सेमीपैरामीट्रिक मॉडल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Type of statistical model}}सांख्यिकी में, '''[[अपैरामीट्रिक|अर्धप्राचलिक]] नमूना''' एक [[सांख्यिकीय मॉडल|सांख्यिकीय नमूना]] होता है जिसमें [[पैरामीट्रिक आँकड़े|प्राचलिक]] और गैर-प्राचलिक घटक होते है।
{{Short description|Type of statistical model}}सांख्यिकी में, '''[[अपैरामीट्रिक|अर्धप्राचलिक]] मॉडल''' एक [[सांख्यिकीय मॉडल]] होता है जिसमें [[पैरामीट्रिक आँकड़े|प्राचलिक]] और गैर-प्राचलिक घटक होते है।


एक सांख्यिकीय नमूने वितरण का एक [[मानकीकृत परिवार|मानकीकृत]] गुण है: <math>\{P_\theta: \theta \in \Theta\}</math> एक [[सांख्यिकीय पैरामीटर|सांख्यिकीय मापदंड]] द्वारा अनुक्रमित है <math>\theta</math>.
एक सांख्यिकीय मॉडल वितरण का एक [[मानकीकृत परिवार|मानकीकृत]] गुण है: <math>\{P_\theta: \theta \in \Theta\}</math> एक [[सांख्यिकीय पैरामीटर|सांख्यिकीय मापदंड]] द्वारा अनुक्रमित है <math>\theta</math>.


* [[पैरामीट्रिक मॉडल|प्राचलिक नमूना]] एक ऐसा नमूना होता है जिसमें सूचीकरण मापदंड होता है <math>\theta</math> में एक वेक्टर है <math>k</math>-आयामी [[यूक्लिडियन स्थान]], कुछ गैर-ऋणात्मक पूर्णांक के लिए <math>k</math>.<ref name="ESS06-">{{citation| title= Semiparametrics | last1= Bickel | first1= P. J. | last2= Klaassen | first2= C. A. J. | last3= Ritov | first3= Y. | last4= Wellner | first4= J. A. | encyclopedia= [[Encyclopedia of Statistical Sciences]] | editor1-first= S. | editor1-last= Kotz | editor1-link= Samuel Kotz |display-editors=etal | year= 2006 | publisher= [[Wiley (publisher)|Wiley]]}}.</ref> इस प्रकार, <math>\theta</math> परिमित-आयामी है, और <math>\Theta \subseteq \mathbb{R}^k</math>.
* [[पैरामीट्रिक मॉडल|प्राचलिक मॉडल]] एक ऐसा मॉडल होता है जिसमें सूचीकरण मापदंड होता है <math>\theta</math> में एक वेक्टर है <math>k</math>-आयामी [[यूक्लिडियन स्थान]], कुछ गैर-ऋणात्मक पूर्णांक के लिए <math>k</math>.<ref name="ESS06-">{{citation| title= Semiparametrics | last1= Bickel | first1= P. J. | last2= Klaassen | first2= C. A. J. | last3= Ritov | first3= Y. | last4= Wellner | first4= J. A. | encyclopedia= [[Encyclopedia of Statistical Sciences]] | editor1-first= S. | editor1-last= Kotz | editor1-link= Samuel Kotz |display-editors=etal | year= 2006 | publisher= [[Wiley (publisher)|Wiley]]}}.</ref> इस प्रकार, <math>\theta</math> परिमित-आयामी है, और <math>\Theta \subseteq \mathbb{R}^k</math>.
* एक गैर-प्राचलिक_सांख्यिकी गैर-प्राचलिक_नमूना के साथ, मापदंड के संभावित मानों का समूह <math>\theta</math> का एक उपसमुच्चय है <math>V</math>, जो आवश्यक रूप से परिमित-आयामी नहीं है। उदाहरण के लिए, हम माध्य 0 वाले सभी वितरणों के समूह पर विचार कर सकते है। ऐसे स्थान [[टोपोलॉजिकल वेक्टर स्पेस|टोपोलॉजिकल वेक्टर स्थान]] होते है, लेकिन वेक्टर स्थान के रूप में परिमित-आयामी नहीं हो सकते है। इस प्रकार, <math>\Theta \subseteq V</math> कुछ संभवतः अनंत-आयामी वेक्टर है <math>V</math>.
* एक गैर-प्राचलिक_सांख्यिकी गैर-प्राचलिक_मॉडल के साथ, मापदंड के संभावित मानों का समूह <math>\theta</math> का एक उपसमुच्चय है <math>V</math>, जो आवश्यक रूप से परिमित-आयामी नहीं है। उदाहरण के लिए, हम माध्य 0 वाले सभी वितरणों के समूह पर विचार कर सकते है। ऐसे स्थान [[टोपोलॉजिकल वेक्टर स्पेस|टोपोलॉजिकल वेक्टर स्थान]] होते है, लेकिन वेक्टर स्थान के रूप में परिमित-आयामी नहीं हो सकते है। इस प्रकार, <math>\Theta \subseteq V</math> कुछ संभवतः अनंत-आयामी वेक्टर है <math>V</math>.
* अर्धप्राचलिक नमूने के साथ, मापदंड में एक परिमित-आयामी घटक और एक अनंत-आयामी घटक (अधिकांशतः वास्तविक रेखा पर परिभाषित एक वास्तविक-मूल्यवान फलन) दोनों होते है। इस प्रकार, <math>\Theta \subseteq \mathbb{R}^k \times V</math>, जहाँ <math>V</math> एक अनंत-आयामी स्थान है।
* अर्धप्राचलिक मॉडल के साथ, मापदंड में एक परिमित-आयामी घटक और एक अनंत-आयामी घटक (अधिकांशतः वास्तविक रेखा पर परिभाषित एक वास्तविक-मूल्यवान फलन) दोनों होते है। इस प्रकार, <math>\Theta \subseteq \mathbb{R}^k \times V</math>, जहाँ <math>V</math> एक अनंत-आयामी स्थान है।


पहली बार में ऐसा लग सकता है कि अर्धप्राचलिक नमूने में गैर-प्राचलिक नमूने सम्मलित होते है, क्योंकि उनमें एक अनंत-आयामी के साथ-साथ एक परिमित-आयामी घटक भी होता है। चूँकि, एक अर्धप्राचलिक नमूने को पूरी तरह से गैरप्राचलिक नमूने से छोटा माना जाता है क्योंकि हम अधिकांशतः केवल परिमित-आयामी घटक में रुचि रखते है। <math>\theta</math>. अर्थात्, अनंत-आयामी घटक को एक [[उपद्रव पैरामीटर|उपद्रव मापदंड]] के रूप में माना जाता है।<ref name="ESS06-Oakes">{{citation| title= Semi-parametric models | first= D. | last= Oakes | encyclopedia= [[Encyclopedia of Statistical Sciences]] | editor1-first= S. | editor1-last= Kotz | editor1-link= Samuel Kotz |display-editors=etal | year= 2006 | publisher= [[Wiley (publisher)|Wiley]]}}.</ref> इसके विपरीत, गैरप्राचलिक नमूने में, प्राथमिक रुचि अनंत-आयामी मापदंड का अनुमान लगाने में होती है। इस प्रकार गैर-प्राचलिक नमूने में अनुमान लगाने का कार्य सांख्यिकीय रूप से कठिन होता है।
पहली बार में ऐसा लग सकता है कि अर्धप्राचलिक मॉडल में गैर-प्राचलिक मॉडल सम्मलित होते है, क्योंकि उनमें एक अनंत-आयामी के साथ-साथ एक परिमित-आयामी घटक भी होता है। चूँकि, एक अर्धप्राचलिक मॉडल को पूरी तरह से गैरप्राचलिक मॉडल से छोटा माना जाता है क्योंकि हम अधिकांशतः केवल परिमित-आयामी घटक में रुचि रखते है। <math>\theta</math>. अर्थात्, अनंत-आयामी घटक को एक [[उपद्रव पैरामीटर|उपद्रव मापदंड]] के रूप में माना जाता है।<ref name="ESS06-Oakes">{{citation| title= Semi-parametric models | first= D. | last= Oakes | encyclopedia= [[Encyclopedia of Statistical Sciences]] | editor1-first= S. | editor1-last= Kotz | editor1-link= Samuel Kotz |display-editors=etal | year= 2006 | publisher= [[Wiley (publisher)|Wiley]]}}.</ref> इसके विपरीत, गैरप्राचलिक मॉडल में, प्राथमिक रुचि अनंत-आयामी मापदंड का अनुमान लगाने में होती है। इस प्रकार गैर-प्राचलिक मॉडल में अनुमान लगाने का कार्य सांख्यिकीय रूप से कठिन होता है।


यह नमूने अधिकांशतः [[ चौरसाई |सुचारु]] या [[कर्नेल (सांख्यिकी)]] का उपयोग करते है।
यह मॉडल अधिकांशतः [[ चौरसाई |सुचारु]] या [[कर्नेल (सांख्यिकी)]] का उपयोग करते है।


==उदाहरण==
==उदाहरण==
अर्धप्राचलिक नमूने का एक प्रसिद्ध उदाहरण आनुपातिक समस्या नमूना होता है।<ref name="BalakrishnanRao2004">{{cite book|author1-first=N. | author1-last= Balakrishnan|author2-first=C. R. | author2-last=Rao | author2-link= C. R. Rao|title=Handbook of Statistics 23: Advances in Survival Analysis|url=https://books.google.com/books?id=oP4ZJxBE1csC&pg=PA126|date= 2004 |publisher= [[Elsevier]]|pages=126}}</ref> यदि हमें समय का अध्ययन करने में रुचि है <math>T</math> कैंसर के कारण मृत्यु या प्रकाश बल्ब की विफलता जैसी किसी घटना के लिए, कॉक्स नमूना निम्नलिखित वितरण फलन निर्दिष्ट करता है <math>T</math>:
अर्धप्राचलिक मॉडल का एक प्रसिद्ध उदाहरण आनुपातिक समस्या मॉडल होता है।<ref name="BalakrishnanRao2004">{{cite book|author1-first=N. | author1-last= Balakrishnan|author2-first=C. R. | author2-last=Rao | author2-link= C. R. Rao|title=Handbook of Statistics 23: Advances in Survival Analysis|url=https://books.google.com/books?id=oP4ZJxBE1csC&pg=PA126|date= 2004 |publisher= [[Elsevier]]|pages=126}}</ref> यदि हमें समय का अध्ययन करने में रुचि है <math>T</math> कैंसर के कारण मृत्यु या प्रकाश बल्ब की विफलता जैसी किसी घटना के लिए, कॉक्स मॉडल निम्नलिखित वितरण फलन निर्दिष्ट करता है <math>T</math>:
:<math>
:<math>
F(t) = 1 - \exp\left(-\int_0^t \lambda_0(u) e^{\beta x} du\right),
F(t) = 1 - \exp\left(-\int_0^t \lambda_0(u) e^{\beta x} du\right),
Line 20: Line 20:
==यह भी देखें==
==यह भी देखें==
*[[अर्धपैरामीट्रिक प्रतिगमन|अर्धप्राचलिक प्रतिगमन]]
*[[अर्धपैरामीट्रिक प्रतिगमन|अर्धप्राचलिक प्रतिगमन]]
*सांख्यिकीय नमूना
*सांख्यिकीय मॉडल
*[[क्षणों की सामान्यीकृत विधि]]
*[[क्षणों की सामान्यीकृत विधि]]


Line 33: Line 33:
*{{citation | first1= Anastasios A. | last1= Tsiatis | title= Semiparametric Theory and Missing Data | year= 2006 | publisher= Springer }}
*{{citation | first1= Anastasios A. | last1= Tsiatis | title= Semiparametric Theory and Missing Data | year= 2006 | publisher= Springer }}
*Begun, Janet M.; Hall, W. J.; Huang, Wei-Min; Wellner, Jon A. (1983), "Information and asymptotic efficiency in parametric--nonparametric models", Annals of Statistics, 11 (1983), no. 2, 432--452
*Begun, Janet M.; Hall, W. J.; Huang, Wei-Min; Wellner, Jon A. (1983), "Information and asymptotic efficiency in parametric--nonparametric models", Annals of Statistics, 11 (1983), no. 2, 432--452
[[Category: अर्ध-पैरामीट्रिक मॉडल| अर्ध-पैरामीट्रिक मॉडल]] [[Category: गणितीय और मात्रात्मक तरीके (अर्थशास्त्र)]]


[[Category: Machine Translated Page]]
[[Category:Created On 06/07/2023]]
[[Category:Created On 06/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अर्ध-पैरामीट्रिक मॉडल| अर्ध-पैरामीट्रिक मॉडल]]
[[Category:गणितीय और मात्रात्मक तरीके (अर्थशास्त्र)]]

Latest revision as of 09:49, 2 August 2023

सांख्यिकी में, अर्धप्राचलिक मॉडल एक सांख्यिकीय मॉडल होता है जिसमें प्राचलिक और गैर-प्राचलिक घटक होते है।

एक सांख्यिकीय मॉडल वितरण का एक मानकीकृत गुण है: एक सांख्यिकीय मापदंड द्वारा अनुक्रमित है .

  • प्राचलिक मॉडल एक ऐसा मॉडल होता है जिसमें सूचीकरण मापदंड होता है में एक वेक्टर है -आयामी यूक्लिडियन स्थान, कुछ गैर-ऋणात्मक पूर्णांक के लिए .[1] इस प्रकार, परिमित-आयामी है, और .
  • एक गैर-प्राचलिक_सांख्यिकी गैर-प्राचलिक_मॉडल के साथ, मापदंड के संभावित मानों का समूह का एक उपसमुच्चय है , जो आवश्यक रूप से परिमित-आयामी नहीं है। उदाहरण के लिए, हम माध्य 0 वाले सभी वितरणों के समूह पर विचार कर सकते है। ऐसे स्थान टोपोलॉजिकल वेक्टर स्थान होते है, लेकिन वेक्टर स्थान के रूप में परिमित-आयामी नहीं हो सकते है। इस प्रकार, कुछ संभवतः अनंत-आयामी वेक्टर है .
  • अर्धप्राचलिक मॉडल के साथ, मापदंड में एक परिमित-आयामी घटक और एक अनंत-आयामी घटक (अधिकांशतः वास्तविक रेखा पर परिभाषित एक वास्तविक-मूल्यवान फलन) दोनों होते है। इस प्रकार, , जहाँ एक अनंत-आयामी स्थान है।

पहली बार में ऐसा लग सकता है कि अर्धप्राचलिक मॉडल में गैर-प्राचलिक मॉडल सम्मलित होते है, क्योंकि उनमें एक अनंत-आयामी के साथ-साथ एक परिमित-आयामी घटक भी होता है। चूँकि, एक अर्धप्राचलिक मॉडल को पूरी तरह से गैरप्राचलिक मॉडल से छोटा माना जाता है क्योंकि हम अधिकांशतः केवल परिमित-आयामी घटक में रुचि रखते है। . अर्थात्, अनंत-आयामी घटक को एक उपद्रव मापदंड के रूप में माना जाता है।[2] इसके विपरीत, गैरप्राचलिक मॉडल में, प्राथमिक रुचि अनंत-आयामी मापदंड का अनुमान लगाने में होती है। इस प्रकार गैर-प्राचलिक मॉडल में अनुमान लगाने का कार्य सांख्यिकीय रूप से कठिन होता है।

यह मॉडल अधिकांशतः सुचारु या कर्नेल (सांख्यिकी) का उपयोग करते है।

उदाहरण

अर्धप्राचलिक मॉडल का एक प्रसिद्ध उदाहरण आनुपातिक समस्या मॉडल होता है।[3] यदि हमें समय का अध्ययन करने में रुचि है कैंसर के कारण मृत्यु या प्रकाश बल्ब की विफलता जैसी किसी घटना के लिए, कॉक्स मॉडल निम्नलिखित वितरण फलन निर्दिष्ट करता है :

जहाँ सहसंयोजक सदिश है, और और अज्ञात मापदंड है. . यहाँ परिमित-आयामी है और रुचिकर है; समय का एक अज्ञात गैर-ऋणात्मक कार्य है (आधारभूत समस्या फलन के रूप में जाना जाता है) और अधिकांशतः एक उपद्रव मापदंड होता है। इसके लिए संभावित समूह अनंत-आयामी होता है।

यह भी देखें

टिप्पणियाँ

  1. Bickel, P. J.; Klaassen, C. A. J.; Ritov, Y.; Wellner, J. A. (2006), "Semiparametrics", in Kotz, S.; et al. (eds.), Encyclopedia of Statistical Sciences, Wiley.
  2. Oakes, D. (2006), "Semi-parametric models", in Kotz, S.; et al. (eds.), Encyclopedia of Statistical Sciences, Wiley.
  3. Balakrishnan, N.; Rao, C. R. (2004). Handbook of Statistics 23: Advances in Survival Analysis. Elsevier. p. 126.


संदर्भ

  • Bickel, P. J.; Klaassen, C. A. J.; Ritov, Y.; Wellner, J. A. (1998), Efficient and Adaptive Estimation for Semiparametric Models, Springer
  • Härdle, Wolfgang; Müller, Marlene; Sperlich, Stefan; Werwatz, Axel (2004), Nonparametric and Semiparametric Models, Springer
  • Kosorok, Michael R. (2008), Introduction to Empirical Processes and Semiparametric Inference, Springer
  • Tsiatis, Anastasios A. (2006), Semiparametric Theory and Missing Data, Springer
  • Begun, Janet M.; Hall, W. J.; Huang, Wei-Min; Wellner, Jon A. (1983), "Information and asymptotic efficiency in parametric--nonparametric models", Annals of Statistics, 11 (1983), no. 2, 432--452