पुलबैक (अवकल ज्यामिति): Difference between revisions
No edit summary |
(→संदर्भ) |
||
(6 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
<math>\phi:M\to N</math> स्मूथ विविध के मध्य स्मूथ मानचित्र <math>M</math> और <math>N</math> बनें I पुनः [[One form|1-रूप]] के समिष्ट से संबद्ध [[रेखीय मानचित्र]] है I <math>N</math> ([[कोटैंजेंट बंडल]] के [[अनुभाग (फाइबर बंडल)]] का [[रैखिक स्थान|रैखिक समिष्ट]]) 1-रूप के समिष्ट पर <math>M</math> है, इस रेखीय मानचित्र को '''पुलबैक''' <math>\phi</math> (द्वारा) के रूप में जाना जाता है ), और इसे प्रायः <math>\phi^*</math> द्वारा प्रदर्शित किया जाता है I सामान्यतः, सदिश टेंसर क्षेत्र का कोई भी सहप्रसरण और प्रतिप्रसरण विशेष रूप से कोई भी अवकल रूप पर <math>N</math> पुनः प्राप्त किया जा सकता है I <math>M</math> का उपयोग <math>\phi</math> करता है I | |||
<math>\phi | जब चित्र <math>\phi</math> [[भिन्नता]] है, तो पुलबैक, पुशफॉरवर्ड (भिन्नता) के साथ, किसी भी टेंसर समिष्ट को परिवर्तित करने के लिए उपयोग किया जा सकता है I <math>N</math> से <math>M</math> या इसके विपरीत विशेषकर, यदि <math>\phi</math> के संवृत उपसमुच्चय के मध्य भिन्नता है, <math>\R^n</math> और <math>\R^n</math> निर्देशांक को परिवर्तन के रूप में देखा जाता है, (संभवतः विविध पर विभिन्न चार्ट के मध्य <math>M</math>), पुनः पुलबैक और प्रारंभिक होने के विषय में अधिक पारंपरिक (समन्वय पर निर्भर) दृष्टिकोण में उपयोग किए जाने वाले सदिश टेंसर के सहप्रसरण और विरोधाभास के परिवर्तन गुणों का वर्णन करते हैं। | ||
पुलबैक के पूर्व का विचार अनिवार्य रूप से फलन के दूसरे के साथ पुलबैक पूर्वरचना की धारणा है। चूँकि, इस विचार को कई भिन्न-भिन्न संदर्भों में जोड़कर, अधिक विस्तृत पुलबैक परिचालन का निर्माण किया जा सकता है। यह लेख सबसे सरल परिचालनों से प्रारम्भ होता है, पुनः अधिक परिष्कृत परिचालन निर्मित करने के लिए उनका उपयोग करता है। सामान्यतः, पुलबैक क्रियाविधि (पूर्वरचना का उपयोग करके) अवकल ज्यामिति में कई निर्माणों को विरोधाभासी प्रचालक प्रतिनिधि में परिवर्तित कर देता है। | |||
==सुचारू फलनों और सुचारु मानचित्रों का पुलबैक== | |||
<math>\phi:M\to N</math> (चिकने) विविध के मध्य स्मूथ चित्र <math>M</math> और <math>N</math> बनें, मान लीजिए <math>f:N\to\R</math> पर <math>N</math> सुचारू फलन है I पुनः पुलबैक <math>f</math> द्वारा <math>\phi</math> सुचारू फलन है, <math>\phi^*f</math> पर <math>M</math> द्वारा परिभाषित <math>(\phi^*f)(x)=f(\phi(x))</math> I इसी प्रकार, यदि <math>f</math> संवृत समुच्चय पर सुचारू फलन <math>U</math> में <math>N</math> है, तो वही सूत्र संवृत समुच्चय पर सुचारू फलन को परिभाषित करता है I <math>f</math> में <math>\phi^{-1}(U)</math> (शीफ (गणित) की भाषा में, पुलबैक सुचारू फलनों के शीफ से रूपवाद को परिभाषित करता है I <math>N</math> द्वारा प्रत्यक्ष छवि शीफ के लिए <math>\phi</math> सुचारू फलनों के समूह पर <math>M</math> है I | |||
<math>\phi:M\to N</math> (चिकने) विविध के मध्य | |||
अधिक सामान्यतः, यदि <math>f:N\to A</math> से सहज मानचित्र है, <math>N</math> किसी अन्य विविधता के लिए <math>A</math>, तब <math>(\phi^*f)(x)=f(\phi(x))</math> से सहज मानचित्र <math>M</math> से <math>A</math> है I | अधिक सामान्यतः, यदि <math>f:N\to A</math> से सहज मानचित्र है, <math>N</math> किसी अन्य विविधता के लिए <math>A</math>, तब <math>(\phi^*f)(x)=f(\phi(x))</math> से सहज मानचित्र <math>M</math> से <math>A</math> है I | ||
Line 21: | Line 19: | ||
==बहुरेखीय रूपों का पुलबैक== | ==बहुरेखीय रूपों का पुलबैक== | ||
मान लीजिए {{nowrap|Φ: ''V'' → ''W''}} सदिश | मान लीजिए {{nowrap|Φ: ''V'' → ''W''}} सदिश समिष्टों V और W के मध्य रेखीय मानचित्र है (अर्थात, Φ {{nowrap|''L''(''V'', ''W'')}} का तत्व है, जिसे {{nowrap|Hom(''V'', ''W'')}} भी कहा जाता है), और मान लीजिए | ||
:<math>F:W \times W \times \cdots \times W \rightarrow \mathbf{R}</math> | :<math>F:W \times W \times \cdots \times W \rightarrow \mathbf{R}</math> | ||
W पर बहुरेखीय रूप बनें (जिसे [[ टेन्सर |टेन्सर]] के रूप में भी जाना जाता है, टेंसर | W पर बहुरेखीय रूप बनें (जिसे [[ टेन्सर |टेन्सर]] के रूप में भी जाना जाता है, टेंसर समिष्ट के साथ भ्रमित न हों रैंक का) {{nowrap|(0, ''s'')}}, जहां s उत्पाद में W के कारकों की संख्या है)। पुलबैक Φ<sup>∗</sup>Φ द्वारा F का F, V पर बहुरेखीय रूप है जिसे Φ के साथ F को पूर्वरचना करके परिभाषित किया गया है। अधिक त्रुटिहीन रूप से, दिए गए सदिश ''v''<sub>1</sub>, ''v''<sub>2</sub>, ..., ''v<sub>s</sub>'' में ''V'' Φ<sup>∗</sup>F को सूत्र द्वारा परिभाषित किया गया है:- | ||
:<math>(\Phi^*F)(v_1,v_2,\ldots,v_s) = F(\Phi(v_1), \Phi(v_2), \ldots ,\Phi(v_s)),</math> | :<math>(\Phi^*F)(v_1,v_2,\ldots,v_s) = F(\Phi(v_1), \Phi(v_2), \ldots ,\Phi(v_s)),</math> | ||
जो V पर बहुरेखीय रूप है। इसलिए Φ<sup>∗</sup> W पर बहुरेखीय रूपों से लेकर V पर बहुरेखीय रूपों तक (रैखिक) संचालन है। विशेष विषय के रूप में, ध्यान दें कि यदि F, W पर रैखिक रूप (या (0,1)-टेंसर) है, तो F, W का तत्व है, W का दोहरा | जो V पर बहुरेखीय रूप है। इसलिए Φ<sup>∗</sup> W पर बहुरेखीय रूपों से लेकर V पर बहुरेखीय रूपों तक (रैखिक) संचालन है। विशेष विषय के रूप में, ध्यान दें कि यदि F, W पर रैखिक रूप (या (0,1)-टेंसर) है, तो F, W का तत्व है, W का दोहरा समिष्ट, फिर Φ<sup>∗</sup>F, V का तत्व है, और इसलिए Φ द्वारा पुलबैक दोहरे समिष्टों के मध्य रैखिक मानचित्र को परिभाषित करता है, जो रैखिक मानचित्र Φ के विपरीत दिशा में फलन करता है:- | ||
:<math>\Phi\colon V\rightarrow W, \qquad \Phi^*\colon W^*\rightarrow V^*.</math> | :<math>\Phi\colon V\rightarrow W, \qquad \Phi^*\colon W^*\rightarrow V^*.</math> | ||
Line 37: | Line 35: | ||
==कोटिस्पर्श रेखा सदिशों और 1-रूपों का पुलबैक== | ==कोटिस्पर्श रेखा सदिशों और 1-रूपों का पुलबैक== | ||
<math>\phi:M\to N</math> | <math>\phi:M\to N</math> स्मूथ विविध के मध्य स्मूथ चित्र बनें। पुशफॉरवर्ड (अंतर) <math>\phi</math>, लिखा हुआ, <math>\phi_*</math>, <math>d\phi</math>, या <math>D\phi</math>, [[ वेक्टर बंडल आकारिकी |सदिश बंडल आकारिकी]] <math>M</math> है) I [[स्पर्शरेखा बंडल]] से <math>TM</math> का <math>M</math> पुलबैक बंडल के लिए <math>\phi^*TN</math> का दोहरा समिष्ट <math>\phi_*</math> इसलिए यह बंडल मानचित्र है, <math>\phi^*T^*N</math> को <math>T^*M</math>, का कोटैंजेंट बंडल <math>M</math> I | ||
अब मान लीजिये <math>\alpha</math> का खंड (फाइबर बंडल) है, <math>T^*N</math> ( | अब मान लीजिये <math>\alpha</math> का खंड (फाइबर बंडल) है, <math>T^*N</math> (अवकल रूप,1-रूप पर <math>N</math>), और पूर्व रचना <math>\alpha</math> साथ <math>\phi</math> का पुलबैक बंडल प्राप्त करने के लिए <math>\phi^*T^*N</math>, उपरोक्त बंडल मानचित्र को इस अनुभाग पर (बिंदुवार) प्रस्तावित करने से पुलबैक प्राप्त होता है, <math>\alpha</math> द्वारा <math>\phi</math>, जो 1-रूप है, <math>\phi^*\alpha</math> पर <math>M</math> द्वारा इस प्रकार परिभाषित है:- | ||
:<math> (\phi^*\alpha)_x(X) = \alpha_{\phi(x)}(d\phi_x(X))</math> | :<math> (\phi^*\alpha)_x(X) = \alpha_{\phi(x)}(d\phi_x(X))</math> | ||
<math>x</math> में <math>M</math> और <math>X</math> में <math>T_xM</math> I | <math>x</math> में <math>M</math> और <math>X</math> में <math>T_xM</math> I | ||
== (सहसंयोजक) टेंसर | == (सहसंयोजक) टेंसर समिष्ट का पुलबैक == | ||
पूर्व अनुभाग का निर्माण रैंक के दसियों के लिए सामान्यीकृत हो जाता है, <math>(0,s)</math> किसी भी प्राकृतिक संख्या के लिए <math>s</math>: a <math>(0,s)</math> विविध पर [[टेंसर फ़ील्ड|टेंसर | पूर्व अनुभाग का निर्माण रैंक के दसियों के लिए सामान्यीकृत हो जाता है, <math>(0,s)</math> किसी भी प्राकृतिक संख्या के लिए <math>s</math>: a <math>(0,s)</math> विविध पर [[टेंसर फ़ील्ड|टेंसर समिष्ट]] <math>N</math> टेंसर बंडल का भाग है, <math>N</math> जिसका फाइबर पर <math>y</math> में <math>N</math> बहुरेखीय का समिष्ट <math>s</math>-रूप है:- | ||
:<math> F: T_y N\times\cdots \times T_y N\to \R.</math> | :<math> F: T_y N\times\cdots \times T_y N\to \R.</math> | ||
<math>\phi</math> चिकने मानचित्र के (बिंदुवार) अंतर के बराबर <math>\phi</math> से <math>M</math> को <math>N</math>, पुलबैक प्राप्त करने के लिए बहुरेखीय रूपों के पुलबैक को अनुभागों के पुलबैक के साथ जोड़ा जा सकता है, <math>(0,s)</math> टेंसर | <math>\phi</math> चिकने मानचित्र के (बिंदुवार) अंतर के बराबर <math>\phi</math> से <math>M</math> को <math>N</math>, पुलबैक प्राप्त करने के लिए बहुरेखीय रूपों के पुलबैक को अनुभागों के पुलबैक के साथ जोड़ा जा सकता है, <math>(0,s)</math> टेंसर समिष्ट <math>M</math>, अधिक त्रुटिहीन रूप से यदि <math>S</math> है I <math>(0,s)</math>-टेंसर समिष्ट <math>N</math>, का पुलबैक <math>S</math> द्वारा <math>\phi</math> है, <math>(0,s)</math>-टेंसर समिष्ट <math>\phi^*S</math> पर <math>M</math> द्वारा परिभाषित है:- | ||
:<math> (\phi^*S)_x(X_1,\ldots, X_s) = S_{\phi(x)}(d\phi_x(X_1),\ldots, d\phi_x(X_s))</math> | :<math> (\phi^*S)_x(X_1,\ldots, X_s) = S_{\phi(x)}(d\phi_x(X_1),\ldots, d\phi_x(X_s))</math> | ||
<math>x</math> में <math>M</math> और <math>X_j</math> में <math>T_xM</math> | <math>x</math> में <math>M</math> और <math>X_j</math> में <math>T_xM</math> | ||
== | ==अवकल रूपों का पुलबैक== | ||
सहसंयोजक टेंसर | सहसंयोजक टेंसर समिष्ट के पुलबैक का विशेष महत्वपूर्ण विषय अवकल रूपों का पुलबैक है। यदि <math>\alpha</math> अंतर है, <math>k</math>-रूप, यदि [[बाहरी बंडल]] का भाग <math>\Lambda^k(T^*N)</math> (फाइबरवार) समान रूप से <math>k</math>-पर प्रपत्र <math>TN</math>, फिर का पुलबैक <math>\alpha</math> अंतर है, <math>k</math>-पर प्रपत्र <math>M</math> यदि अनुभाग के समान सूत्र द्वारा परिभाषित है:- | ||
:<math> (\phi^*\alpha)_x(X_1,\ldots, X_k) = \alpha_{\phi(x)}(d\phi_x(X_1),\ldots, d\phi_x(X_k))</math> | :<math> (\phi^*\alpha)_x(X_1,\ldots, X_k) = \alpha_{\phi(x)}(d\phi_x(X_1),\ldots, d\phi_x(X_k))</math> | ||
<math>x</math> में <math>M</math> और <math>X_j</math> में <math>T_xM</math> | <math>x</math> में <math>M</math> और <math>X_j</math> में <math>T_xM</math> | ||
अवकल रूपों के पुलबैक में दो गुण हैं जो इसे उपयोगी बनाते हैं। | |||
# यह वेज उत्पाद के साथ इस अर्थ में संगत है कि, | # यह वेज उत्पाद के साथ इस अर्थ में संगत है कि, अवकल रूपों के लिए <math>\alpha</math> और <math>\beta</math> पर <math>N</math>, | ||
#: <math>\phi^*(\alpha \wedge \beta)=\phi^*\alpha \wedge \phi^*\beta.</math> | #: <math>\phi^*(\alpha \wedge \beta)=\phi^*\alpha \wedge \phi^*\beta.</math> | ||
# यह [[बाहरी व्युत्पन्न]] के साथ संगत है <math>d</math>: अगर <math>\alpha</math> पर | # यह [[बाहरी व्युत्पन्न]] के साथ संगत है <math>d</math>: अगर <math>\alpha</math> पर अवकल रूप है, <math>N</math> तब | ||
#: <math>\phi^*(d\alpha) = d(\phi^*\alpha).</math> | #: <math>\phi^*(d\alpha) = d(\phi^*\alpha).</math> | ||
==भिन्नता द्वारा पुलबैक== | ==भिन्नता द्वारा पुलबैक== | ||
जब मानचित्र <math>\phi</math> विविध के मध्य भिन्नता है, यदि इसमें सहज विपरीत है, [[वेक्टर फ़ील्ड|सदिश | जब मानचित्र <math>\phi</math> विविध के मध्य भिन्नता है, यदि इसमें सहज विपरीत है, [[वेक्टर फ़ील्ड|सदिश समिष्ट]] के साथ-साथ 1-फॉर्म के लिए पुलबैक को परिभाषित किया जा सकता है, और इस प्रकार, विस्तार से, विविध पर स्वेच्छानुसार मिश्रित टेंसर समिष्ट के लिए रेखीय मानचित्र, | ||
:<math>\Phi = d\phi_x \in \operatorname{GL}\left(T_x M, T_{\phi(x)}N\right)</math> | :<math>\Phi = d\phi_x \in \operatorname{GL}\left(T_x M, T_{\phi(x)}N\right)</math> | ||
देने के लिए विपरीत किया जा सकता है | देने के लिए विपरीत किया जा सकता है | ||
:<math>\Phi^{-1} = \left({d\phi_x}\right)^{-1} \in \operatorname{GL}\left(T_{\phi(x)}N, T_x M\right).</math> | :<math>\Phi^{-1} = \left({d\phi_x}\right)^{-1} \in \operatorname{GL}\left(T_{\phi(x)}N, T_x M\right).</math> | ||
सामान्य मिश्रित टेंसर | सामान्य मिश्रित टेंसर समिष्ट का उपयोग करके रूपांतरित किया जाएगा I <math>\phi</math> और <math>\phi^{-1}</math> टेंसर उत्पाद के अनुसार टेंसर बंडल की प्रतियों में अपघटन <math>TN</math> और <math>T^*N</math> जब <math>M=N</math>, पुलबैक और पुशफॉरवर्ड (डिफरेंशियल) मैनिफोल्ड पर टेंसर के परिवर्तन गुणों का वर्णन करते हैं I <math>M</math> पारंपरिक शब्दों में, पुलबैक टेंसर के सहसंयोजक सूचकांकों के परिवर्तन गुणों का वर्णन करता है; इसके विपरीत, सदिश सूचकांकों के सहप्रसरण और प्रतिप्रसरण का परिवर्तन पुशफॉरवर्ड (अंतर) द्वारा दिया जाता है। | ||
==स्वप्रतिरूपण द्वारा पुलबैक== | ==स्वप्रतिरूपण द्वारा पुलबैक== | ||
Line 74: | Line 72: | ||
==पुलबैक और लाई व्युत्पन्न== | ==पुलबैक और लाई व्युत्पन्न== | ||
व्युत्पन्न पूर्ववर्ती विचारों को सदिश क्षेत्र द्वारा परिभाषित भिन्नताओं के | व्युत्पन्न पूर्ववर्ती विचारों को सदिश क्षेत्र द्वारा परिभाषित भिन्नताओं के समिष्टीय 1-पैरामीटर समूह पर प्रस्तावित करके <math>M</math>, और पैरामीटर के संबंध में अंतर करते हुए, किसी भी संबद्ध बंडल पर लाई व्युत्पन्न की धारणा प्राप्त की जाती है। | ||
==सम्बन्धो का पुलबैक (सहसंयोजक व्युत्पन्न)== | ==सम्बन्धो का पुलबैक (सहसंयोजक व्युत्पन्न)== | ||
Line 90: | Line 88: | ||
* {{cite book |authorlink=Ralph Abraham (mathematician) |first=Ralph |last=Abraham |first2=Jerrold E. |last2=Marsden |title=Foundations of Mechanics |year=1978 |publisher=Benjamin-Cummings |location=London |isbn=0-8053-0102-X }} ''See section 1.7 and 2.3''. | * {{cite book |authorlink=Ralph Abraham (mathematician) |first=Ralph |last=Abraham |first2=Jerrold E. |last2=Marsden |title=Foundations of Mechanics |year=1978 |publisher=Benjamin-Cummings |location=London |isbn=0-8053-0102-X }} ''See section 1.7 and 2.3''. | ||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 03/07/2023]] | [[Category:Created On 03/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:टेंसर]] | |||
[[Category:विभेदक ज्यामिति]] |
Latest revision as of 16:03, 31 October 2023
स्मूथ विविध के मध्य स्मूथ मानचित्र और बनें I पुनः 1-रूप के समिष्ट से संबद्ध रेखीय मानचित्र है I (कोटैंजेंट बंडल के अनुभाग (फाइबर बंडल) का रैखिक समिष्ट) 1-रूप के समिष्ट पर है, इस रेखीय मानचित्र को पुलबैक (द्वारा) के रूप में जाना जाता है ), और इसे प्रायः द्वारा प्रदर्शित किया जाता है I सामान्यतः, सदिश टेंसर क्षेत्र का कोई भी सहप्रसरण और प्रतिप्रसरण विशेष रूप से कोई भी अवकल रूप पर पुनः प्राप्त किया जा सकता है I का उपयोग करता है I
जब चित्र भिन्नता है, तो पुलबैक, पुशफॉरवर्ड (भिन्नता) के साथ, किसी भी टेंसर समिष्ट को परिवर्तित करने के लिए उपयोग किया जा सकता है I से या इसके विपरीत विशेषकर, यदि के संवृत उपसमुच्चय के मध्य भिन्नता है, और निर्देशांक को परिवर्तन के रूप में देखा जाता है, (संभवतः विविध पर विभिन्न चार्ट के मध्य ), पुनः पुलबैक और प्रारंभिक होने के विषय में अधिक पारंपरिक (समन्वय पर निर्भर) दृष्टिकोण में उपयोग किए जाने वाले सदिश टेंसर के सहप्रसरण और विरोधाभास के परिवर्तन गुणों का वर्णन करते हैं।
पुलबैक के पूर्व का विचार अनिवार्य रूप से फलन के दूसरे के साथ पुलबैक पूर्वरचना की धारणा है। चूँकि, इस विचार को कई भिन्न-भिन्न संदर्भों में जोड़कर, अधिक विस्तृत पुलबैक परिचालन का निर्माण किया जा सकता है। यह लेख सबसे सरल परिचालनों से प्रारम्भ होता है, पुनः अधिक परिष्कृत परिचालन निर्मित करने के लिए उनका उपयोग करता है। सामान्यतः, पुलबैक क्रियाविधि (पूर्वरचना का उपयोग करके) अवकल ज्यामिति में कई निर्माणों को विरोधाभासी प्रचालक प्रतिनिधि में परिवर्तित कर देता है।
सुचारू फलनों और सुचारु मानचित्रों का पुलबैक
(चिकने) विविध के मध्य स्मूथ चित्र और बनें, मान लीजिए पर सुचारू फलन है I पुनः पुलबैक द्वारा सुचारू फलन है, पर द्वारा परिभाषित I इसी प्रकार, यदि संवृत समुच्चय पर सुचारू फलन में है, तो वही सूत्र संवृत समुच्चय पर सुचारू फलन को परिभाषित करता है I में (शीफ (गणित) की भाषा में, पुलबैक सुचारू फलनों के शीफ से रूपवाद को परिभाषित करता है I द्वारा प्रत्यक्ष छवि शीफ के लिए सुचारू फलनों के समूह पर है I
अधिक सामान्यतः, यदि से सहज मानचित्र है, किसी अन्य विविधता के लिए , तब से सहज मानचित्र से है I
बंडलों और अनुभागों का पुलबैक
यदि सदिश बंडल (या वास्तव में कोई फाइबर बंडल) है, और सहज मानचित्र है, तो पुलबैक बंडल सदिश बंडल (या फाइबर बंडल) है I जिसका फ़ाइबर (गणित) समाप्त हो गया, में द्वारा दिया गया है I
इस स्थिति में, पूर्वरचना अनुभागों पर पुलबैक परिचानल को परिभाषित करता है, : यदि का खंड (फाइबर बंडल) है, के ऊपर , लबैक बंडल का भाग है के ऊपर है I
बहुरेखीय रूपों का पुलबैक
मान लीजिए Φ: V → W सदिश समिष्टों V और W के मध्य रेखीय मानचित्र है (अर्थात, Φ L(V, W) का तत्व है, जिसे Hom(V, W) भी कहा जाता है), और मान लीजिए
W पर बहुरेखीय रूप बनें (जिसे टेन्सर के रूप में भी जाना जाता है, टेंसर समिष्ट के साथ भ्रमित न हों रैंक का) (0, s), जहां s उत्पाद में W के कारकों की संख्या है)। पुलबैक Φ∗Φ द्वारा F का F, V पर बहुरेखीय रूप है जिसे Φ के साथ F को पूर्वरचना करके परिभाषित किया गया है। अधिक त्रुटिहीन रूप से, दिए गए सदिश v1, v2, ..., vs में V Φ∗F को सूत्र द्वारा परिभाषित किया गया है:-
जो V पर बहुरेखीय रूप है। इसलिए Φ∗ W पर बहुरेखीय रूपों से लेकर V पर बहुरेखीय रूपों तक (रैखिक) संचालन है। विशेष विषय के रूप में, ध्यान दें कि यदि F, W पर रैखिक रूप (या (0,1)-टेंसर) है, तो F, W का तत्व है, W का दोहरा समिष्ट, फिर Φ∗F, V का तत्व है, और इसलिए Φ द्वारा पुलबैक दोहरे समिष्टों के मध्य रैखिक मानचित्र को परिभाषित करता है, जो रैखिक मानचित्र Φ के विपरीत दिशा में फलन करता है:-
टेंसोरियल दृष्टिकोण से, स्वेच्छानुसार रैंक के टेंसरों तक पुलबैक की धारणा को विस्तारित करने का प्रयास करना स्वाभाविक है, जिससे डब्ल्यू की आर प्रतियों के टेंसर उत्पाद में मान लेने वाले डब्ल्यू पर बहुरेखीय मानचित्रों तक, W ⊗ W ⊗ ⋅⋅⋅ ⊗ W. चूँकि, ऐसे टेंसर उत्पाद के तत्व स्वाभाविक रूप से पीछे नहीं हटते हैं: इसके अतिरिक्त अग्रसर होना ऑपरेशन होता है, V ⊗ V ⊗ ⋅⋅⋅ ⊗ V को W ⊗ W ⊗ ⋅⋅⋅ ⊗ W द्वारा दिए गए है:-
इससे यह निष्कर्ष प्राप्त होता है कि यदि Φ विपरीत है, तो पुलबैक को व्युत्क्रम फ़ंक्शन Φ द्वारा पुशफॉरवर्ड का उपयोग करके परिभाषित किया जा सकता है, इन दोनों निर्माणों के संयोजन से किसी भी रैंक के टेंसर के लिए विपरीत रैखिक मानचित्र के साथ पुशफॉरवर्ड परिचालन (r, s) प्राप्त होता है I
कोटिस्पर्श रेखा सदिशों और 1-रूपों का पुलबैक
स्मूथ विविध के मध्य स्मूथ चित्र बनें। पुशफॉरवर्ड (अंतर) , लिखा हुआ, , , या , सदिश बंडल आकारिकी है) I स्पर्शरेखा बंडल से का पुलबैक बंडल के लिए का दोहरा समिष्ट इसलिए यह बंडल मानचित्र है, को , का कोटैंजेंट बंडल I
अब मान लीजिये का खंड (फाइबर बंडल) है, (अवकल रूप,1-रूप पर ), और पूर्व रचना साथ का पुलबैक बंडल प्राप्त करने के लिए , उपरोक्त बंडल मानचित्र को इस अनुभाग पर (बिंदुवार) प्रस्तावित करने से पुलबैक प्राप्त होता है, द्वारा , जो 1-रूप है, पर द्वारा इस प्रकार परिभाषित है:-
में और में I
(सहसंयोजक) टेंसर समिष्ट का पुलबैक
पूर्व अनुभाग का निर्माण रैंक के दसियों के लिए सामान्यीकृत हो जाता है, किसी भी प्राकृतिक संख्या के लिए : a विविध पर टेंसर समिष्ट टेंसर बंडल का भाग है, जिसका फाइबर पर में बहुरेखीय का समिष्ट -रूप है:-
चिकने मानचित्र के (बिंदुवार) अंतर के बराबर से को , पुलबैक प्राप्त करने के लिए बहुरेखीय रूपों के पुलबैक को अनुभागों के पुलबैक के साथ जोड़ा जा सकता है, टेंसर समिष्ट , अधिक त्रुटिहीन रूप से यदि है I -टेंसर समिष्ट , का पुलबैक द्वारा है, -टेंसर समिष्ट पर द्वारा परिभाषित है:-
में और में
अवकल रूपों का पुलबैक
सहसंयोजक टेंसर समिष्ट के पुलबैक का विशेष महत्वपूर्ण विषय अवकल रूपों का पुलबैक है। यदि अंतर है, -रूप, यदि बाहरी बंडल का भाग (फाइबरवार) समान रूप से -पर प्रपत्र , फिर का पुलबैक अंतर है, -पर प्रपत्र यदि अनुभाग के समान सूत्र द्वारा परिभाषित है:-
में और में
अवकल रूपों के पुलबैक में दो गुण हैं जो इसे उपयोगी बनाते हैं।
- यह वेज उत्पाद के साथ इस अर्थ में संगत है कि, अवकल रूपों के लिए और पर ,
- यह बाहरी व्युत्पन्न के साथ संगत है : अगर पर अवकल रूप है, तब
भिन्नता द्वारा पुलबैक
जब मानचित्र विविध के मध्य भिन्नता है, यदि इसमें सहज विपरीत है, सदिश समिष्ट के साथ-साथ 1-फॉर्म के लिए पुलबैक को परिभाषित किया जा सकता है, और इस प्रकार, विस्तार से, विविध पर स्वेच्छानुसार मिश्रित टेंसर समिष्ट के लिए रेखीय मानचित्र,
देने के लिए विपरीत किया जा सकता है
सामान्य मिश्रित टेंसर समिष्ट का उपयोग करके रूपांतरित किया जाएगा I और टेंसर उत्पाद के अनुसार टेंसर बंडल की प्रतियों में अपघटन और जब , पुलबैक और पुशफॉरवर्ड (डिफरेंशियल) मैनिफोल्ड पर टेंसर के परिवर्तन गुणों का वर्णन करते हैं I पारंपरिक शब्दों में, पुलबैक टेंसर के सहसंयोजक सूचकांकों के परिवर्तन गुणों का वर्णन करता है; इसके विपरीत, सदिश सूचकांकों के सहप्रसरण और प्रतिप्रसरण का परिवर्तन पुशफॉरवर्ड (अंतर) द्वारा दिया जाता है।
स्वप्रतिरूपण द्वारा पुलबैक
पूर्व खंड के निर्माण में प्रतिनिधित्व-सैद्धांतिक व्याख्या है, जब अनेक गुना से भिन्नता है। इस विषय में व्युत्पन्न का भाग है I यह फ़्रेम बंडल से जुड़े किसी भी बंडल के अनुभागों पर पुलबैक कार्रवाई को प्रेरित करता है, का सामान्य रैखिक समूह के प्रतिनिधित्व द्वारा (जहाँ ) होता है I
पुलबैक और लाई व्युत्पन्न
व्युत्पन्न पूर्ववर्ती विचारों को सदिश क्षेत्र द्वारा परिभाषित भिन्नताओं के समिष्टीय 1-पैरामीटर समूह पर प्रस्तावित करके , और पैरामीटर के संबंध में अंतर करते हुए, किसी भी संबद्ध बंडल पर लाई व्युत्पन्न की धारणा प्राप्त की जाती है।
सम्बन्धो का पुलबैक (सहसंयोजक व्युत्पन्न)
यदि सदिश बंडल पर सम्बन्ध (वेक्टर बंडल) (या सहसंयोजक व्युत्पन्न) है, से ऊपर और से सहज मानचित्र है, को , पुलबैक सम्बन्ध है, पर ऊपर , उस स्थिति द्वारा विशिष्ट रूप से निर्धारित किया जाता है:-
यह भी देखें
- पुशफ़ॉरवर्ड (अंतर)
- पुलबैक बंडल
- पुलबैक (श्रेणी सिद्धांत)
संदर्भ
- Jost, Jürgen (2002). Riemannian Geometry and Geometric Analysis. Berlin: Springer-Verlag. ISBN 3-540-42627-2. See sections 1.5 and 1.6.
- Abraham, Ralph; Marsden, Jerrold E. (1978). Foundations of Mechanics. London: Benjamin-Cummings. ISBN 0-8053-0102-X. See section 1.7 and 2.3.