पैरामीट्रिक मॉडल
सांख्यिकी में, पैरामीट्रिक मॉडल या पैरामीट्रिक वर्ग या परिमित-आयामी मॉडल सांख्यिकीय मॉडल का विशेष वर्ग है। विशेष रूप से, पैरामीट्रिक मॉडल संभाव्यता वितरण का वर्ग है जिसमें मापदंड की सीमित संख्या होती है।
परिभाषा
एक सांख्यिकीय मॉडल कुछ प्रतिरूप समष्टि पर संभाव्यता वितरण का संग्रह है। हम मानते हैं कि संग्रह, 𝒫, कुछ समुच्चय Θ द्वारा अनुक्रमित किया जाता है . समुच्चय Θ मापदंड समुच्चय या, अधिक सामान्यतः, मापदंड समष्टि कहा जाता है। प्रत्येक के लिए θ ∈ Θ, माना Pθ संग्रह के संबंधित सदस्य को निरूपित करें; इसलिए Pθ संचयी वितरण फलन है। फिर सांख्यिकीय मॉडल के रूप में लिखा जा सकता है
मॉडल पैरामीट्रिक मॉडल है यदि Θ ⊆ ℝk कुछ सकारात्मक पूर्णांक k के लिए .
जब मॉडल में पूरी तरह से निरंतर वितरण होते हैं, तो इसे प्रायिकता घनत्व कार्यों के संदर्भ में निर्दिष्ट किया जाता है:
उदाहरण
- बंटनों का प्वासों बंटन एकल संख्या λ > 0 द्वारा पैरामीट्रिज किया गया है :
जहाँ pλ संभाव्यता द्रव्यमान कार्य है। यह वर्ग घातीय वर्ग है।
- सामान्य वितरण द्वारा पैरामीट्रिज्ड है θ = (μ, σ), जहाँ μ ∈ ℝ समष्टि मापदंड है और σ > 0 स्केल मापदंड है:
यह पैरामीट्रिज्ड वर्ग घातीय वर्ग और समष्टि-स्तरीय वर्ग दोनों है।
- वेइबुल वितरण का त्रि-आयामी θ = (λ, β, μ) मापदंड है :
- द्विपद बंटन θ = (n, p) द्वारा पैरामीट्रिज्ड है , जहाँ n गैर-नकारात्मक पूर्णांक है और p संभावना है (अर्थात p ≥ 0 और p ≤ 1):
यह उदाहरण कुछ असतत मापदंडों वाले मॉडल की परिभाषा दिखाता है।
सामान्य टिप्पणी
मानचित्रण होने पर पैरामीट्रिक मॉडल को अभिज्ञेय कहा जाता है इस प्रकार θ ↦ Pθ व्युत्क्रमणीय है, अर्थात दो θ1 और θ2 अलग-अलग मापदंड मान नहीं हैं ऐसा है कि Pθ1 = Pθ2.
मॉडल के अन्य वर्गों के साथ तुलना
पैरामीट्रिक सांख्यिकी सेमीपैरामेट्रिक मॉडल, अर्ध-गैर पैरामीट्रिक मॉडल या सेमी-नॉनपैरामीट्रिक, और गैर पैरामीट्रिक मॉडल के विपरीत होते हैं, जिनमें से सभी में विवरण के लिए मापदंड का अनंत समुच्चय होता है। इन चार वर्गों के बीच अंतर इस प्रकार है:
- एक पैरामीट्रिक सांख्यिकी मॉडल में सभी मापदंड परिमित-आयामी मापदंड रिक्त समष्टि में हैं;
- एक मॉडल गैर-पैरामीट्रिक सांख्यिकी है | गैर-पैरामीट्रिक यदि सभी मापदंड अनंत-आयामी मापदंड रिक्त समष्टि में हैं;
- एक अर्ध-पैरामीट्रिक मॉडल में रुचि के परिमित-आयामी मापदंड और अनंत-आयामी न्यूसेंस मापदंड सम्मिलित हैं;
- एक अर्ध-गैर पैरामीट्रिक मॉडल में रुचि के परिमित-आयामी और अनंत-आयामी दोनों अज्ञात मापदंड हैं।
कुछ सांख्यिकीविदों का मानना है कि पैरामीट्रिक, गैर-पैरामीट्रिक और अर्ध-पैरामीट्रिक अवधारणाएं अस्पष्ट हैं।[1] यह भी ध्यान दिया जा सकता है कि सभी संभाव्यता उपायों के समुच्चय में कॉन्टिनम (समुच्चय सिद्धांत) की प्रमुखता है, और इसलिए किसी भी मॉडल को (0,1) अंतराल में ही नंबर से पैरामीट्रिज करना संभव है।[2] केवल पैरामीट्रिक मॉडल पर विचार करके इस कठिनाई से बचा जा सकता है।
यह भी देखें
- पैरामीट्रिक वर्ग
- पैरामीट्रिक सांख्यिकी
- सांख्यिकीय मॉडल
- सांख्यिकीय मॉडल विनिर्देश
टिप्पणियाँ
- ↑ Le Cam & Yang 2000, §7.4
- ↑ Bickel et al. 1998, p. 2
ग्रन्थसूची
- Bickel, Peter J.; Doksum, Kjell A. (2001), Mathematical Statistics: Basic and selected topics, vol. 1 (Second (updated printing 2007) ed.), Prentice-Hall
- Bickel, Peter J.; Klaassen, Chris A. J.; Ritov, Ya’acov; Wellner, Jon A. (1998), Efficient and Adaptive Estimation for Semiparametric Models, Springer
- Davison, A. C. (2003), Statistical Models, Cambridge University Press
- Le Cam, Lucien; Yang, Grace Lo (2000), Asymptotics in Statistics: Some basic concepts (2nd ed.), Springer
- Lehmann, Erich L.; Casella, George (1998), Theory of Point Estimation (2nd ed.), Springer
- Liese, Friedrich; Miescke, Klaus-J. (2008), Statistical Decision Theory: Estimation, testing, and selection, Springer
- Pfanzagl, Johann; with the assistance of R. Hamböker (1994), Parametric Statistical Theory, Walter de Gruyter, MR 1291393