सतत फलन (समुच्चय सिद्धांत): Difference between revisions
From Vigyanwiki
m (Abhishek moved page सतत कार्य (सेट सिद्धांत) to सतत फलन (समुच्चय सिद्धांत) without leaving a redirect) |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
समुच्चय सिद्धांत में, सतत फलन क्रमिक संख्याओं का क्रम है, जैसे कि सीमा चरणों में ग्रहण किए गए मान पिछले चरणों में सभी मानों की सीमा (सीमा श्रेष्ठ और सीमा इन्फिमा) हैं। अधिक औपचारिक रूप से, मान लीजिए कि γ क्रमसूचक है, और <math>s := \langle s_{\alpha}| \alpha < \gamma\rangle</math> अध्यादेशों का γ-अनुक्रम है। तब s सतत है यदि प्रत्येक सीमा पर क्रमसूचक β < γ, | |||
:<math>s_{\beta} = \limsup\{s_{\alpha}: \alpha < \beta\} = \inf \{ \sup\{s_{\alpha}: \delta \leq \alpha < \beta\} : \delta < \beta\} </math> | :<math>s_{\beta} = \limsup\{s_{\alpha}: \alpha < \beta\} = \inf \{ \sup\{s_{\alpha}: \delta \leq \alpha < \beta\} : \delta < \beta\} </math> | ||
और | और | ||
:<math>s_{\beta} = \liminf\{s_{\alpha}: \alpha < \beta\} = \sup \{ \inf\{s_{\alpha}: \delta \leq \alpha < \beta\} : \delta < \beta\} \,.</math> | :<math>s_{\beta} = \liminf\{s_{\alpha}: \alpha < \beta\} = \sup \{ \inf\{s_{\alpha}: \delta \leq \alpha < \beta\} : \delta < \beta\} \,.</math> | ||
वैकल्पिक रूप से, यदि s बढ़ता हुआ फलन है, तो s निरंतर है यदि s: γ → रेंज सतत (टोपोलॉजी) है, जब | वैकल्पिक रूप से, यदि s बढ़ता हुआ फलन है, तो s निरंतर है यदि s: γ → रेंज सतत (टोपोलॉजी) है, जब समुच्चय प्रत्येक [[ऑर्डर टोपोलॉजी]] से सुसज्जित होते हैं। इन निरंतर फलनों का उपयोग अधिकांशतः [[सह-अंतिमता]] और [[कार्डिनल संख्या|कार्डिनल संख्याओं]] में किया जाता है। | ||
साधारण फलन ऐसा फलन है, जो निरंतर और [[मोनोटोनिक फ़ंक्शन|मोनोटोनिक फलन]] दोनों है। | साधारण फलन ऐसा फलन है, जो निरंतर और [[मोनोटोनिक फ़ंक्शन|मोनोटोनिक फलन]] दोनों है। | ||
Line 9: | Line 9: | ||
==संदर्भ== | ==संदर्भ== | ||
* [[Thomas Jech]]. ''Set Theory'', 3rd millennium ed., 2002, Springer Monographs in Mathematics,Springer, {{ISBN|3-540-44085-2}} | * [[Thomas Jech]]. ''Set Theory'', 3rd millennium ed., 2002, Springer Monographs in Mathematics,Springer, {{ISBN|3-540-44085-2}} | ||
{{mathlogic-stub}} | {{mathlogic-stub}} | ||
[[Category:All stub articles]] | |||
[[Category: | |||
[[Category:Created On 07/07/2023]] | [[Category:Created On 07/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Mathematical logic stubs]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:क्रमसूचक संख्या]] | |||
[[Category:समुच्चय सिद्धान्त]] |
Latest revision as of 10:43, 18 July 2023
समुच्चय सिद्धांत में, सतत फलन क्रमिक संख्याओं का क्रम है, जैसे कि सीमा चरणों में ग्रहण किए गए मान पिछले चरणों में सभी मानों की सीमा (सीमा श्रेष्ठ और सीमा इन्फिमा) हैं। अधिक औपचारिक रूप से, मान लीजिए कि γ क्रमसूचक है, और अध्यादेशों का γ-अनुक्रम है। तब s सतत है यदि प्रत्येक सीमा पर क्रमसूचक β < γ,
और
वैकल्पिक रूप से, यदि s बढ़ता हुआ फलन है, तो s निरंतर है यदि s: γ → रेंज सतत (टोपोलॉजी) है, जब समुच्चय प्रत्येक ऑर्डर टोपोलॉजी से सुसज्जित होते हैं। इन निरंतर फलनों का उपयोग अधिकांशतः सह-अंतिमता और कार्डिनल संख्याओं में किया जाता है।
साधारण फलन ऐसा फलन है, जो निरंतर और मोनोटोनिक फलन दोनों है।
संदर्भ
- Thomas Jech. Set Theory, 3rd millennium ed., 2002, Springer Monographs in Mathematics,Springer, ISBN 3-540-44085-2