्वारा इस तरह के सामान्य समाधान की असंभवता साबित हुई थी ।

क्विंटिक समीकरण की जड़ें ढूँढना

किसी दिए गए बहुपद के फलन का (शून्य) ज्ञात करना एक प्रमुख गणितीय समस्या रही है।

रैखिक समीकरण, द्विघात समीकरण, घन समीकरण और चतुर्थक समीकरणों को मूलकों में गुणनखंडन द्वारा सदैव हल किया जा सकता है, चाहे मूल तर्कसंगत हों या अपरिमेय, वास्तविक हों या जटिल; ऐसे सूत्र हैं जो आवश्यक समाधान देते हैं। यद्पि, परिमेय पर सामान्य क्विंटिक समीकरणों के समाधान के लिए कोई बीजगणितीय अभिव्यक्ति (अर्थात् मूलांक के संदर्भ में) नहीं है; इस कथन को एबेल-रफ़िनी प्रमेय के प्रपत्र में जाना जाता है, जिसे पहली बार 1799 में प्रतिपादित किया गया था और 1824 में पूरी तरह से सिद्ध किया गया था। यह परिणाम उच्च डिग्री के समीकरणों के लिए भी लागू होता है। क्विंटिक का एक उदाहरण जिसकी जड़ों को रेडिकल के प्रपत्र में व्यक्त नहीं किया जा सकता है x5x + 1 = 0.

कुछ क्विंटिक्स को रेडिकल के संदर्भ में हल किया जा सकता है। यद्पि, समाधान प्रायः व्यवहार में उपयोग करने के लिए बहुत जटिल है। इसके बजाय, संख्यात्मक सन्निकटन की गणना एक बहुपदों की जड़ों को ढूंढन, |बहुपदों के लिए रूट-फाइंडिंग एल्गोरिदम का उपयोग करके की जाती है।

समाधानयोग्य क्विंटिक्स

कुछ क्विंटिक समीकरणों को रेडिकल के संदर्भ में हल किया जा सकता है। इनमें एक बहुपद द्वारा परिभाषित क्विंटिक समीकरण सम्मिलित हैं जो अपरिवर्तनीय बहुपद है, जैसे कि x5x4x + 1 = (x2 + 1)(x + 1)(x − 1)2. उदाहरण के लिए, यह दिखाया गया है[1] वह

रेडिकल में समाधान होता है यदि और केवल यदि इसमें पूर्णांक समाधान होता है या आर ±15, ±22440, या ±2759640 में से एक है, तो ऐसे घटनाओं में बहुपद कम करने योग्य होता है।

चूंकि रिड्यूसिबल क्विंटिक समीकरणों को हल करना तुरंत कम डिग्री के बहुपदों को हल करने के लिए कम हो जाता है, इस खंड के शेष भाग में केवल इरेड्यूसिबल क्विंटिक समीकरणों पर विचार किया जाता है, और क्विंटिक शब्द केवल इरेड्यूसिबल क्विंटिक्स को संदर्भित करेगा। एक 'समाधानयोग्य क्विंटिक' इस प्रकार एक अघुलनशील क्विंटिक बहुपद है जिसकी जड़ें रेडिकल के संदर्भ में व्यक्त की जा सकती हैं।

सॉल्व करने योग्य क्विंटिक्स और प्रायः उच्च डिग्री के सॉल्व करने योग्य बहुपदों को चिह्नित करने के लिए, एवरिस्ट गैलोइस ने यांत्रिकी विकसित की जिसने समूह सिद्धांत और गैलोइस सिद्धांत को जन्म दिया। इन यांत्रिकीयोंों को लागू करते हुए, आर्थर केली ने यह निर्धारित करने के लिए एक सामान्य मानदंड पाया कि कोई भी क्विंटिक हल करने योग्य है या नहीं।[2] यह मानदंड निम्नलिखित है.[3]

समीकरण दिया गया है

तस्किरनहाउस परिवर्तन x = yb/5a, जो क्विंटिक को दबाता है (अर्थात डिग्री चार के पद को हटा देता है), समीकरण देता है

,

कहाँ

दोनों क्विंटिक्स रेडिकल द्वारा हल करने योग्य हैं यदि और केवल यदि वे तर्कसंगत गुणांक या बहुपद के साथ निम्न डिग्री के समीकरणों में कारक हैं P2 − 1024 z Δ, नामित केली का संकल्पक, में एक तर्कसंगत जड़ है z, जहाँ

और

केली का परिणाम हमें यह परीक्षण करने की अनुमति देता है कि क्या क्विंटिक हल करने योग्य है। यदि ऐसा घटना है, तो इसकी जड़ों को ढूंढना एक अधिक कठिन समस्या है, जिसमें जड़ों को क्विंटिक के गुणांक और केली के रिसोल्वेंट की तर्कसंगत जड़ को सम्मिलित करने वाले रेडिकल के संदर्भ में व्यक्त करना सम्मिलित है।

1888 में, जॉर्ज पैक्सटन यंग ने स्पष्ट सूत्र प्रदान किए बिना, हल करने योग्य क्विंटिक समीकरण को कैसे हल किया जाए, इसका वर्णन किया;[4] 2004 में, डेनियल लाजार्ड ने तीन पेज का एक सूत्र लिखा।[5]

ब्रिंग-जेरार्ड प्रपत्र में क्विंटिक्स

प्रपत्र के हल करने योग्य क्विंटिक्स के कई पैरामीट्रिक निप्रपत्रण हैं x5 + ax + b = 0, ब्रिंग-जेरार्ड प्रपत्र कहा जाता है।

19वीं सदी के उत्तरार्ध के दौरान, जॉन स्टुअर्ट ग्लैशन, जॉर्ज पैक्सटन यंग और कार्ल रनगे ने ऐसा मानकीकरण दिया: ब्रिंग-जेरार्ड प्रपत्र में तर्कसंगत गुणांक के साथ एक अपरिवर्तनीय बहुपद क्विंटिक, हल करने योग्य है यदि और केवल यदि दोनों में से कोई एक a = 0 या लिखा जा सकता है

कहाँ μ और ν तर्कसंगत हैं.

1994 में, ब्लेयर स्पीयरमैन और केनेथ एस. विलियम्स ने एक विकल्प दिया,

1885 और 1994 के मानकीकरण के बीच संबंध को अभिव्यक्ति को परिभाषित करके देखा जा सकता है

कहाँ a = 5(4ν + 3)/ν2 + 1. वर्गमूल पैदावार के नकारात्मक घटना का उपयोग करते हुए, चर को स्केल करने के बाद, पहला पैरामीरिजेशन मिलता है जबकि सकारात्मक घटना दूसरा देता है।

प्रतिस्थापन c = m/l5, e = 1/l स्पीयरमैन-विलियम्स मानकीकरण में किसी को विशेष घटना को बाहर नहीं करने की अनुमति मिलती है a = 0, निम्नलिखित परिणाम दे रहा है:

अगर a और b परिमेय संख्याएँ, समीकरण हैं x5 + ax + b = 0 रैडिकल द्वारा हल करने योग्य है यदि या तो इसका बायां भाग तर्कसंगत गुणांक वाले 5 से कम डिग्री वाले बहुपदों का उत्पाद है या दो तर्कसंगत संख्याएं उपस्थित हैं l और m ऐसा है कि

समाधान योग्य पंचक की जड़ें

एक बहुपद समीकरण मूलकों द्वारा हल किया जा सकता है यदि उसका गैलोज़ समूह एक हल करने योग्य समूह है। इरेड्यूसिबल क्विंटिक्स के घटना में, गैलोज़ समूह सममित समूह का एक उपसमूह है S5 पांच तत्व सेट के सभी क्रमपरिवर्तन, जो हल करने योग्य है यदि और केवल यदि यह समूह का उपसमूह है F5, आदेश की 20, चक्रीय क्रमपरिवर्तन द्वारा उत्पन्न (1 2 3 4 5) और (1 2 4 3).

यदि क्विंटिक हल करने योग्य है, तो समाधानों में से एक को बीजगणितीय अभिव्यक्ति द्वारा दर्शाया जा सकता है जिसमें पांचवां मूल और अधिकतम दो वर्गमूल सम्मिलित होते हैं, जो प्रायः नेस्टेड मूलांक होते हैं। अन्य समाधान या तो पांचवें मूल को बदलकर या पांचवें मूल की सभी घटनाओं को एकता की जड़ की समान शक्ति से गुणा करके प्राप्त किया जा सकता है, जैसे कि

वास्तव में, एकता के सभी चार आदिम पांचवें मूलों को वर्गमूलों के चिह्नों को उचित प्रपत्र से बदलकर प्राप्त किया जा सकता है; अर्थात्, अभिव्यक्ति

कहाँ , एकता की चार विशिष्ट आदिम पाँचवीं जड़ें उत्पन्न करता है।

इसका तात्पर्य यह है कि किसी हल करने योग्य क्विंटिक की सभी जड़ों को लिखने के लिए चार अलग-अलग वर्गमूलों की आवश्यकता हो सकती है। यहां तक ​​कि पहले मूल के लिए जिसमें अधिकतम दो वर्गमूल सम्मिलित होते हैं, रेडिकल के संदर्भ में समाधान की अभिव्यक्ति प्रायः अत्यधिक जटिल होती है। यद्पि, जब किसी वर्गमूल की आवश्यकता नहीं होती है, तो समीकरण के लिए पहले समाधान का प्रपत्र अपेक्षाकृत सरल हो सकता है x5 − 5x4 + 30x3 − 50x2 + 55x − 21 = 0, जिसके लिए एकमात्र वास्तविक समाधान है

अधिक जटिल (यद्पि यहाँ लिखा जाना काफी छोटा है) समाधान का एक उदाहरण इसकी अद्वितीय वास्तविक जड़ है x5 − 5x + 12 = 0. होने देना a = 2φ−1, b = 2φ, और c = 45, कहाँ φ = 1+5/2 स्वर्णिम अनुपात है. तभी एकमात्र वास्तविक समाधान है x = −1.84208... द्वारा दिया गया है

या, समकक्ष, द्वारा

जहां yi चतुर्थक समीकरण की चार जड़ें हैं

अधिक सामान्यतः, यदि तर्कसंगत गुणांक के साथ अभाज्य डिग्री p का एक कोई समीकरण P(x) = 0 रेडिकल में हल करने योग्य है, तो कोई सहायक समीकरण Q(y) = 0 डिग्री का p – 1 परिभाषित कर सकता है , वह भी तर्कसंगत गुणांकों के साथ भी, जैसे कि P का प्रत्येक मूल Q की जड़ों के p-वीं मूलों का योग है ये p-वीं मूल जोसेफ-लुई लैग्रेंज द्वारा प्रस्तुत किए गए थे, और p द्वारा उनके उत्पादों को प्रायः लैग्रेंज रिसॉल्वेंट कहा जाता है। Q और इसकी जड़ों का उपयोग P(x) = 0 समाधान के लिए किया जा सकता है यद्पि ये p-वें मूलों की गणना स्वतंत्र प्रपत्र से नहीं की जा सकती है (इससे पता चलेगा p के स्थान पर जड़ें pp–1 ). इस प्रकार एक सही समाधान के लिए इन सभी p -मूलों को उनमें से किसी एक के पद में व्यक्त करना आवश्यक है। गैलोइस सिद्धांत से पता चलता है कि यह सदैव सैद्धांतिक प्रपत्र से संभव है, भले ही परिणामी सूत्र किसी भी उपयोग के लिए बहुत बड़ा हो।

यह संभव है कि की कुछ जड़ें Q तर्कसंगत हैं (जैसा कि इस खंड के पहले उदाहरण में है) या कुछ शून्य हैं। इन घटनाओं में, जड़ों के लिए सूत्र बहुत सरल है, जैसे कि हल करने योग्य डी मोइवर क्विंटिक के लिए

जहां सहायक समीकरण के दो शून्य मूल हैं और उन्हें गुणनखंडित करके, द्विघात समीकरण में बदल दिया जाता है

जैसे कि डी मोइवर क्विंटिक की पांच जड़ें दी गई हैं

जहां yi सहायक द्विघात समीकरण का कोई मूल है और ω एकता के चार आदिम 5वें मूलों में से कोई एक है। इसे आसानी से हल करने योग्य सेप्टिक समीकरण और अन्य विषम डिग्री बनाने के लिए सामान्यीकृत किया जा सकता है, जरूरी नहीं कि यह अभाज्य हो।

अन्य हल करने योग्य क्विंटिक्स

ब्रिंग-जेरार्ड प्रपत्र में असीमित प्रपत्र से कई हल करने योग्य क्विंटिक्स हैं जिन्हें पिछले अनुभाग में पैरामीटराइज़ किया गया है।

चर की स्केलिंग तक, आकृति के ठीक पाँच हल करने योग्य क्विंटिक्स होते हैं , जो हैं[6] (जहाँ s एक स्केलिंग कारक है):

पैक्सटन यंग (1888) ने हल करने योग्य क्विंटिक्स के कई उदाहरण दिए:

Root:

हल करने योग्य क्विंटिक्स का एक अनंत अनुक्रम बनाया जा सकता है, जिनकी जड़ें योग हैं n एकता की जड़ें, साथ एक अभाज्य संख्या होना: n = 10k + 1

Roots:
Root:
Root:
Root:
Root:

हल करने योग्य क्विंटिक्स के दो मानकीकृत परिवार भी हैं:

कोंडो-ब्रूमर क्विंटिक,

और परिवार मापदंडों के आधार पर

कहाँ

एक अपरिवर्तनीय मौका

घन समीकरणों के अनुप्रपत्र , हल करने योग्य क्विंटिक्स होते हैं जिनमें पांच वास्तविक जड़ें होती हैं जिनके सभी मूल समाधानों में जटिल संख्याओं की जड़ें सम्मिलित होती हैं। यह क्विंटिक के लिए कैसस इरेड्यूसिबिलिस है, जिसकी चर्चा डुमिट में की गई है।[7]: p.17  वास्तव में, यदि एक इरेड्यूसेबल क्विंटिक की सभी जड़ें वास्तविक हैं, तो किसी भी जड़ को वास्तविक रेडिकल के संदर्भ में पूरी तरह से व्यक्त नहीं किया जा सकता है (जैसा कि सभी बहुपद डिग्री के लिए सच है जो 2 की शक्तियां नहीं हैं)।

कट्टरपंथियों से परे

1835 के आसपास, जॉर्ज जेरार्ड ने प्रदर्शित किया कि क्विंटिक्स को अल्ट्रारैडिकल ्स (जिसे ब्रिंग रेडिकल्स के प्रपत्र में भी जाना जाता है) का उपयोग करके हल किया जा सकता है, जो कि अद्वितीय वास्तविक जड़ है। t5 + ta = 0 वास्तविक संख्याओं के लिए a. 1858 में चार्ल्स हर्मिट ने दिखाया कि त्रिकोणमितीय कार्यों के माध्यम से घन समीकरणों को हल करने के अधिक परिचित दृष्टिकोण के समान दृष्टिकोण का उपयोग करके ब्रिंग रेडिकल को जैकोबी थीटा कार्य और उनके संबंधित अण्डाकार मॉड्यूलर कार्य के संदर्भ में चित्रित किया जा सकता है। लगभग उसी समय, लियोपोल्ड क्रोनकर ने समूह सिद्धांत का उपयोग करते हुए, फ्रांसेस्को ब्रियोस्ची की तरह, हर्मिट के परिणाम प्राप्त करने का एक सरल तरीका विकसित किया। बाद में, फ़ेलिक्स क्लेन एक ऐसी विधि लेकर आए, जो विंशतिफलक, गैलोइस सिद्धांत और अण्डाकार मॉड्यूलर कार्यों की समप्रपत्रता से संबंधित है, जो हर्माइट के समाधान में चित्रित हैं, उन्होंने यह स्पष्टीकरण दिया कि उन्हें आखिर क्यों दिखना चाहिए, और संदर्भ में अपना स्वयं का समाधान विकसित किया सामान्यीकृत हाइपरजियोमेट्रिक फ़ंक्शंस का।[8] इसी तरह की घटनाएँ डिग्री में घटित होती हैं 7 (सेप्टिक समीकरण) और 11, जैसा कि क्लेन द्वारा अध्ययन किया गया और चर्चा की गई इकोसाहेड्रल समरूपता § संबंधित ज्यामिति.

रेडिकल लाओ के साथ हल करना

एक त्सचिर्नहौस परिवर्तन, जिसकी गणना एक चतुर्थक समीकरण को हल करके की जा सकती है, प्रपत्र के सामान्य क्विंटिक समीकरण को कम कर देता है

ब्रिंग-जेरार्ड सामान्य प्रपत्र में x5x + t = 0.

इस समीकरण की जड़ें मूलकों द्वारा व्यक्त नहीं की जा सकतीं। यद्पि, 1858 में, चार्ल्स हर्मिट ने अण्डाकार कार्यों के संदर्भ में इस समीकरण का पहला ज्ञात समाधान प्रकाशित किया।[9] लगभग उसी समय फ्रांसेस्को ब्रियोस्ची[10] और लियोपोल्ड क्रोनकर[11]

समतुल्य समाधान मिले।

इन समाधानों और कुछ संबंधित समाधानों के विवरण के लिए कट्टरपंथी लाओ देखें।

आकाशीय यांत्रिकी पर अनुप्रयोग

एक खगोलीय कक्षा के लैग्रेंजियन बिंदुओं के स्थानों को हल करने में, जिसमें दोनों वस्तुओं का द्रव्यमान नगण्य है, इसमें एक क्विंटिक को हल करना सम्मिलित है।

अधिक सटीक प्रपत्र से, एल2 और एल1 के स्थान निम्नलिखित समीकरणों के समाधान हैं, जहां एक तिहाई पर दो द्रव्यमानों का गुरुत्वाकर्षण बल (उदाहरण के लिए, गैया जांच और एल पर जेम्स वेब स्पेस टेलीस्कोप जैसे उपग्रहों पर सूर्य और पृथ्वी एल2 और सौर और हेलिओस्फेरिक वेधशाला पर) एल1) सूर्य के चारों ओर पृथ्वी के साथ समकालिक कक्षा में होने के लिए उपग्रह को आवश्यक अभिकेन्द्रीय बल प्रदान करता है:

± चिन्ह एल2 और एल1 से मेल खाता है, क्रमश; G गुरुत्वाकर्षण स्थिरांक है, ω कोणीय वेग है, r पृथ्वी से उपग्रह की दूरी है, R सूर्य से पृथ्वी की दूरी है (अर्थात, पृथ्वी की कक्षा की अर्ध-प्रमुख धुरी), और m, ME, और एमSउपग्रह, पृथ्वी और सूर्य के संबंधित द्रव्यमान हैं।

केप्लर के तीसरे नियम का उपयोग करना और सभी पदों को पुनर्व्यवस्थित करने से क्विंटिक प्राप्त होता है

साथ:

.

इन दो क्विंटिक्स को हल करने से परिणाम मिलते हैं एल2 के लिए r = 1.501 x 109 m और एल1 के लिए r = 1.491 x 109 m प्राप्त होता है। सूर्य-पृथ्वी लैग्रैन्जियन बिंदु एल2 और एल1 प्रायः को पृथ्वी से 1.5 मिलियन किमी दूर दिया जाता है।

यदि छोटी वस्तु (एम) का द्रव्यमान बड़ी वस्तु (एमएस) के द्रव्यमान से बहुत छोटा है), तो क्विंटिक समीकरण को बहुत कम किया जा सकता है और एल1 और एल2 पहाड़ी क्षेत्र की त्रिज्या लगभग इस प्रकार दी गई है:

इससे सूर्य-पृथ्वी प्रणाली में एल1 और एल2 पर उपग्रहों के लिए r = 1.5 x 109 मीटर भी प्राप्त होता है।

यह भी देखें

टिप्पणियाँ

  1. Elia, M.; Filipponi, P. (1998). "ब्रिंग-जेरार्ड फॉर्म, गोल्डन सेक्शन और स्क्वायर फाइबोनैचि संख्याओं के समीकरण" (PDF). The Fibonacci Quarterly. 36 (3): 282–286.
  2. A. Cayley, "On a new auxiliary equation in the theory of equation of the fifth order", Philosophical Transactions of the Royal Society of London 151:263-276 (1861) doi:10.1098/rstl.1861.0014
  3. This formulation of Cayley's result is extracted from Lazard (2004) paper.
  4. George Paxton Young, "Solvable Quintic Equations with Commensurable Coefficients", American Journal of Mathematics 10:99–130 (1888), JSTOR 2369502
  5. Lazard (2004, p. 207)
  6. Elkies, Noam. "Trinomials a xn + b x + c[[Category: Templates Vigyan Ready]] with interesting Galois groups". Harvard University. {{cite web}}: URL–wikilink conflict (help)
  7. David S. Dummit Solving Solvable Quintics
  8. (Klein 1888); a modern exposition is given in (Tóth 2002, Section 1.6, Additional Topic: Klein's Theory of the Icosahedron, p. 66)
  9. Hermite, Charles (1858). "Sur la résolution de l'équation du cinquième degré". Comptes Rendus de l'Académie des Sciences. XLVI (I): 508–515.
  10. Brioschi, Francesco (1858). "Sul Metodo di Kronecker per la Risoluzione delle Equazioni di Quinto Grado". Atti Dell'i. R. Istituto Lombardo di Scienze, Lettere ed Arti. I: 275–282.
  11. Kronecker, Leopold (1858). "Sur la résolution de l'equation du cinquième degré, extrait d'une lettre adressée à M. Hermite". Comptes Rendus de l'Académie des Sciences. XLVI (I): 1150–1152.


संदर्भ

  • चार्ल्स हर्माइट, "सुर ला रेजोल्यूशन डे ल इक्वेशन डु सिनक्वेम डेग्रे", वुवर्स डी चार्ल्स हर्माइट, 2:5-21, गौथियर-विलर्स, 1908।.
  • क्लीन, फ़ेलिक्स (1888). इकोसाहेड्रोन और पांचवीं डिग्री के समीकरणों के समाधान पर व्याख्यान. Translated by मॉरिस, जॉर्ज गेविन. ट्रुबनेर एंड कंपनी. ISBN 0-486-49528-0.
  • लियोपोल्ड क्रोनकर, "सुर ला रेजोल्यूशन डे ल इक्वेशन डू सिनक्विएम डिग्री, एक्स्ट्राइट डी'यून लेट्रे एड्रेसी ए एम. हरमाइट", कॉम्पटेस रेंडस डी ल'अकाडेमी डेस साइंसेज, 46:1:1150–1152 1858.
  • ब्लेयर स्पीयरमैन और केनेथ एस. विलियम्स, "सॉल्वेबल क्विंटिक्स का लक्षण वर्णन x5 + ax + b, अमेरिकन मैथमैटिकल मंथली, 101:986-992 (1994).
  • इयान स्टीवर्ट, गैलोज़ थ्योरी दूसरा संस्करण, चैपमैन और हॉल, 1989, ISBN 0-412-34550-1. सामान्य क्विंटिक की अघुलनशीलता के प्रमाण सहित सामान्य प्रपत्र से गैलोइस सिद्धांत पर चर्चा करता है
  • जोर्ग बेवर्सडॉर्फ, शुरुआती लोगों के लिए गैलोइस सिद्धांत: एक ऐतिहासिक परिप्रेक्ष्य, अमेरिकन गणितीय सोसायटी, 2006, ISBN 0-8218-3817-2. अध्याय 8 (पाँचवीं डिग्री के समीकरणों का समाधान at the Wayback Machine (archived 2010-03-31)) हल करने योग्य क्विंटिक्स x5 + cx + d के समाधान का विवरण देता है।
  • विक्टर एस. एडमचिक और डेविड जे. जेफरी, "सचिर्नहौस, ब्रिंग और जेरार्ड के बहुपद परिवर्तन," एसीएम सिग्सैम बुलेटिन, वॉल्यूम। 37, संख्या 3, सितम्बर 2003, पृ. 90-94।
  • एहरनफ्राइड वाल्टर वॉन त्सचिर्नहौस, "किसी दिए गए समीकरण से सभी मध्यवर्ती शब्दों को हटाने की एक विधि," एसीएम सिग्सैम बुलेटिन, वॉल्यूम। 37, नंबर 1, मार्च 2003, पृ. 1-3.
  • लाजार्ड, डैनियल (2004). "रेडिकल में क्विंटिक्स को हल करना". In ओलाव अर्नफिन लाउडल; रागनी पिएने (eds.). नील्स हेनरिक एबेल की विरासत. बर्लिन. pp. 207–225. ISBN 3-540-43826-2. Archived from the original on 6 जनवरी 2005. {{cite book}}: Check date values in: |archive-date= (help)CS1 maint: location missing publisher (link)
  • टोथ, गबोर (2002), परिमित मोबियस समूह, गोले का न्यूनतम विसर्जन, और मॉड्यूलि

बाहरी संबंध