आकारिक वर्ग नियम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
गणित में, एक '''आकारिक''' '''वर्ग''' '''नियम''' (सामान्यतः) एक [[औपचारिक शक्ति श्रृंखला|आकारिक शक्ति श्रृंखला]] है, जो ऐसे व्यवहार करता है, जैसे कि यह एक लाई वर्ग का गुणनफल था। उन्हें [[एस बोचनर (1946)]] द्वारा प्रस्तुत किया गया था। आकारिक वर्ग शब्द का अर्थ कभी-कभी आकारिक वर्ग नियम के समान होता है, और कभी-कभी इसका अर्थ कई सामान्यीकरणों में से एक होता है। आकारिक वर्ग लाई वर्ग (या बीजगणितीय वर्गों) और लाई बीजगणित के बीच मध्यवर्ती हैं। उनका उपयोग [[बीजगणितीय संख्या सिद्धांत]] और [[बीजगणितीय टोपोलॉजी]] में किया जाता है।
गणित में, एक '''आकारिक''' '''वर्ग''' '''नियम''' (सामान्यतः) एक [[औपचारिक शक्ति श्रृंखला|आकारिक शक्ति श्रृंखला]] है, जो ऐसे व्यवहार करता है, जैसे कि यह एक लाई वर्ग का गुणनफल था। उन्हें [[एस बोचनर (1946)]] द्वारा प्रस्तुत किया गया था। आकारिक वर्ग शब्द का अर्थ कभी-कभी आकारिक वर्ग नियम के समान होता है, और कभी-कभी इसका अर्थ कई सामान्यीकरणों में से एक होता है। आकारिक वर्ग लाई वर्ग (या बीजगणितीय वर्गों) और लाई बीजगणित के बीच मध्यवर्ती हैं। इसी प्रकार उनका उपयोग [[बीजगणितीय संख्या सिद्धांत]] और [[बीजगणितीय टोपोलॉजी]] में किया जाता है।


==परिभाषाएँ==
==परिभाषाएँ==
Line 5: Line 5:
# ''F''(''x'',''y'') = ''x'' + ''y'' + उच्च घात के पद है।
# ''F''(''x'',''y'') = ''x'' + ''y'' + उच्च घात के पद है।
# ''F''(''x'', ''F''(''y'',''z'')) = ''F''(''F''(''x'' ,''y''), ''z'') (सहयोगिता) है।
# ''F''(''x'', ''F''(''y'',''z'')) = ''F''(''F''(''x'' ,''y''), ''z'') (सहयोगिता) है।
सबसे सरल उदाहरण योजक आकारिक वर्ग नियम F(x, y) = x + y है। परिभाषा का विचार यह है कि F को लाई वर्ग के गुणनफल के आकारिक शक्ति श्रृंखला विस्तार के जैसे कुछ होना चाहिए, जहां हम निर्देशांक चुनते हैं जिससे कि लाई समूह की पहचान मूल हो सकती है।
सबसे सरल उदाहरण योजक आकारिक वर्ग नियम F(x, y) = x + y है। परिभाषा का विचार यह है, कि F को लाई वर्ग के गुणनफल के आकारिक शक्ति श्रृंखला विस्तार के जैसे कुछ होना चाहिए, जहां हम निर्देशांक चुनते हैं जिससे कि लाई समूह की तत्समक मूल हो सकती है।


अधिक सामान्यतः, एक n-आयामी आकारिक वर्ग नियम 2n चर में n शक्ति श्रृंखला ''F<sub>i</sub>''(''x''<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x<sub>n</sub>'', ''y''<sub>1</sub>, ''y''<sub>2</sub>, ..., ''y<sub>n</sub>'') का एक संग्रह है, जैसे कि
इसी प्रकार अधिक सामान्यतः, एक n-आयामी आकारिक वर्ग नियम 2n चर में n शक्ति श्रृंखला ''F<sub>i</sub>''(''x''<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x<sub>n</sub>'', ''y''<sub>1</sub>, ''y''<sub>2</sub>, ..., ''y<sub>n</sub>'') का एक संग्रह है, जैसे कि
# F(x,y) = x + y + उच्च घात का पद है।
# F(x,y) = x + y + उच्च घात का पद है।
# F(x, F(y,z)) = F(F(x,y), z) है।
# F(x, F(y,z)) = F(F(x,y), z) है।
जहां हम F के लिए (F1, ..., Fn), तथा x के लिए (x1, ..., xn), और इसी प्रकार लिखते हैं।
जहां हम F के लिए (F1, ..., Fn), तथा x के लिए (x1, ..., xn), और इसी प्रकार लिखते हैं।


आकारिक वर्ग नियम को क्रम विनिमय कहा जाता है, यदि F(x,y) = F(y,x) यदि R टॉरशन फ्री है, तो कोई R को Q-बीजगणित में एम्बेड कर सकता है, और किसी भी एक-आयामी आकारिक वर्ग नियम F को F(x,y) = exp(log(x) + log(y)) के रूप में लिखने के लिए घातांकीय और लघुगणक का उपयोग कर सकता है, इसलिए F आवश्यक रूप से क्रम विनिमय है।<ref>Note that the formula for the logarithm in terms of the invariant differential given in dimension one does not assume that ''F'' is commutative.</ref> अधिक सामान्यतः, हमारे पास है।
आकारिक वर्ग नियम को क्रम विनिमय कहा जाता है, यदि F(x,y) = F(y,x) यदि R टॉरशन फ्री है, तो कोई R को Q-बीजगणित में एम्बेड कर सकता है, और किसी भी एक-आयामी आकारिक वर्ग नियम F को F(x,y) = exp(log(x) + log(y)) के रूप में लिखने के लिए घातांकीय और लघुगणक का उपयोग कर सकता है, इसलिए F आवश्यक रूप से क्रम विनिमय है।<ref>Note that the formula for the logarithm in terms of the invariant differential given in dimension one does not assume that ''F'' is commutative.</ref> इसी प्रकार अधिक सामान्यतः हमारे पास है।
:प्रमेय: R पर प्रत्येक एक-आयामी आकारिक वर्ग नियम क्रमविनिमेय है, (अर्थात, कोई गैर-शून्य तत्व नहीं है जो टॉरशन और निलपोटेंट दोनों हैं) यदि R में कोई गैर-शून्य टोरसन निलपोटेंट नहीं है।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§6.1}}</ref>
:प्रमेय: R पर प्रत्येक एक-आयामी आकारिक वर्ग नियम क्रमविनिमेय है, (अर्थात, कोई गैर-शून्य तत्व नहीं है जो टॉरशन और निलपोटेंट दोनों हैं) यदि R में कोई गैर-शून्य टोरसन निलपोटेंट नहीं है।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§6.1}}</ref>
[[समूह (गणित)|वर्ग (गणित)]] के लिए व्युत्क्रम तत्वों के अस्तित्व के अनुरूप स्वयंसिद्ध की कोई आवश्यकता नहीं है, क्योंकि यह आकारिक वर्ग नियम की परिभाषा से स्वचालित रूप से अनुसरण करता है। जैसे कि F(x,G(x)) = 0 दूसरे शब्दों में, हम निरंतर एक (अद्वितीय) शक्ति श्रृंखला पा सकते हैं।
[[समूह (गणित)|वर्ग (गणित)]] के लिए व्युत्क्रम तत्वों के अस्तित्व के अनुरूप स्वयंसिद्ध की कोई आवश्यकता नहीं है, क्योंकि यह आकारिक वर्ग नियम की परिभाषा से स्वचालित रूप से अनुसरण करता है। जैसे कि F(x,G(x)) = 0 दूसरे शब्दों में, हम निरंतर एक (अद्वितीय) शक्ति श्रृंखला पा सकते हैं।
Line 18: Line 18:
आयाम m के आकारिक वर्ग नियम F से आयाम n के आकारिक वर्ग नियम G तक एक समरूपता m चर में n शक्ति श्रृंखला का एक संग्रह F है, जैसे कि
आयाम m के आकारिक वर्ग नियम F से आयाम n के आकारिक वर्ग नियम G तक एक समरूपता m चर में n शक्ति श्रृंखला का एक संग्रह F है, जैसे कि
::G(f(x), f(y)) = f(F(x,y))
::G(f(x), f(y)) = f(F(x,y))
व्युत्क्रम के साथ एक समरूपता को  समाकारिकता कहा जाता है, और इसे सख्त समाकारिकता कहा जाता है, यदि इसके अतिरिक्त f(x) = x + उच्च घात की शर्तें, उनके बीच एक  समाकारिकता के साथ दो आकारिक वर्ग नियम अनिवार्य रूप से समान हैं, वे मात्र "निर्देशांक के परिवर्तन" से भिन्न होते हैं।
इसी प्रकार व्युत्क्रम के साथ एक समरूपता को  समाकारिकता कहा जाता है, और इसे सख्त समाकारिकता कहा जाता है, यदि इसके अतिरिक्त f(x) = x + उच्च घात की शर्तें, उनके बीच एक  समाकारिकता के साथ दो आकारिक वर्ग नियम अनिवार्य रूप से समान हैं, वे मात्र "निर्देशांक के परिवर्तन" से भिन्न होते हैं।


==उदाहरण==
==उदाहरण==
Line 25: Line 25:
*गुणात्मक आकारिक वर्ग नियम द्वारा दिया गया है।
*गुणात्मक आकारिक वर्ग नियम द्वारा दिया गया है।
:: <math>F(x,y) = x + y + xy.\ </math>
:: <math>F(x,y) = x + y + xy.\ </math>
:इस नियम को इस प्रकार समझा जा सकता है। वलय R के गुणक वर्ग में गुणनफल G को G(a,b) = ab द्वारा दिया गया है। यदि हम a = 1 + x, b = 1 + y, और G = 1 + F डालकर 0 को पहचान बनाने के लिए "परिवर्तित करते हैं", तो हम F(x,y) = x + y + xy पाते हैं।
:इस नियम को इस प्रकार समझा जा सकता है। वलय R के गुणक वर्ग में गुणनफल G को G(a,b) = ab द्वारा दिया गया है। यदि हम a = 1 + x, b = 1 + y, और G = 1 + F डालकर 0 को तत्समक बनाने के लिए "परिवर्तित करते हैं", तो F(x,y) = x + y + xy हो जाता है हैं।
[[तर्कसंगत संख्याओं]] पर, योगात्मक आकारिक वर्ग नियम से गुणक तक एक  समाकारिकता होता है, जो exp(''x'') − 1 द्वारा दिया जाता है। सामान्य क्रम विनिमय वलय्स R पर ऐसे कोई समरूपता नहीं है, क्योंकि इसे परिभाषित करने के लिए गैर-अभिन्न तर्कसंगत संख्याओं की आवश्यकता होती है, और योजक और गुणक आकारिक वर्ग सामान्यतः समाकृतिक नहीं होते हैं।
[[तर्कसंगत संख्याओं]] पर, योगात्मक आकारिक वर्ग नियम से गुणक तक एक  समाकारिकता होता है, जो exp(''x'') − 1 द्वारा दिया जाता है। सामान्य क्रम विनिमय वलय्स R पर ऐसे कोई समरूपता नहीं है, क्योंकि इसे परिभाषित करने के लिए गैर-अभिन्न तर्कसंगत संख्याओं की आवश्यकता होती है, और योजक और गुणक आकारिक वर्ग सामान्यतः समाकृतिक नहीं होते हैं।


*सामान्यतः हम पहचान पर निर्देशांक लेकर और गुणनफल मानचित्र के आकारिक शक्ति श्रृंखला विस्तार को लिखकर किसी भी बीजगणितीय वर्ग या आयाम n के लाई वर्ग से आयाम n के एक आकारिक वर्ग नियम का निर्माण कर सकते हैं। योगात्मक और गुणक आकारिक वर्ग नियम इस प्रकार से योगात्मक और गुणक बीजगणितीय वर्गों से प्राप्त किए जाते हैं। इसका एक और महत्वपूर्ण विशेष स्थिति एक [[इलिप्टिक वक्र|दीर्घ वृत्ताकार]] (या [[एबेलियन किस्म]]) का आकारिक वर्ग (नियम) है।
*सामान्यतः हम तत्समक पर निर्देशांक लेकर और गुणनफल मानचित्र के आकारिक शक्ति श्रृंखला विस्तार को लिखकर किसी भी बीजगणितीय वर्ग या आयाम n के लाई वर्ग से आयाम n के एक आकारिक वर्ग नियम का निर्माण कर सकते हैं। योगात्मक और गुणक आकारिक वर्ग नियम इस प्रकार से योगात्मक और गुणक बीजगणितीय वर्गों से प्राप्त किए जाते हैं। इसका एक और महत्वपूर्ण विशेष स्थिति एक [[इलिप्टिक वक्र|दीर्घ वृत्ताकार]] (या [[एबेलियन किस्म]]) का आकारिक वर्ग (नियम) है।
*F(x,y) = (x + y)/(1 + xy) अतिपरवलीय स्पर्शरेखा फ़ंक्शन के लिए अतिरिक्त सूत्र (1 के समतुल्य [[प्रकाश की गति]] के साथ) से आने वाला एक आकारिक वर्ग नियम है: tanh(x + y) = F(tanh(x), tanh(y)), और यह [[विशेष सापेक्षता]] में वेगों को जोड़ने का सूत्र भी है।
*F(x,y) = (x + y)/(1 + xy) अतिपरवलीय स्पर्शरेखा फ़ंक्शन के लिए अतिरिक्त सूत्र (1 के समतुल्य [[प्रकाश की गति]] के साथ) से आने वाला एक आकारिक वर्ग नियम है, tanh(x + y) = F(tanh(x), tanh(y)), और यह [[विशेष सापेक्षता]] में वेगों को जोड़ने का सूत्र भी है।
*<math display="inline">F(x,y) = \left. \left(x\sqrt{1-y^4} +y\sqrt{1-x^4}\right) \right/ \!(1+x^2y^2)</math> Z पर एक आकारिक वर्ग नियम है,[1/2] [[यूलर]] द्वारा पाया गया, एक [[इलिप्टिक वक्र|दीर्घ]] [[इलिप्टिक वक्र|वृत्ताकार]] पूर्णांकीय (स्ट्रिकलैंड) के लिए अतिरिक्त सूत्र के रूप में:
*<math display="inline">F(x,y) = \left. \left(x\sqrt{1-y^4} +y\sqrt{1-x^4}\right) \right/ \!(1+x^2y^2)</math> Z पर एक आकारिक वर्ग नियम है, इसी प्रकार [1/2] [[यूलर]] द्वारा पाया गया, एक [[इलिप्टिक वक्र|दीर्घ]] [[इलिप्टिक वक्र|वृत्ताकार]] पूर्णांकीय (स्ट्रिकलैंड) के लिए अतिरिक्त सूत्र के रूप में है।


:: <math>\int_0^x{dt\over \sqrt{1-t^4}} + \int_0^y{dt\over \sqrt{1-t^4}} = \int_0^{F(x,y)}{dt\over \sqrt{1-t^4}}.</math>
:: <math>\int_0^x{dt\over \sqrt{1-t^4}} + \int_0^y{dt\over \sqrt{1-t^4}} = \int_0^{F(x,y)}{dt\over \sqrt{1-t^4}}.</math>
==लाई बीजगणित==
==लाई बीजगणित==


कोई भी n-आयामी आकारिक वर्ग नियम वलय R पर एक n-आयामी लाई बीजगणित देता है, जिसे आकारिक वर्ग नियम के द्विघात भाग ''F''<sub>2</sub> के संदर्भ में परिभाषित किया गया है।
इसी प्रकार कोई भी n-आयामी आकारिक वर्ग नियम वलय R पर एक n-आयामी लाई बीजगणित देता है, जिसे आकारिक वर्ग नियम के द्विघात भाग ''F''<sub>2</sub> के संदर्भ में परिभाषित किया गया है।
:[''x'',''y''] = ''F''<sub>2</sub>(''x'',''y'') − ''F''<sub>2</sub>(''y'',''x'')
:[''x'',''y''] = ''F''<sub>2</sub>(''x'',''y'') − ''F''<sub>2</sub>(''y'',''x'')
लाई वर्गों या बीजगणितीय वर्गों से लाई बीजगणित तक के प्राकृतिक कार्य को लाई वर्गों से आकारिक वर्ग नियमों में सम्मिलित किया जा सकता है, इसके पश्चात आकारिक वर्ग के लाई बीजगणित को लिया जा सकता है:
लाई वर्गों या बीजगणितीय वर्गों से लाई बीजगणित तक के प्राकृतिक कार्य को लाई वर्गों से आकारिक वर्ग नियमों में सम्मिलित किया जा सकता है, इसके पश्चात आकारिक वर्ग के लाई बीजगणित को लिया जा सकता है:
::लाई वर्ग → आकारिक वर्ग नियम → लाई बीजगणित
::लाई वर्ग → आकारिक वर्ग नियम → लाई बीजगणित


[[विशेषता (बीजगणित)]] 0 के क्षेत्रों में, आकारिक वर्ग नियम अनिवार्य रूप से परिमित-आयामी लाई बीजगणित के समान होते हैं, अधिक उपयुक्त रूप से, परिमित-आयामी आकारिक वर्ग नियमों से परिमित-आयामी लाई बीजगणित तक कारक श्रेणियों का एक समतुल्य है।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§14.2.3}}</ref> गैर-शून्य विशेषता वाले क्षेत्रों में, आकारिक वर्ग नियम लाई बीजगणित के समकक्ष नहीं हैं। वास्तव में, इस स्थिति में यह सर्वविदित है, कि एक बीजगणितीय वर्ग से उसके लाई बीजगणित में जाने से अधिकांशतः बहुत अधिक जानकारी दूर हो जाती है, लेकिन इसके अतिरिक्त आकारिक वर्ग नियम में जाने से अधिकांशतः पर्याप्त जानकारी बच जाती है। तो कुछ अर्थों में आकारिक वर्ग नियम विशेषता P > 0 में लाई बीजगणित के लिए "सही" विकल्प हैं।
[[विशेषता (बीजगणित)]] 0 के क्षेत्रों में, आकारिक वर्ग नियम अनिवार्य रूप से परिमित-आयामी लाई बीजगणित के समान होते हैं, इसी प्रकार अधिक उपयुक्त रूप से, परिमित-आयामी आकारिक वर्ग नियमों से परिमित-आयामी लाई बीजगणित तक कारक श्रेणियों का एक समतुल्य है।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§14.2.3}}</ref> गैर-शून्य विशेषता वाले क्षेत्रों में, आकारिक वर्ग नियम लाई बीजगणित के समकक्ष नहीं हैं। वास्तव में, इस स्थिति में यह सर्वविदित है, कि एक बीजगणितीय वर्ग से उसके लाई बीजगणित में जाने से अधिकांशतः ज्यादा अधिक जानकारी दूर हो जाती है, लेकिन इसके अतिरिक्त आकारिक वर्ग नियम में जाने से अधिकांशतः पर्याप्त जानकारी बच जाती है। तो कुछ अर्थों में आकारिक वर्ग नियम विशेषता P > 0 में लाई बीजगणित के लिए "सही" विकल्प हैं।


==क्रमविनिमेय आकारिक वर्ग नियम का लघुगणक==
==क्रमविनिमेय आकारिक वर्ग नियम का लघुगणक==


यदि F एक क्रम विनिमय Q-बीजगणित R पर एक क्रम विनिमय n-आयामी आकारिक वर्ग नियम है, तो यह योगात्मक आकारिक वर्ग नियम के लिए सख्ती से समाकृतिक है।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§11.1.6}}</ref> दूसरे शब्दों में, योगात्मक आकारिक वर्ग से F तक एक सख्त  समाकारिकता F है, जिसे F का लघुगणक कहा जाता है, जिससे कि
इसी प्रकार यदि F एक क्रम विनिमय Q-बीजगणित R पर एक क्रम विनिमय n-आयामी आकारिक वर्ग नियम है, तो यह योगात्मक आकारिक वर्ग नियम के लिए सख्ती से समाकृतिक है।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§11.1.6}}</ref> दूसरे शब्दों में, योगात्मक आकारिक वर्ग से F तक एक सख्त  समाकारिकता F है, जिसे F का लघुगणक कहा जाता है, जिससे कि
::f(F(x,y)) = f(x) + f(y).
::f(F(x,y)) = f(x) + f(y).


Line 51: Line 51:
*''F''(''x'',''y'') = ''x'' + ''y'' +''xy'' का लघुगणक ''f''(''x) = log(1 + x)है'', क्योंकि log(1 + ''x'' + ''y'' + ''xy'') = log(1 + ''x'') + log(1 + ''y'') है।
*''F''(''x'',''y'') = ''x'' + ''y'' +''xy'' का लघुगणक ''f''(''x) = log(1 + x)है'', क्योंकि log(1 + ''x'' + ''y'' + ''xy'') = log(1 + ''x'') + log(1 + ''y'') है।


यदि R में परिमेय नहीं है, तो R ⊗ Q तक अदिश राशि के विस्तार द्वारा एक मानचित्र F का निर्माण किया जा सकता है, लेकिन यदि R में धनात्मक विशेषता है, तो यह अर्ध कुछ शून्य पर भेज दिया जाता है। वलय R पर आकारिक वर्ग नियम अधिकांशतः उनके लघुगणक को R ⊗ Q में गुणांक के साथ एक शक्ति श्रृंखला के रूप में लिखकर बनाया जाता है, और फिर यह सिद्ध किया जाता है, कि R ⊗ Q पर संबंधित आकारिक वर्ग के गुणांक वास्तव में R में हैं। धनात्मक में काम करते समय विशेषता, कोई सामान्यतः R को एक मिश्रित विशेषता वलय से परिवर्तित कर देता है, जिसका R पर प्रक्षेपण होता है, जैसे कि विट सदिश की वलय डब्ल्यू (R), और अंत में R तक कम हो जाती है।
यदि R में परिमेय नहीं है, तो R ⊗ Q तक अदिश राशि के विस्तार द्वारा एक मानचित्र F का निर्माण किया जा सकता है, लेकिन यदि R में धनात्मक विशेषता है, तो यह अर्ध कुछ शून्य पर भेज दिया जाता है। इसी प्रकार वलय R पर आकारिक वर्ग नियम अधिकांशतः उनके लघुगणक को R ⊗ Q में गुणांक के साथ एक शक्ति श्रृंखला के रूप में लिखकर बनाया जाता है, और फिर यह सिद्ध किया जाता है, कि R ⊗ Q पर संबंधित आकारिक वर्ग के गुणांक वास्तव में R में हैं। इसी प्रकार धनात्मक में काम करते समय विशेषता, कोई सामान्यतः R को एक मिश्रित विशेषता वलय से परिवर्तित कर देता है, जिसका R पर प्रक्षेपण होता है, जैसे कि विट सदिश की वलय डब्ल्यू (R), और अंत में R तक कम हो जाती है।


=== अपरिवर्तनीय अंतर ===
=== अपरिवर्तनीय अंतर ===
मान लीजिए, जब F एक-आयामी होता है, तो कोई इसके लघुगणक को अपरिवर्तनीय अवकल ω(t) के संदर्भ में लिख सकता है।<ref>{{Cite web |last=Mavraki |first=Niki Myrto |title=औपचारिक समूह|url=https://personal.math.ubc.ca/~reichst/FormalGroups.pdf |url-status=live |archive-url=https://web.archive.org/web/20220912144322/https://personal.math.ubc.ca/~reichst/FormalGroups.pdf |archive-date=2022-09-12}}</ref><math display="block">\omega(t) = \frac{\partial F}{\partial x}(0,t)^{-1} dt \in R[[t]]dt,</math>जहाँ <math display="inline">R[[t]] dt</math> नि: शुल्क है, <math display="inline">R[[t]]</math>-एक प्रतीक ''dt'' पर रैंक 1 का मॉड्यूल हैs, तो फिर ω इस अर्थ में अनुवाद अपरिवर्तनीय है कि<math display="block">F^* \omega = \omega,</math>यदि हम लिखते हैं, <math display="inline">\omega(t) = p(t)dt</math>, तो परिभाषा के अनुसार<math display="block">F^* \omega := p(F(t,s)) \frac{\partial F}{\partial x}(t,s) dt.</math>यदि कोई विस्तार पर विचार करता है। <math display="inline">\omega(t) = (1 + c_1 t + c_2 t^2 + \dots) dt</math>, सूत्र<math display="block">f(t) = \int \omega(t) = t + \frac{c_1}{2} t^2 + \frac{c_2}{3} t^3 + \dots</math>F के लघुगणक को परिभाषित करता है।
मान लीजिए, जब F एक-आयामी होता है, तो कोई इसके लघुगणक को अपरिवर्तनीय अवकल ω(t) के संदर्भ में लिख सकता है।<ref>{{Cite web |last=Mavraki |first=Niki Myrto |title=औपचारिक समूह|url=https://personal.math.ubc.ca/~reichst/FormalGroups.pdf |url-status=live |archive-url=https://web.archive.org/web/20220912144322/https://personal.math.ubc.ca/~reichst/FormalGroups.pdf |archive-date=2022-09-12}}</ref><math display="block">\omega(t) = \frac{\partial F}{\partial x}(0,t)^{-1} dt \in R[[t]]dt,</math>जहाँ <math display="inline">R[[t]] dt</math> नि: शुल्क है, <math display="inline">R[[t]]</math>-एक प्रतीक ''dt'' पर रैंक 1 का मॉड्यूल हैs, तो फिर ω इस अर्थ में अनुवाद अपरिवर्तनीय है, कि<math display="block">F^* \omega = \omega,</math>यदि हम लिखते हैं, <math display="inline">\omega(t) = p(t)dt</math>, तो परिभाषा के अनुसार<math display="block">F^* \omega := p(F(t,s)) \frac{\partial F}{\partial x}(t,s) dt.</math>यदि कोई विस्तार पर विचार करता है। <math display="inline">\omega(t) = (1 + c_1 t + c_2 t^2 + \dots) dt</math>, सूत्र<math display="block">f(t) = \int \omega(t) = t + \frac{c_1}{2} t^2 + \frac{c_2}{3} t^3 + \dots</math>F के लघुगणक को परिभाषित करता है।


==आकारिक वर्ग नियम का आकारिक वर्ग वलय==
==आकारिक वर्ग नियम का आकारिक वर्ग वलय==


एक आकारिक वर्ग नियम की आकारिक वर्ग वलय एक वर्ग वलय के अनुरूप एक सह-विनिमेय [[हॉपफ बीजगणित]] है, और एक ली बीजगणित के [[सार्वभौमिक आवरण बीजगणित]] के समान है, जिनमें से दोनों कोक्रम विनिमय हॉफ बीजगणित भी हैं। सामान्यतः सह-विनिमेय हॉपफ बीजगणित वर्गों की प्रकार व्यवहार करते हैं।
एक आकारिक वर्ग नियम की आकारिक वर्ग वलय एक वर्ग के वर्ग वलय और एक लाई बीजगणित के [[सार्वभौमिक आवरण बीजगणित]] के अनुरूप एक सह-विनिमेय [[हॉपफ बीजगणित]] है, जो दोनों सह-अनुकरणीय हॉपफ बीजगणित भी हैं। सामान्यतः सह-विनिमेय हॉपफ बीजगणित अधिक हद तक वर्गों के जैसे व्यवहार करते हैं।


सरलता के लिए हम 1-आयामी स्थिति का वर्णन करते हैं, तथा उच्च-आयामी स्थिति समान है, अतिरिक्त इसके कि यह अंकन अधिक सम्मिलित हो जाता है।
सरलता के लिए हम 1-आयामी स्थिति का वर्णन करते हैं, तथा उच्च-आयामी स्थिति समान है, अतिरिक्त इसके कि यह अंकन अधिक सम्मिलित हो जाता है।


मान लीजिए कि F, R पर एक (1-आयामी) आकारिक वर्ग नियम है। इसकी आकारिक वर्ग वलय (जिसे हाइपरलेजेब्रा या इसका 'सहसंयोजक बायलजेब्रा' भी कहा जाता है) एक सह-विनिमेय हॉपफ बीजगणित H है जिसका निर्माण निम्नानुसार किया गया है।
मान लीजिए कि F, R पर एक (1-आयामी) आकारिक वर्ग नियम है। इसकी आकारिक वर्ग वलय (जिसे हायपरबीजगणित या इसका 'सहसंयोजक बाईबीजगणित' भी कहा जाता है) एक सह-विनिमेय हॉपफ बीजगणित H है जिसका निर्माण निम्नानुसार किया गया है।
* एक R-[[मॉड्यूल (गणित)]] के रूप में, H एक आधार 1 = D (0), D (1), D (2), ... है।
* एक R-[[मॉड्यूल (गणित)]] के रूप में, H एक आधार 1 = D (0), D (1), D (2), ... है।
* सह-गुणनफल Δ''D''<sup>(''n'')</sup> = Σ''D''<sup>(''i'')</sup> ⊗ ''D''<sup>(''n''−''i'')</sup> द्वारा दिया गया है, (इसलिए इस को बीजगणित का कोलजेब्रा का द्वैत मात्र आकारिक शक्ति श्रृंखला की वलय है)।
* सह-गुणनफल Δ''D''<sup>(''n'')</sup> = Σ''D''<sup>(''i'')</sup> ⊗ ''D''<sup>(''n''−''i'')</sup> द्वारा दिया गया है, (इसलिए इस को बीजगणित का सहबीजगणित का द्वैत मात्र आकारिक शक्ति श्रृंखला की वलय है)।
*गणक η, D (0) के गुणांक द्वारा दिया गया है।
*गणक η, D (0) के गुणांक द्वारा दिया गया है।
*पहचान 1 = D(0) है।
*तत्समक 1 = D(0) है।
*एंटीपोड F ''D''<sup>(''n'')</sup> to (−1)<sup>''n''</sup>''D''<sup>(''n'')</sup> तक ले जाता है।
*एंटीपोड F ''D''<sup>(''n'')</sup> to (−1)<sup>''n''</sup>''D''<sup>(''n'')</sup> तक ले जाता है।
*गुणांक ''D''<sup>(''i'')</sup>''D''<sup>(''j'')</sup> में ''D''<sup>(1</sup> का गुणांक, F(x,y) में ''x<sup>i</sup>y<sup>j</sup>'' का गुणांक है।
*गुणांक ''D''<sup>(''i'')</sup>''D''<sup>(''j'')</sup> में ''D''<sup>(1</sup> का गुणांक, F(x,y) में ''x<sup>i</sup>y<sup>j</sup>'' का गुणांक है।
Line 80: Line 80:
F के वर्ग-मूल्यवान कारक को F के आकारिक वर्ग वलय H का उपयोग करके भी वर्णित किया जा सकता है। सरलता के लिए हम मान लेंगे कि F 1-आयामी है; सामान्य स्थिति समान है। किसी भी सह-विनिमेय हॉपफ बीजगणित के लिए, एक तत्व जी को 'वर्ग-समान' कहा जाता है, यदि Δg = g ⊗ g और εg = 1, और वर्ग जैसे तत्व गुणन के अनुसार एक वर्ग बनाते हैं। एक वलय पर एक आकारिक वर्ग नियम के हॉपफ बीजगणित के स्थितियाँ में, वर्ग जैसे तत्व पूर्णतया फॉर्म के होते हैं।
F के वर्ग-मूल्यवान कारक को F के आकारिक वर्ग वलय H का उपयोग करके भी वर्णित किया जा सकता है। सरलता के लिए हम मान लेंगे कि F 1-आयामी है; सामान्य स्थिति समान है। किसी भी सह-विनिमेय हॉपफ बीजगणित के लिए, एक तत्व जी को 'वर्ग-समान' कहा जाता है, यदि Δg = g ⊗ g और εg = 1, और वर्ग जैसे तत्व गुणन के अनुसार एक वर्ग बनाते हैं। एक वलय पर एक आकारिक वर्ग नियम के हॉपफ बीजगणित के स्थितियाँ में, वर्ग जैसे तत्व पूर्णतया फॉर्म के होते हैं।
:''D''<sup>(0)</sup> + ''D''<sup>(1)</sup>''x'' + ''D''<sup>(2)</sup>''x''<sup>2</sup> + ...
:''D''<sup>(0)</sup> + ''D''<sup>(1)</sup>''x'' + ''D''<sup>(2)</sup>''x''<sup>2</sup> + ...
निलोपोटेंट तत्वों के लिए x, विशेष रूप से हम S के निलपोटेंट तत्वों के साथ H ⊗ S के वर्ग जैसे तत्वों की पहचान कर सकते हैं, और H ⊗ S के वर्ग जैसे तत्वों पर वर्ग संरचना को तब F(S) पर वर्ग संरचना के साथ पहचाना जाता है।
निलोपोटेंट तत्वों के लिए x, विशेष रूप से हम S के निलपोटेंट तत्वों के साथ H ⊗ S के वर्ग जैसे तत्वों की तत्समक कर सकते हैं, और H ⊗ S के वर्ग जैसे तत्वों पर वर्ग संरचना को तब F(S) पर वर्ग संरचना के साथ तत्समक हो जाता है।


==ऊंचाई==
==ऊंचाई==
मान लीजिए कि F विशेषता P > 0 के क्षेत्र पर एक-आयामी आकारिक वर्ग नियमों के बीच एक समरूपता है। फिर f या तो शून्य है, या इसकी शक्ति श्रृंखला विस्तार में पहला गैर-शून्य पद क्या है?
मान लीजिए कि F विशेषता P > 0 के क्षेत्र पर एक-आयामी आकारिक वर्ग नियमों के बीच एक समरूपता है। फिर f या तो शून्य है, या इसकी शक्ति श्रृंखला विस्तार में पहला गैर-शून्य पद क्या है?


कुछ गैर-ऋणात्मक पूर्णांक H के लिए <math>ax^{p^h}</math>, जिसे समरूपता f की ऊंचाई कहा जाता है। शून्य समरूपता की ऊंचाई को ∞ के रूप में परिभाषित किया गया है।
इसी प्रकार कुछ गैर-ऋणात्मक पूर्णांक H के लिए <math>ax^{p^h}</math>, जिसे समरूपता f की ऊंचाई कहा जाता है। शून्य समरूपता की ऊंचाई को ∞ के रूप में परिभाषित किया गया है।


विशेषता p > 0 के क्षेत्र पर एक आयामी आकारिक वर्ग नियम की ऊंचाई को p मानचित्र द्वारा इसके गुणन की ऊंचाई के रूप में परिभाषित किया गया है।
विशेषता p > 0 के क्षेत्र पर एक आयामी आकारिक वर्ग नियम की ऊंचाई को p मानचित्र द्वारा इसके गुणन की ऊंचाई के रूप में परिभाषित किया गया है।
Line 97: Line 97:


==लेज़ार्ड वलय==
==लेज़ार्ड वलय==
{{main|लाजार्ड यूनिवर्सल रिंग}}
{{main|लाजार्ड यूनिवर्सल वलय}}


एक सार्वभौमिक क्रमविनिमेय वलय पर एक सार्वभौमिक क्रमविनिमेय एक-आयामी आकारिक वर्ग नियम निम्नानुसार परिभाषित है। हम अनुमति देते हैं।
एक सार्वभौमिक क्रमविनिमेय वलय पर एक सार्वभौमिक क्रमविनिमेय एक-आयामी आकारिक वर्ग नियम निम्नानुसार परिभाषित है। हम अनुमति देते हैं।
Line 111: Line 111:
:''c<sub>i</sub>''<sub>,''j''</sub>,
:''c<sub>i</sub>''<sub>,''j''</sub>,


और हम सार्वभौमिक वलय R को तत्वों द्वारा उत्पन्न क्रमविनिमेय वलय के रूप में परिभाषित करते हैं, जो आकारिक वर्ग नियमों के लिए संबद्धता और क्रमविनिमेयता नियमों द्वारा मजबूर संबंधों के साथ हैं। परिभाषा के अनुसार कम या ज्यादा, वलय R में निम्नलिखित सार्वभौमिक गुण हैं।
और हम सार्वभौमिक वलय R को तत्वों द्वारा उत्पन्न क्रमविनिमेय वलय के रूप में परिभाषित करते हैं, जो आकारिक वर्ग नियमों के लिए संबद्धता और क्रमविनिमेयता नियमों द्वारा मजबूर संबंधों के साथ हैं। इसी प्रकार परिभाषा के अनुसार कम या ज्यादा, वलय R में निम्नलिखित सार्वभौमिक गुण हैं।
:किसी भी क्रम विनिमय वलय S के लिए, S पर एक-आयामी आकारिक वर्ग नियम R से S तक [[वलय समरूपता]] के अनुरूप हैं।
:किसी भी क्रम विनिमय वलय S के लिए, S पर एक-आयामी आकारिक वर्ग नियम R से S तक [[वलय समरूपता]] के अनुरूप हैं।


ऊपर निर्मित क्रम विनिमय वलय R को लाजार्ड की सार्वभौमिक वलय के रूप में जाना जाता है। पहली नज़र में यह अविश्वसनीय रूप से सम्मिश्र लगता है: इसके जनरेटर के बीच संबंध बहुत गड़बड़ हैं। चूंकि लाजार्ड ने सिद्ध कर दिया कि इसकी एक बहुत ही सरल संरचना है। यह घात 2, 4, 6, ... (जहां ci, j की घात 2 (i + j − 1)) है। [[डेनियल क्विलेन]] ने सिद्ध किया कि सम्मिश्र कोबोर्डिज्म की गुणांक वलय स्वाभाविक रूप से लाजार्ड की सार्वभौमिक वलय के लिए एक वर्गीकृत वलय के रूप में समाकृतिक है, जो असामान्य ग्रेडिंग की व्याख्या करती है।
ऊपर निर्मित क्रम विनिमय वलय R को लाजार्ड की सार्वभौमिक वलय के रूप में जाना जाता है। इसी प्रकार पहली नज़र में यह अविश्वसनीय रूप से सम्मिश्र लगता है, इसके जनरेटर के बीच संबंध बहुत गड़बड़ हैं। चूंकि लाजार्ड ने सिद्ध कर दिया कि इसकी एक बहुत ही सरल संरचना है। यह घात 2, 4, 6, ... (जहां ci, j की घात 2 (i + j − 1)) है। [[डेनियल क्विलेन]] ने सिद्ध किया कि सम्मिश्र कोबोर्डिज्म की गुणांक वलय स्वाभाविक रूप से लाजार्ड की सार्वभौमिक वलय के लिए एक वर्गीकृत वलय के रूप में समाकृतिक है, जो असामान्य ग्रेडिंग की व्याख्या करती है।


==आकारिक वर्ग==
==आकारिक वर्ग==


एक आकारिक वर्ग [[औपचारिक योजना|आकारिक योजना]]ओं की [[श्रेणी (गणित)]] में एक [[समूह वस्तु|वर्ग वस्तु]] है।
एक आकारिक वर्ग [[औपचारिक योजना|आकारिक योजना]]ओं की [[श्रेणी (गणित)]] में एक [[समूह वस्तु|वर्ग वस्तु]] है।
* यदि <math>G</math> आर्टिन बीजगणित से उन वर्गों तक एक नियम है, जिन्हें उपयुक्त छोड़ दिया जाता है, तो यह प्रतिनिधित्व योग्य है (G एक आकारिक वर्ग के बिंदुओं का कारक है)। (एक लापरवाह की बाईं सटीकता परिमित प्रोजेक्टिव सीमाओं के साथ यात्रा करने के समतुल्य है)।
* यदि <math>G</math> आर्टिन बीजगणित से उन वर्गों तक एक नियम है, जिन्हें उपयुक्त छोड़ दिया जाता है, तो यह प्रतिनिधित्व योग्य है (G एक आकारिक वर्ग के बिंदुओं का कारक है)। (एक असावधान की बाईं उपयुक्तता परिमित प्रोजेक्टिव सीमाओं के साथ यात्रा करने के समतुल्य है)।
* यदि <math>G</math> तब एक [[समूह योजना|वर्ग योजना]] है ,<math> \widehat{G} </math>, पहचान पर G के आकारिक समापन में, एक आकारिक वर्ग की संरचना है।
* यदि <math>G</math> तब एक [[समूह योजना|वर्ग योजना]] है ,<math> \widehat{G} </math>, तत्समक पर G के आकारिक समापन में, एक आकारिक वर्ग की संरचना है।
*एक सुचारु वर्ग योजना का आकारिक समापन समरूपी के लिए समाकृतिक है, <math>\mathrm{Spf}(R[[T_1,\ldots,T_n]])</math>, कुछ लोग एक आकारिक वर्ग योजना को सुचारू कहते हैं, यदि विपरीत प्रभाव होती है, अन्य इस रूप की समष्टिीय वस्तुओं के लिए "आकारिक वर्ग" शब्द आरक्षित करते हैं।<ref>{{cite web | last=Weinstein | first=Jared | title=ल्यूबिन-टेट स्पेस की ज्यामिति| url=http://math.bu.edu/people/jsweinst/FRGLecture.pdf}}</ref>
*एक सुचारु वर्ग योजना का आकारिक समापन समरूपी के लिए समाकृतिक है, <math>\mathrm{Spf}(R[[T_1,\ldots,T_n]])</math>, कुछ लोग एक आकारिक वर्ग योजना को सुचारू कहते हैं, यदि विपरीत प्रभाव होती है, अन्य इस रूप की समष्टिीय वस्तुओं के लिए "आकारिक वर्ग" शब्द आरक्षित करते हैं।<ref>{{cite web | last=Weinstein | first=Jared | title=ल्यूबिन-टेट स्पेस की ज्यामिति| url=http://math.bu.edu/people/jsweinst/FRGLecture.pdf}}</ref>
*आकारिक सहजता विकृतियों की लिफ्टों के अस्तित्व का जोर करती है, और आकारिक योजनाओं पर लागू हो सकती है, जो बिंदुओं से बड़ी हैं। एक सहज आकारिक वर्ग योजना एक आकारिक वर्ग योजना का एक विशेष स्थिति है।
*आकारिक सहजता विकृतियों की लिफ्टों के अस्तित्व का जोर करती है, और आकारिक योजनाओं पर लागू हो सकती है, जो बिंदुओं से बड़ी हैं। एक सहज आकारिक वर्ग योजना एक आकारिक वर्ग योजना का एक विशेष स्थिति है।
Line 130: Line 130:
आकारिक वर्ग नियमों का मॉड्यूलि समष्टि अनंत-आयामी एफिन रिक्त समष्टि का एक असंयुक्त संघ है, जिसके घटकों को आयाम द्वारा परमेट्राइज्ड किया जाता है, और जिनके बिंदुओं को शक्ति श्रृंखला F के स्वीकार्य गुणांक द्वारा परमेट्राइज्ड किया जाता है। सुचारू आकारिक वर्गों का संबंधित [[मॉड्यूलि स्टैक]] समन्वय परिवर्तनों के अनंत-आयामी वर्ग की विहित कार्रवाई द्वारा इस समष्टि का एक भागफल है।
आकारिक वर्ग नियमों का मॉड्यूलि समष्टि अनंत-आयामी एफिन रिक्त समष्टि का एक असंयुक्त संघ है, जिसके घटकों को आयाम द्वारा परमेट्राइज्ड किया जाता है, और जिनके बिंदुओं को शक्ति श्रृंखला F के स्वीकार्य गुणांक द्वारा परमेट्राइज्ड किया जाता है। सुचारू आकारिक वर्गों का संबंधित [[मॉड्यूलि स्टैक]] समन्वय परिवर्तनों के अनंत-आयामी वर्ग की विहित कार्रवाई द्वारा इस समष्टि का एक भागफल है।


बीजगणितीय रूप से संवृत्त क्षेत्र पर, एक-आयामी आकारिक वर्गों का उप-स्टैक या तो एक बिंदु (विशेषता शून्य में) या स्टैकी पॉइंट पैरामीट्रिज़िंग ऊंचाइयों की एक अनंत श्रृंखला है। विशेषता शून्य में, प्रत्येक बिंदु के संवृत्त होने में अधिक ऊंचाई के सभी बिंदु सम्मिलित होते हैं। यह अंतर आकारिक वर्गों को धनात्मक और मिश्रित विशेषता में एक समृद्ध ज्यामितीय सिद्धांत देता है, जिसमें स्टीनरोड बीजगणित, पी-विभाज्य वर्ग, डायडोने सिद्धांत और गैलोइस अभ्यावेदन के संबंध हैं। उदाहरण के लिए, सेरे-टेट प्रमेय का तात्पर्य है कि एक वर्ग योजना की विकृतियाँ उसके आकारिक वर्ग द्वारा दृढ़ता से नियंत्रित की जाती हैं, विशेष रूप से [[सुपरसिंगुलर]] एबेलियन किस्मों के स्थितियाँ में, [[सुपरसिंगुलर अण्डाकार वक्रों]] के लिए, यह नियंत्रण पूर्ण है, और यह विशेषता शून्य स्थिति से अधिक भिन्न है, जहां आकारिक वर्ग में कोई विकृति नहीं है।
बीजगणितीय रूप से संवृत्त क्षेत्र पर, एक-आयामी आकारिक वर्गों का उप-स्टैक या तो एक बिंदु (विशेषता शून्य में) या स्टैकी पॉइंट पैरामीट्रिज़िंग ऊंचाइयों की एक अनंत श्रृंखला है। विशेषता शून्य में, प्रत्येक बिंदु के संवृत्त होने में अधिक ऊंचाई के सभी बिंदु सम्मिलित होते हैं। यह अंतर आकारिक वर्गों को धनात्मक और मिश्रित विशेषता में एक समृद्ध ज्यामितीय सिद्धांत देता है, जिसमें स्टीनरोड बीजगणित, पी-विभाज्य वर्ग, डायडोने सिद्धांत और गैलोइस अभ्यावेदन के संबंध हैं। उदाहरण के लिए, सेरे-टेट प्रमेय का तात्पर्य है कि एक वर्ग योजना की विकृतियाँ उसके आकारिक वर्ग द्वारा दृढ़ता से नियंत्रित की जाती हैं, विशेष रूप से [[सुपरसिंगुलर]] एबेलियन किस्मों के स्थितियाँ में, [[सुपरसिंगुलर अण्डाकार वक्रों|सुपरसिंगुलर दीर्घ वृत्ताकार वक्रों]] के लिए, यह नियंत्रण पूर्ण है, और यह विशेषता शून्य स्थिति से अधिक भिन्न है, जहां आकारिक वर्ग में कोई विकृति नहीं है।


एक आकारिक वर्ग को कभी-कभी सह-विनिमेय हॉपफ बीजगणित के रूप में परिभाषित किया जाता है (सामान्यतः कुछ अतिरिक्त शर्तों के साथ, जैसे कि पॉइंटेड या जुड़ा होना)।<ref name="Und121">{{cite book | last=Underwood | first=Robert G. | title=हॉपफ बीजगणित का परिचय| location=Berlin | publisher=[[Springer-Verlag]] | year=2011 | isbn=978-0-387-72765-3 | zbl=1234.16022 | page=121 }}</ref> यह उपरोक्त धारणा के लिए कमोबेश दोहरा है। सहज स्थितियाँ में, निर्देशांक चुनना आकारिक वर्ग वलय का एक विशिष्ट आधार लेने के समतुल्य है।
एक आकारिक वर्ग को कभी-कभी सह-विनिमेय हॉपफ बीजगणित के रूप में परिभाषित किया जाता है (सामान्यतः कुछ अतिरिक्त शर्तों के साथ, जैसे कि पॉइंटेड या जुड़ा होना)।<ref name="Und121">{{cite book | last=Underwood | first=Robert G. | title=हॉपफ बीजगणित का परिचय| location=Berlin | publisher=[[Springer-Verlag]] | year=2011 | isbn=978-0-387-72765-3 | zbl=1234.16022 | page=121 }}</ref> यह उपरोक्त धारणा के लिए कमोबेश दोहरा है। सहज स्थितियाँ में, निर्देशांक चुनना आकारिक वर्ग वलय का एक विशिष्ट आधार लेने के समतुल्य है।
Line 138: Line 138:
==लुबिन-टेट आकारिक वर्ग नियम==
==लुबिन-टेट आकारिक वर्ग नियम==


{{main|लुबिन-टेट औपचारिक समूह कानून}}
{{main|लुबिन-टेट औपचारिक वर्ग नियम}}


हम '''Z'''<sub>''p''</sub> को पी-एडीक पूर्णांक की वलय मानते हैं। लुबिन-टेट आकारिक वर्ग नियम अद्वितीय (1-आयामी) आकारिक वर्ग नियम F है जैसे कि ''e''(''x'') = ''px'' + ''x<sup>p</sup>'' दूसरे शब्दों में F का एक एंडोमोर्फिज्म है।
हम '''Z'''<sub>''p''</sub> को पी-एडीक पूर्णांक की वलय मानते हैं। लुबिन-टेट आकारिक वर्ग नियम अद्वितीय (1-आयामी) आकारिक वर्ग नियम F है जैसे कि ''e''(''x'') = ''px'' + ''x<sup>p</sup>'' दूसरे शब्दों में F का एक अंतराकारिता है।
:<math>e(F(x,y)) = F(e(x), e(y)).\ </math>
:<math>e(F(x,y)) = F(e(x), e(y)).\ </math>
अधिक सामान्यतः हम को किसी भी शक्ति श्रृंखला होने की अनुमति दे सकते हैं जैसे कि ''e''(''x'') = ''px'' + + उच्च-घात शब्द और ''e''(''x'') = ''px'' मॉड P। इन शर्तों को पूरा करने के विभिन्न विकल्पों के लिए सभी वर्ग नियम सख्ती से समाकृतिक हैं।<ref>{{cite book | first1=Yu. I. | last1=Manin | authorlink1=Yuri I. Manin | first2=A. A. | last2=Panchishkin | title=आधुनिक संख्या सिद्धांत का परिचय| series=Encyclopaedia of Mathematical Sciences | volume=49 | edition=Second | year=2007 | isbn=978-3-540-20364-3 | issn=0938-0396 | zbl=1079.11002 | page=168 }}</ref>
अधिक सामान्यतः हम e को किसी भी शक्ति श्रृंखला होने की अनुमति दे सकते हैं जैसे कि ''e''(''x'') = ''px'' + + उच्च-घात शब्द और ''e''(''x'') = ''px'' मॉड P इन शर्तों को पूरा करने के विभिन्न विकल्पों के लिए सभी वर्ग नियम सख्ती से समाकृतिक हैं।<ref>{{cite book | first1=Yu. I. | last1=Manin | authorlink1=Yuri I. Manin | first2=A. A. | last2=Panchishkin | title=आधुनिक संख्या सिद्धांत का परिचय| series=Encyclopaedia of Mathematical Sciences | volume=49 | edition=Second | year=2007 | isbn=978-3-540-20364-3 | issn=0938-0396 | zbl=1079.11002 | page=168 }}</ref>


'Z' में प्रत्येक तत्व के लिए लुबिन-टेट आकारिक वर्ग नियम का एक अद्वितीय एंडोमोर्फिज्म F है, जैसे कि F (x) = x + उच्च-घात शब्द। यह लुबिन-टेट आकारिक वर्ग नियम पर वलय जेडपी की कार्रवाई करता है।
'Z' में प्रत्येक तत्व A के लिए लुबिन-टेट आकारिक वर्ग नियम का एक अद्वितीय अंतराकारिता F है, जैसे कि F (x) = x + उच्च-घात शब्द है। यह लुबिन-टेट आकारिक वर्ग नियम पर वलय जेडपी की कार्रवाई करता है।


Z के साथ एक समान निर्माण है, जिसे परिमित अवशेष वर्ग क्षेत्र के साथ किसी भी पूर्ण [[असतत मूल्यांकन रिंग|असतत मूल्यांकन वलय]] द्वारा प्रतिस्थापित किया गया है।<ref>{{cite book | first=Helmut | last=Koch | title=बीजगणितीय संख्या सिद्धांत| publisher=[[Springer-Verlag]] | year=1997 | isbn=3-540-63003-1 | zbl=0819.11044 | series=Encycl. Math. Sci. | volume=62 | edition=2nd printing of 1st | pages=62–63 }}</ref>
Z के साथ एक समान निर्माण है, जिसे परिमित अवशेष वर्ग क्षेत्र के साथ किसी भी पूर्ण [[असतत मूल्यांकन रिंग|असतत मूल्यांकन वलय]] द्वारा प्रतिस्थापित किया गया है।<ref>{{cite book | first=Helmut | last=Koch | title=बीजगणितीय संख्या सिद्धांत| publisher=[[Springer-Verlag]] | year=1997 | isbn=3-540-63003-1 | zbl=0819.11044 | series=Encycl. Math. Sci. | volume=62 | edition=2nd printing of 1st | pages=62–63 }}</ref>


यह निर्माण ल्यूबिन और टेट (1965) द्वारा [[अण्डाकार कार्यों के जटिल गुणन|अण्डाकार कार्यों के सम्मिश्र गुणन]] के आधारित सिद्धांत के [[स्थानीय क्षेत्र|समष्टिीय क्षेत्र]] भाग को भिन्न करने के एक सफल प्रयास में प्रस्तुत किया गया था। यह [[स्थानीय वर्ग क्षेत्र सिद्धांत|समष्टिीय वर्ग क्षेत्र सिद्धांत]] के कुछ दृष्टिकोणों में एक प्रमुख घटक है।<ref>e.g. {{cite book | first=Jean-Pierre | last=Serre | authorlink=Jean-Pierre Serre | chapter=Local class field theory | pages=128–161 | editor1-first=J.W.S. | editor1-last=Cassels | editor1-link=J. W. S. Cassels | editor2-first=Albrecht | editor2-last=Fröhlich | editor2-link=Albrecht Fröhlich | title=Algebraic Number Theory | year=1967 | publisher=Academic Press | zbl=0153.07403 }}{{cite journal | first=Michiel | last=Hazewinkel | title=Local class field theory is easy | journal=[[Advances in Mathematics]] | volume=18 | year=1975 | issue=2 | pages=148–181 | zbl=0312.12022 | doi=10.1016/0001-8708(75)90156-5| doi-access=free }}{{cite book | last1=Iwasawa | first1=Kenkichi | authorlink=Kenkichi Iwasawa | title=Local class field theory | publisher=The Clarendon Press Oxford University Press | series=Oxford Mathematical Monographs | isbn=978-0-19-504030-2 | mr=863740 | year=1986 | zbl=0604.12014 }}</ref> और [[रंगीन समरूपता सिद्धांत]] में मोरावा ई-सिद्धांत के निर्माण में एक आवश्यक घटक है।<ref>{{cite web
यह निर्माण ल्यूबिन और टेट (1965) द्वारा [[अण्डाकार कार्यों के जटिल गुणन|दीर्घ वृत्ताकार कार्यों के सम्मिश्र गुणन]] के आधारित सिद्धांत के [[स्थानीय क्षेत्र|समष्टिीय क्षेत्र]] भाग को भिन्न करने के एक सफल प्रयास में प्रस्तुत किया गया था। यह [[स्थानीय वर्ग क्षेत्र सिद्धांत|समष्टिीय वर्ग क्षेत्र सिद्धांत]] के कुछ दृष्टिकोणों में एक प्रमुख घटक है।<ref>e.g. {{cite book | first=Jean-Pierre | last=Serre | authorlink=Jean-Pierre Serre | chapter=Local class field theory | pages=128–161 | editor1-first=J.W.S. | editor1-last=Cassels | editor1-link=J. W. S. Cassels | editor2-first=Albrecht | editor2-last=Fröhlich | editor2-link=Albrecht Fröhlich | title=Algebraic Number Theory | year=1967 | publisher=Academic Press | zbl=0153.07403 }}{{cite journal | first=Michiel | last=Hazewinkel | title=Local class field theory is easy | journal=[[Advances in Mathematics]] | volume=18 | year=1975 | issue=2 | pages=148–181 | zbl=0312.12022 | doi=10.1016/0001-8708(75)90156-5| doi-access=free }}{{cite book | last1=Iwasawa | first1=Kenkichi | authorlink=Kenkichi Iwasawa | title=Local class field theory | publisher=The Clarendon Press Oxford University Press | series=Oxford Mathematical Monographs | isbn=978-0-19-504030-2 | mr=863740 | year=1986 | zbl=0604.12014 }}</ref> और [[रंगीन समरूपता सिद्धांत|वर्णिक समरूपता सिद्धांत]] में मोरावा ई-सिद्धांत के निर्माण में एक आवश्यक घटक है।<ref>{{cite web
| url = https://people.math.harvard.edu/~lurie/252xnotes/Lecture21.pdf
| url = https://people.math.harvard.edu/~lurie/252xnotes/Lecture21.pdf
| title = Lubin-Tate Theory (Lecture 21).
| title = Lubin-Tate Theory (Lecture 21).
Line 174: Line 174:
* {{Neukirch ANT}}
* {{Neukirch ANT}}
* {{cite web | first=N. | last=Strickland |url=http://neil-strickland.staff.shef.ac.uk/courses/formalgroups/fg.pdf | title=Formal groups }}
* {{cite web | first=N. | last=Strickland |url=http://neil-strickland.staff.shef.ac.uk/courses/formalgroups/fg.pdf | title=Formal groups }}
[[Category: बीजगणितीय टोपोलॉजी]] [[Category: बीजगणितीय समूह]] [[Category: बीजगणितीय संख्या सिद्धांत]]
 


[[sr:Формална група]]
[[sr:Формална група]]


 
[[Category:Articles containing German-language text]]
 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: Machine Translated Page]]
[[Category:Created On 08/07/2023]]
[[Category:Created On 08/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:बीजगणितीय टोपोलॉजी]]
[[Category:बीजगणितीय संख्या सिद्धांत]]
[[Category:बीजगणितीय समूह]]

Latest revision as of 10:05, 28 July 2023

गणित में, एक आकारिक वर्ग नियम (सामान्यतः) एक आकारिक शक्ति श्रृंखला है, जो ऐसे व्यवहार करता है, जैसे कि यह एक लाई वर्ग का गुणनफल था। उन्हें एस बोचनर (1946) द्वारा प्रस्तुत किया गया था। आकारिक वर्ग शब्द का अर्थ कभी-कभी आकारिक वर्ग नियम के समान होता है, और कभी-कभी इसका अर्थ कई सामान्यीकरणों में से एक होता है। आकारिक वर्ग लाई वर्ग (या बीजगणितीय वर्गों) और लाई बीजगणित के बीच मध्यवर्ती हैं। इसी प्रकार उनका उपयोग बीजगणितीय संख्या सिद्धांत और बीजगणितीय टोपोलॉजी में किया जाता है।

परिभाषाएँ

एक क्रमविनिमेय वलय R पर एक आयामी आकारिक वर्ग नियम एक शक्ति श्रृंखला F (x, y) है जिसमें R में गुणांक होते हैं, जैसे कि

  1. F(x,y) = x + y + उच्च घात के पद है।
  2. F(x, F(y,z)) = F(F(x ,y), z) (सहयोगिता) है।

सबसे सरल उदाहरण योजक आकारिक वर्ग नियम F(x, y) = x + y है। परिभाषा का विचार यह है, कि F को लाई वर्ग के गुणनफल के आकारिक शक्ति श्रृंखला विस्तार के जैसे कुछ होना चाहिए, जहां हम निर्देशांक चुनते हैं जिससे कि लाई समूह की तत्समक मूल हो सकती है।

इसी प्रकार अधिक सामान्यतः, एक n-आयामी आकारिक वर्ग नियम 2n चर में n शक्ति श्रृंखला Fi(x1, x2, ..., xn, y1, y2, ..., yn) का एक संग्रह है, जैसे कि

  1. F(x,y) = x + y + उच्च घात का पद है।
  2. F(x, F(y,z)) = F(F(x,y), z) है।

जहां हम F के लिए (F1, ..., Fn), तथा x के लिए (x1, ..., xn), और इसी प्रकार लिखते हैं।

आकारिक वर्ग नियम को क्रम विनिमय कहा जाता है, यदि F(x,y) = F(y,x) यदि R टॉरशन फ्री है, तो कोई R को Q-बीजगणित में एम्बेड कर सकता है, और किसी भी एक-आयामी आकारिक वर्ग नियम F को F(x,y) = exp(log(x) + log(y)) के रूप में लिखने के लिए घातांकीय और लघुगणक का उपयोग कर सकता है, इसलिए F आवश्यक रूप से क्रम विनिमय है।[1] इसी प्रकार अधिक सामान्यतः हमारे पास है।

प्रमेय: R पर प्रत्येक एक-आयामी आकारिक वर्ग नियम क्रमविनिमेय है, (अर्थात, कोई गैर-शून्य तत्व नहीं है जो टॉरशन और निलपोटेंट दोनों हैं) यदि R में कोई गैर-शून्य टोरसन निलपोटेंट नहीं है।[2]

वर्ग (गणित) के लिए व्युत्क्रम तत्वों के अस्तित्व के अनुरूप स्वयंसिद्ध की कोई आवश्यकता नहीं है, क्योंकि यह आकारिक वर्ग नियम की परिभाषा से स्वचालित रूप से अनुसरण करता है। जैसे कि F(x,G(x)) = 0 दूसरे शब्दों में, हम निरंतर एक (अद्वितीय) शक्ति श्रृंखला पा सकते हैं।

आयाम m के आकारिक वर्ग नियम F से आयाम n के आकारिक वर्ग नियम G तक एक समरूपता m चर में n शक्ति श्रृंखला का एक संग्रह F है, जैसे कि

G(f(x), f(y)) = f(F(x,y))

इसी प्रकार व्युत्क्रम के साथ एक समरूपता को समाकारिकता कहा जाता है, और इसे सख्त समाकारिकता कहा जाता है, यदि इसके अतिरिक्त f(x) = x + उच्च घात की शर्तें, उनके बीच एक समाकारिकता के साथ दो आकारिक वर्ग नियम अनिवार्य रूप से समान हैं, वे मात्र "निर्देशांक के परिवर्तन" से भिन्न होते हैं।

उदाहरण

  • योगात्मक आकारिक वर्ग नियम द्वारा दिया गया है।
  • गुणात्मक आकारिक वर्ग नियम द्वारा दिया गया है।
इस नियम को इस प्रकार समझा जा सकता है। वलय R के गुणक वर्ग में गुणनफल G को G(a,b) = ab द्वारा दिया गया है। यदि हम a = 1 + x, b = 1 + y, और G = 1 + F डालकर 0 को तत्समक बनाने के लिए "परिवर्तित करते हैं", तो F(x,y) = x + y + xy हो जाता है हैं।

तर्कसंगत संख्याओं पर, योगात्मक आकारिक वर्ग नियम से गुणक तक एक समाकारिकता होता है, जो exp(x) − 1 द्वारा दिया जाता है। सामान्य क्रम विनिमय वलय्स R पर ऐसे कोई समरूपता नहीं है, क्योंकि इसे परिभाषित करने के लिए गैर-अभिन्न तर्कसंगत संख्याओं की आवश्यकता होती है, और योजक और गुणक आकारिक वर्ग सामान्यतः समाकृतिक नहीं होते हैं।

  • सामान्यतः हम तत्समक पर निर्देशांक लेकर और गुणनफल मानचित्र के आकारिक शक्ति श्रृंखला विस्तार को लिखकर किसी भी बीजगणितीय वर्ग या आयाम n के लाई वर्ग से आयाम n के एक आकारिक वर्ग नियम का निर्माण कर सकते हैं। योगात्मक और गुणक आकारिक वर्ग नियम इस प्रकार से योगात्मक और गुणक बीजगणितीय वर्गों से प्राप्त किए जाते हैं। इसका एक और महत्वपूर्ण विशेष स्थिति एक दीर्घ वृत्ताकार (या एबेलियन किस्म) का आकारिक वर्ग (नियम) है।
  • F(x,y) = (x + y)/(1 + xy) अतिपरवलीय स्पर्शरेखा फ़ंक्शन के लिए अतिरिक्त सूत्र (1 के समतुल्य प्रकाश की गति के साथ) से आने वाला एक आकारिक वर्ग नियम है, tanh(x + y) = F(tanh(x), tanh(y)), और यह विशेष सापेक्षता में वेगों को जोड़ने का सूत्र भी है।
  • Z पर एक आकारिक वर्ग नियम है, इसी प्रकार [1/2] यूलर द्वारा पाया गया, एक दीर्घ वृत्ताकार पूर्णांकीय (स्ट्रिकलैंड) के लिए अतिरिक्त सूत्र के रूप में है।

लाई बीजगणित

इसी प्रकार कोई भी n-आयामी आकारिक वर्ग नियम वलय R पर एक n-आयामी लाई बीजगणित देता है, जिसे आकारिक वर्ग नियम के द्विघात भाग F2 के संदर्भ में परिभाषित किया गया है।

[x,y] = F2(x,y) − F2(y,x)

लाई वर्गों या बीजगणितीय वर्गों से लाई बीजगणित तक के प्राकृतिक कार्य को लाई वर्गों से आकारिक वर्ग नियमों में सम्मिलित किया जा सकता है, इसके पश्चात आकारिक वर्ग के लाई बीजगणित को लिया जा सकता है:

लाई वर्ग → आकारिक वर्ग नियम → लाई बीजगणित

विशेषता (बीजगणित) 0 के क्षेत्रों में, आकारिक वर्ग नियम अनिवार्य रूप से परिमित-आयामी लाई बीजगणित के समान होते हैं, इसी प्रकार अधिक उपयुक्त रूप से, परिमित-आयामी आकारिक वर्ग नियमों से परिमित-आयामी लाई बीजगणित तक कारक श्रेणियों का एक समतुल्य है।[3] गैर-शून्य विशेषता वाले क्षेत्रों में, आकारिक वर्ग नियम लाई बीजगणित के समकक्ष नहीं हैं। वास्तव में, इस स्थिति में यह सर्वविदित है, कि एक बीजगणितीय वर्ग से उसके लाई बीजगणित में जाने से अधिकांशतः ज्यादा अधिक जानकारी दूर हो जाती है, लेकिन इसके अतिरिक्त आकारिक वर्ग नियम में जाने से अधिकांशतः पर्याप्त जानकारी बच जाती है। तो कुछ अर्थों में आकारिक वर्ग नियम विशेषता P > 0 में लाई बीजगणित के लिए "सही" विकल्प हैं।

क्रमविनिमेय आकारिक वर्ग नियम का लघुगणक

इसी प्रकार यदि F एक क्रम विनिमय Q-बीजगणित R पर एक क्रम विनिमय n-आयामी आकारिक वर्ग नियम है, तो यह योगात्मक आकारिक वर्ग नियम के लिए सख्ती से समाकृतिक है।[4] दूसरे शब्दों में, योगात्मक आकारिक वर्ग से F तक एक सख्त समाकारिकता F है, जिसे F का लघुगणक कहा जाता है, जिससे कि

f(F(x,y)) = f(x) + f(y).

उदाहरण:

  • F(x,y) = x + y का लघुगणक f(x) = x है
  • F(x,y) = x + y +xy का लघुगणक f(x) = log(1 + x)है, क्योंकि log(1 + x + y + xy) = log(1 + x) + log(1 + y) है।

यदि R में परिमेय नहीं है, तो R ⊗ Q तक अदिश राशि के विस्तार द्वारा एक मानचित्र F का निर्माण किया जा सकता है, लेकिन यदि R में धनात्मक विशेषता है, तो यह अर्ध कुछ शून्य पर भेज दिया जाता है। इसी प्रकार वलय R पर आकारिक वर्ग नियम अधिकांशतः उनके लघुगणक को R ⊗ Q में गुणांक के साथ एक शक्ति श्रृंखला के रूप में लिखकर बनाया जाता है, और फिर यह सिद्ध किया जाता है, कि R ⊗ Q पर संबंधित आकारिक वर्ग के गुणांक वास्तव में R में हैं। इसी प्रकार धनात्मक में काम करते समय विशेषता, कोई सामान्यतः R को एक मिश्रित विशेषता वलय से परिवर्तित कर देता है, जिसका R पर प्रक्षेपण होता है, जैसे कि विट सदिश की वलय डब्ल्यू (R), और अंत में R तक कम हो जाती है।

अपरिवर्तनीय अंतर

मान लीजिए, जब F एक-आयामी होता है, तो कोई इसके लघुगणक को अपरिवर्तनीय अवकल ω(t) के संदर्भ में लिख सकता है।[5]

जहाँ नि: शुल्क है, -एक प्रतीक dt पर रैंक 1 का मॉड्यूल हैs, तो फिर ω इस अर्थ में अनुवाद अपरिवर्तनीय है, कि
यदि हम लिखते हैं, , तो परिभाषा के अनुसार
यदि कोई विस्तार पर विचार करता है। , सूत्र
F के लघुगणक को परिभाषित करता है।

आकारिक वर्ग नियम का आकारिक वर्ग वलय

एक आकारिक वर्ग नियम की आकारिक वर्ग वलय एक वर्ग के वर्ग वलय और एक लाई बीजगणित के सार्वभौमिक आवरण बीजगणित के अनुरूप एक सह-विनिमेय हॉपफ बीजगणित है, जो दोनों सह-अनुकरणीय हॉपफ बीजगणित भी हैं। सामान्यतः सह-विनिमेय हॉपफ बीजगणित अधिक हद तक वर्गों के जैसे व्यवहार करते हैं।

सरलता के लिए हम 1-आयामी स्थिति का वर्णन करते हैं, तथा उच्च-आयामी स्थिति समान है, अतिरिक्त इसके कि यह अंकन अधिक सम्मिलित हो जाता है।

मान लीजिए कि F, R पर एक (1-आयामी) आकारिक वर्ग नियम है। इसकी आकारिक वर्ग वलय (जिसे हायपरबीजगणित या इसका 'सहसंयोजक बाईबीजगणित' भी कहा जाता है) एक सह-विनिमेय हॉपफ बीजगणित H है जिसका निर्माण निम्नानुसार किया गया है।

  • एक R-मॉड्यूल (गणित) के रूप में, H एक आधार 1 = D (0), D (1), D (2), ... है।
  • सह-गुणनफल ΔD(n) = ΣD(i)D(ni) द्वारा दिया गया है, (इसलिए इस को बीजगणित का सहबीजगणित का द्वैत मात्र आकारिक शक्ति श्रृंखला की वलय है)।
  • गणक η, D (0) के गुणांक द्वारा दिया गया है।
  • तत्समक 1 = D(0) है।
  • एंटीपोड F D(n) to (−1)nD(n) तक ले जाता है।
  • गुणांक D(i)D(j) में D(1 का गुणांक, F(x,y) में xiyj का गुणांक है।

इसके विपरीत, एक हॉपफ बीजगणित को देखते हुए जिसकी को बीजगणित संरचना ऊपर दी गई है, हम इससे एक आकारिक वर्ग नियम F पुनर्प्राप्त कर सकते हैं। इसलिए 1-आयामी आकारिक वर्ग नियम अनिवार्य रूप से हॉपफ बीजगणित के समान हैं जिनकी को बीजगणित संरचना ऊपर दी गई है।

कार्यकर्ताओं के रूप में आकारिक वर्ग नियम

R पर एक n-आयामी आकारिक वर्ग नियम F और एक क्रमविनिमेय R-बीजगणित स को देखते हुए, हम एक वर्ग F(S) बना सकते हैं, जिसका अंतर्निहित सेट Nn है जहां N, स के निलपोटेंट तत्वों का समुच्चय है। गुणनफल को Nn के तत्वों को गुणा करने के लिए F का उपयोग करके दिया जाता है, मुद्दा यह है, कि सभी आकारिक शक्ति श्रृंखलाएं अब एकत्रित करती हैं, क्योंकि उन्हें निलपोटेंट तत्वों पर लागू किया जा रहा है, इसलिए मात्र गैर-शून्य शब्दों की एक सीमित संख्या है। यह F को क्रमविनिमेय R-बीजगणित S से समूहों तक एक फंकटर बनाता है।

हम F(S) की परिभाषा को कुछ टोपोलॉजिकल R-बीजगणित तक बढ़ा सकते हैं। विशेष रूप से, यदि S असतत R बीजगणित की व्युत्क्रम सीमा है, तो हम F(S) को संबंधित वर्गों की व्युत्क्रम सीमा के रूप में परिभाषित कर सकते हैं। उदाहरण के लिए, यह हमें पी-एडिक संख्याओं में मानों के साथ F(Zp) को परिभाषित करने की अनुमति देता है।

F के वर्ग-मूल्यवान कारक को F के आकारिक वर्ग वलय H का उपयोग करके भी वर्णित किया जा सकता है। सरलता के लिए हम मान लेंगे कि F 1-आयामी है; सामान्य स्थिति समान है। किसी भी सह-विनिमेय हॉपफ बीजगणित के लिए, एक तत्व जी को 'वर्ग-समान' कहा जाता है, यदि Δg = g ⊗ g और εg = 1, और वर्ग जैसे तत्व गुणन के अनुसार एक वर्ग बनाते हैं। एक वलय पर एक आकारिक वर्ग नियम के हॉपफ बीजगणित के स्थितियाँ में, वर्ग जैसे तत्व पूर्णतया फॉर्म के होते हैं।

D(0) + D(1)x + D(2)x2 + ...

निलोपोटेंट तत्वों के लिए x, विशेष रूप से हम S के निलपोटेंट तत्वों के साथ H ⊗ S के वर्ग जैसे तत्वों की तत्समक कर सकते हैं, और H ⊗ S के वर्ग जैसे तत्वों पर वर्ग संरचना को तब F(S) पर वर्ग संरचना के साथ तत्समक हो जाता है।

ऊंचाई

मान लीजिए कि F विशेषता P > 0 के क्षेत्र पर एक-आयामी आकारिक वर्ग नियमों के बीच एक समरूपता है। फिर f या तो शून्य है, या इसकी शक्ति श्रृंखला विस्तार में पहला गैर-शून्य पद क्या है?

इसी प्रकार कुछ गैर-ऋणात्मक पूर्णांक H के लिए , जिसे समरूपता f की ऊंचाई कहा जाता है। शून्य समरूपता की ऊंचाई को ∞ के रूप में परिभाषित किया गया है।

विशेषता p > 0 के क्षेत्र पर एक आयामी आकारिक वर्ग नियम की ऊंचाई को p मानचित्र द्वारा इसके गुणन की ऊंचाई के रूप में परिभाषित किया गया है।

विशेषता p > 0 के बीजगणितीय रूप से संवृत्त क्षेत्र पर दो एक-आयामी आकारिक वर्ग नियम समाकृतिक हैं यदि उनके पास समान ऊंचाई है, और ऊंचाई कोई भी धनात्मक पूर्णांक या ∞ हो सकती है।

उदाहरण:

  • योगात्मक आकारिक वर्ग नियम F(x,y) = x + y की ऊंचाई ∞ है, क्योंकि इसका pth शक्ति मानचित्र 0 है।
  • गुणक आकारिक वर्ग नियम F(x,y) = x + y + xy की ऊंचाई 1 है, क्योंकि इसका pth शक्ति मानचित्र (1 + x)p − 1 = xp है।
  • एक अंडाकार वक्र के आकारिक वर्ग नियम में ऊंचाई या तो एक या दो होती है, जो इस बात पर निर्भर करता है कि वक्र साधारण या सुपरसिंगुलर है, आइज़ेंस्टीन श्रृंखला के लुप्त होने से सुपरसिंग्युलैरिटी का पता लगाया जा सकता है।

लेज़ार्ड वलय

एक सार्वभौमिक क्रमविनिमेय वलय पर एक सार्वभौमिक क्रमविनिमेय एक-आयामी आकारिक वर्ग नियम निम्नानुसार परिभाषित है। हम अनुमति देते हैं।

F(x,y)

होना

x + y + Σci,j xiyj

अनिश्चित के लिए

ci,j,

और हम सार्वभौमिक वलय R को तत्वों द्वारा उत्पन्न क्रमविनिमेय वलय के रूप में परिभाषित करते हैं, जो आकारिक वर्ग नियमों के लिए संबद्धता और क्रमविनिमेयता नियमों द्वारा मजबूर संबंधों के साथ हैं। इसी प्रकार परिभाषा के अनुसार कम या ज्यादा, वलय R में निम्नलिखित सार्वभौमिक गुण हैं।

किसी भी क्रम विनिमय वलय S के लिए, S पर एक-आयामी आकारिक वर्ग नियम R से S तक वलय समरूपता के अनुरूप हैं।

ऊपर निर्मित क्रम विनिमय वलय R को लाजार्ड की सार्वभौमिक वलय के रूप में जाना जाता है। इसी प्रकार पहली नज़र में यह अविश्वसनीय रूप से सम्मिश्र लगता है, इसके जनरेटर के बीच संबंध बहुत गड़बड़ हैं। चूंकि लाजार्ड ने सिद्ध कर दिया कि इसकी एक बहुत ही सरल संरचना है। यह घात 2, 4, 6, ... (जहां ci, j की घात 2 (i + j − 1)) है। डेनियल क्विलेन ने सिद्ध किया कि सम्मिश्र कोबोर्डिज्म की गुणांक वलय स्वाभाविक रूप से लाजार्ड की सार्वभौमिक वलय के लिए एक वर्गीकृत वलय के रूप में समाकृतिक है, जो असामान्य ग्रेडिंग की व्याख्या करती है।

आकारिक वर्ग

एक आकारिक वर्ग आकारिक योजनाओं की श्रेणी (गणित) में एक वर्ग वस्तु है।

  • यदि आर्टिन बीजगणित से उन वर्गों तक एक नियम है, जिन्हें उपयुक्त छोड़ दिया जाता है, तो यह प्रतिनिधित्व योग्य है (G एक आकारिक वर्ग के बिंदुओं का कारक है)। (एक असावधान की बाईं उपयुक्तता परिमित प्रोजेक्टिव सीमाओं के साथ यात्रा करने के समतुल्य है)।
  • यदि तब एक वर्ग योजना है ,, तत्समक पर G के आकारिक समापन में, एक आकारिक वर्ग की संरचना है।
  • एक सुचारु वर्ग योजना का आकारिक समापन समरूपी के लिए समाकृतिक है, , कुछ लोग एक आकारिक वर्ग योजना को सुचारू कहते हैं, यदि विपरीत प्रभाव होती है, अन्य इस रूप की समष्टिीय वस्तुओं के लिए "आकारिक वर्ग" शब्द आरक्षित करते हैं।[6]
  • आकारिक सहजता विकृतियों की लिफ्टों के अस्तित्व का जोर करती है, और आकारिक योजनाओं पर लागू हो सकती है, जो बिंदुओं से बड़ी हैं। एक सहज आकारिक वर्ग योजना एक आकारिक वर्ग योजना का एक विशेष स्थिति है।
  • एक सहज आकारिक वर्ग को देखते हुए, कोई भी वर्गों के एक समान सेट का चयन करके एक आकारिक वर्ग नियम और एक क्षेत्र का निर्माण कर सकता है।
  • मापदंडों के परिवर्तन से प्रेरित आकारिक वर्ग नियमों के बीच (गैर-सख्त) समाकारिकता आकारिक वर्ग पर समन्वय परिवर्तनों के वर्ग के तत्वों को बनाते हैं।

आकारिक वर्गों और आकारिक वर्ग नियमों को मनमानी योजना (गणित) पर भी परिभाषित किया जा सकता है, न कि मात्र क्रमविनिमेय वलयों या क्षेत्रों पर, और परिवारों को आधार से एक परमेट्वलय ऑब्जेक्ट तक मानचित्रों द्वारा वर्गीकृत किया जा सकता है।

आकारिक वर्ग नियमों का मॉड्यूलि समष्टि अनंत-आयामी एफिन रिक्त समष्टि का एक असंयुक्त संघ है, जिसके घटकों को आयाम द्वारा परमेट्राइज्ड किया जाता है, और जिनके बिंदुओं को शक्ति श्रृंखला F के स्वीकार्य गुणांक द्वारा परमेट्राइज्ड किया जाता है। सुचारू आकारिक वर्गों का संबंधित मॉड्यूलि स्टैक समन्वय परिवर्तनों के अनंत-आयामी वर्ग की विहित कार्रवाई द्वारा इस समष्टि का एक भागफल है।

बीजगणितीय रूप से संवृत्त क्षेत्र पर, एक-आयामी आकारिक वर्गों का उप-स्टैक या तो एक बिंदु (विशेषता शून्य में) या स्टैकी पॉइंट पैरामीट्रिज़िंग ऊंचाइयों की एक अनंत श्रृंखला है। विशेषता शून्य में, प्रत्येक बिंदु के संवृत्त होने में अधिक ऊंचाई के सभी बिंदु सम्मिलित होते हैं। यह अंतर आकारिक वर्गों को धनात्मक और मिश्रित विशेषता में एक समृद्ध ज्यामितीय सिद्धांत देता है, जिसमें स्टीनरोड बीजगणित, पी-विभाज्य वर्ग, डायडोने सिद्धांत और गैलोइस अभ्यावेदन के संबंध हैं। उदाहरण के लिए, सेरे-टेट प्रमेय का तात्पर्य है कि एक वर्ग योजना की विकृतियाँ उसके आकारिक वर्ग द्वारा दृढ़ता से नियंत्रित की जाती हैं, विशेष रूप से सुपरसिंगुलर एबेलियन किस्मों के स्थितियाँ में, सुपरसिंगुलर दीर्घ वृत्ताकार वक्रों के लिए, यह नियंत्रण पूर्ण है, और यह विशेषता शून्य स्थिति से अधिक भिन्न है, जहां आकारिक वर्ग में कोई विकृति नहीं है।

एक आकारिक वर्ग को कभी-कभी सह-विनिमेय हॉपफ बीजगणित के रूप में परिभाषित किया जाता है (सामान्यतः कुछ अतिरिक्त शर्तों के साथ, जैसे कि पॉइंटेड या जुड़ा होना)।[7] यह उपरोक्त धारणा के लिए कमोबेश दोहरा है। सहज स्थितियाँ में, निर्देशांक चुनना आकारिक वर्ग वलय का एक विशिष्ट आधार लेने के समतुल्य है।

कुछ लेखक आकारिक वर्ग शब्द का उपयोग आकारिक वर्ग नियम के अर्थ के लिए करते हैं।

लुबिन-टेट आकारिक वर्ग नियम

हम Zp को पी-एडीक पूर्णांक की वलय मानते हैं। लुबिन-टेट आकारिक वर्ग नियम अद्वितीय (1-आयामी) आकारिक वर्ग नियम F है जैसे कि e(x) = px + xp दूसरे शब्दों में F का एक अंतराकारिता है।

अधिक सामान्यतः हम e को किसी भी शक्ति श्रृंखला होने की अनुमति दे सकते हैं जैसे कि e(x) = px + + उच्च-घात शब्द और e(x) = px मॉड P इन शर्तों को पूरा करने के विभिन्न विकल्पों के लिए सभी वर्ग नियम सख्ती से समाकृतिक हैं।[8]

'Z' में प्रत्येक तत्व A के लिए लुबिन-टेट आकारिक वर्ग नियम का एक अद्वितीय अंतराकारिता F है, जैसे कि F (x) = x + उच्च-घात शब्द है। यह लुबिन-टेट आकारिक वर्ग नियम पर वलय जेडपी की कार्रवाई करता है।

Z के साथ एक समान निर्माण है, जिसे परिमित अवशेष वर्ग क्षेत्र के साथ किसी भी पूर्ण असतत मूल्यांकन वलय द्वारा प्रतिस्थापित किया गया है।[9]

यह निर्माण ल्यूबिन और टेट (1965) द्वारा दीर्घ वृत्ताकार कार्यों के सम्मिश्र गुणन के आधारित सिद्धांत के समष्टिीय क्षेत्र भाग को भिन्न करने के एक सफल प्रयास में प्रस्तुत किया गया था। यह समष्टिीय वर्ग क्षेत्र सिद्धांत के कुछ दृष्टिकोणों में एक प्रमुख घटक है।[10] और वर्णिक समरूपता सिद्धांत में मोरावा ई-सिद्धांत के निर्माण में एक आवश्यक घटक है।[11]

यह भी देखें

संदर्भ

  1. Note that the formula for the logarithm in terms of the invariant differential given in dimension one does not assume that F is commutative.
  2. Hazewinkel, Michiel. औपचारिक समूह और अनुप्रयोग. §6.1.
  3. Hazewinkel, Michiel. औपचारिक समूह और अनुप्रयोग. §14.2.3.
  4. Hazewinkel, Michiel. औपचारिक समूह और अनुप्रयोग. §11.1.6.
  5. Mavraki, Niki Myrto. "औपचारिक समूह" (PDF). Archived (PDF) from the original on 2022-09-12.
  6. Weinstein, Jared. "ल्यूबिन-टेट स्पेस की ज्यामिति" (PDF).
  7. Underwood, Robert G. (2011). हॉपफ बीजगणित का परिचय. Berlin: Springer-Verlag. p. 121. ISBN 978-0-387-72765-3. Zbl 1234.16022.
  8. Manin, Yu. I.; Panchishkin, A. A. (2007). आधुनिक संख्या सिद्धांत का परिचय. Encyclopaedia of Mathematical Sciences. Vol. 49 (Second ed.). p. 168. ISBN 978-3-540-20364-3. ISSN 0938-0396. Zbl 1079.11002.
  9. Koch, Helmut (1997). बीजगणितीय संख्या सिद्धांत. Encycl. Math. Sci. Vol. 62 (2nd printing of 1st ed.). Springer-Verlag. pp. 62–63. ISBN 3-540-63003-1. Zbl 0819.11044.
  10. e.g. Serre, Jean-Pierre (1967). "Local class field theory". In Cassels, J.W.S.; Fröhlich, Albrecht (eds.). Algebraic Number Theory. Academic Press. pp. 128–161. Zbl 0153.07403.Hazewinkel, Michiel (1975). "Local class field theory is easy". Advances in Mathematics. 18 (2): 148–181. doi:10.1016/0001-8708(75)90156-5. Zbl 0312.12022.Iwasawa, Kenkichi (1986). Local class field theory. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press. ISBN 978-0-19-504030-2. MR 0863740. Zbl 0604.12014.
  11. Lurie, Jacob (April 27, 2010). "Lubin-Tate Theory (Lecture 21)" (PDF). harvard.edu. Retrieved June 23, 2023.