श्रेणीबद्ध वितरण: Difference between revisions

From Vigyanwiki
 
(3 intermediate revisions by 3 users not shown)
Line 210: Line 210:


== संदर्भ ==
== संदर्भ ==
{{Reflist}}{{ProbDistributions|discrete-finite}}
{{Reflist}}


{{DEFAULTSORT:Categorical Distribution}}[[Category: सुस्पष्ट डेटा]] [[Category: असतत वितरण]] [[Category: घातीय परिवार वितरण]]  
[[Category:Collapse templates|Categorical Distribution]]
 
[[Category:Created On 03/06/2023|Categorical Distribution]]
 
[[Category:Lua-based templates|Categorical Distribution]]
 
[[Category:Machine Translated Page|Categorical Distribution]]
[[Category: Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Created On 03/06/2023]]
[[Category:Navigational boxes without horizontal lists|Categorical Distribution]]
[[Category:Vigyan Ready]]
[[Category:Pages with script errors|Categorical Distribution]]
[[Category:Short description with empty Wikidata description|Categorical Distribution]]
[[Category:Sidebars with styles needing conversion|Categorical Distribution]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Categorical Distribution]]
[[Category:Templates generating microformats|Categorical Distribution]]
[[Category:Templates that add a tracking category|Categorical Distribution]]
[[Category:Templates that are not mobile friendly|Categorical Distribution]]
[[Category:Templates that generate short descriptions|Categorical Distribution]]
[[Category:Templates using TemplateData|Categorical Distribution]]
[[Category:Wikipedia metatemplates|Categorical Distribution]]
[[Category:असतत वितरण|Categorical Distribution]]
[[Category:घातीय परिवार वितरण|Categorical Distribution]]
[[Category:सुस्पष्ट डेटा|Categorical Distribution]]

Latest revision as of 12:10, 1 November 2023

Categorical
Parameters number of categories (integer)
event probabilities
Support
PMF

(1)
(2)
(3)

where is the Iverson bracket
Mode

संभाव्यता सिद्धांत और सांख्यिकी में, श्रेणीबद्ध वितरण (जिसे सामान्यीकृत बर्नौली वितरण भी कहा जाता है, मल्टीनौली वितरण[1]) असतत संभाव्यता वितरण है जो यादृच्छिक चर के संभावित परिणामों का वर्णन करता है एवं संभाव्यता के साथ K को संभावित श्रेणियों में से एक पर ले जा सकता है। प्रत्येक श्रेणी को भिन्न से निर्दिष्ट किया गया है। इन परिणामों का कोई अंतर्निहित क्रम नहीं है, किन्तु वितरण का वर्णन करने में सुविधा के लिए संख्यात्मक लेबल प्रायः संलग्न होते हैं, (जैसे 1 से K)। K-आयामी श्रेणीबद्ध वितरण, K-वे घटना पर सबसे सामान्य वितरण है; आकार-K प्रतिरूप स्थान पर कोई अन्य पृथक वितरण विशेष विषय है। प्रत्येक संभावित परिणाम के अनुमानओं को निर्दिष्ट करने वाले पैरामीटर केवल इस तथ्य से बाधित होते हैं कि प्रत्येक को 0 से 1 की सीमा में होना चाहिए, और सभी का योग 1 होना चाहिए।

श्रेणीबद्ध वितरण श्रेणीगत चर यादृच्छिक चर के लिए बर्नौली वितरण का सामान्यीकरण है, अर्थात असतत चर के लिए दो से अधिक संभावित परिणामों के साथ, जिस प्रकार पासे का रोल होता है। दूसरी ओर, श्रेणीबद्ध वितरण बहुपद वितरण का विशेष विषय है, जिसमें यह कई रेखाचित्रों के अतिरिक्त रेखाचित्र के संभावित परिणामों के अनुमान देता है।

शब्दावली

कभी-कभी, श्रेणीबद्ध वितरण को असतत वितरण कहा जाता है। चूंकि, यह उचित रूप से वितरण के विशेष समुदाय को नहीं अर्थात असतत वितरण को संदर्भित करता है।

कुछ क्षेत्रों में, जैसे कि उपकरण अधिगम और प्राकृतिक भाषा प्रसंस्करण, श्रेणीबद्ध और बहुपद वितरण परस्पर संयोजित हैं, और बहुपद वितरण का कथन साधारण है जब श्रेणीबद्ध वितरण अधिक स्थिर होगा।[2] यह अस्पष्ट उपयोग इस तथ्य से उत्पन्न होता है कि कभी-कभी श्रेणीबद्ध वितरण के परिणाम को "1-ऑफ-K" सदिश (सदिश जिसमें तत्व 1 और अन्य सभी तत्व 0 युक्त होता है) के रूप में व्यक्त करना सुविधाजनक होता है, इसके अतिरिक्त कि 1 से K तक की सीमा में पूर्णांक इस रूप में, श्रेणीबद्ध वितरण एकल अवलोकन के लिए बहुपद वितरण के समान है।

चूंकि, श्रेणीबद्ध और बहुपद वितरणों को युग्मित करने से समस्याएँ उत्पन्न हो सकती हैं। उदाहरण के लिए, डिरिचलेट-बहुपद वितरण में, जो सामान्यतः प्राकृतिक भाषा प्रसंस्करण मॉडल (चूंकि सामान्यतः इस नाम के साथ नहीं) में उत्पन्न होता है, संक्षिप्त गिब्स प्रारूप के परिणामस्वरूप जहां डिरिचलेट वितरण पदानुक्रमित बायेसियन मॉडल से भिन्न हो जाते है, यह अधिक महत्वपूर्ण है श्रेणीबद्ध को बहुपद से भिन्न करें। समान डिरिचलेट-बहुपद समान चर के संयुक्त वितरण के दो भिन्न-भिन्न रूप हैं, जो इस पर निर्भर करता है कि क्या यह वितरण के रूप में वर्णित है दोनों रूपों में अधिक समान दिखने वाली संभाव्यता द्रव्यमान फलन (पीएमएफ) हैं, जो दोनों श्रेणी में नोड्स की बहुपद-शैली की गणना का संदर्भ देते हैं। चूंकि, बहुपद-शैली पीएमएफ में अतिरिक्त गुणक, बहुपद गुणांक है, जो कि श्रेणीबद्ध-शैली पीएमएफ में 1 के समान स्थिरांक है। दोनों को भ्रमित करने से उन सेटिंग्स में सरलता से अनुचित परिणाम आ सकते हैं जहां यह अतिरिक्त गुणक ब्याज के वितरण के संबंध में स्थिर नहीं है। गिब्स सैंपलिंग में उपयोग की जाने वाली पूर्ण सशर्तताओं और परिवर्तनशील प्रविधियों में इष्टतम वितरण में गुणक प्रायः स्थिर होता है।

वितरण प्रस्तुत करना

श्रेणीबद्ध वितरण असतत संभाव्यता वितरण है जिसका प्रतिरूप स्थान व्यक्तिगत रूप से पहचाने गए पदों का समुच्चय है। यह श्रेणीबद्ध यादृच्छिक चर के लिए बर्नौली वितरण का सामान्यीकरण होता है।

वितरण के सूत्रीकरण में, प्रतिरूप स्थान को पूर्णांकों का सीमित अनुक्रम माना जाता है। लेबल के रूप में उपयोग किए जाने वाले त्रुटिहीन पूर्णांक महत्वहीन हैं; वे {0, 1, ..., k − 1} या {1, 2, ..., k} या मानों का कोई अन्य मनमाना समुच्चय हो सकते हैं। निम्नलिखित विवरणों में, हम सुविधा के लिए {1, 2, ..., k} का उपयोग करते हैं, चूंकि यह बर्नौली वितरण के लिए सम्मेलन से असहमत है, जो {0, 1} का उपयोग करता है। इस स्थिति में, संभाव्यता द्रव्यमान फलन f है।

जहाँ , तत्व i और के अवलोकन की संभावना को दर्शाता है।

अन्य सूत्रीकरण जो अधिक जटिल प्रतीत होता है किन्तु गणितीय कार्यसाधन की सुविधा देता है एवं इवरसन ब्रैकेट का उपयोग करते हुए इस प्रकार है-[3]

जहां यदि , 0 है अन्यथा 1 का मानांकन करता है। इस सूत्रीकरण के विभिन्न लाभ हैं, उदाहरण के लिए:

  • स्वतंत्र समान रूप से वितरित श्रेणीबद्ध चर के समुच्चय के अनुमान फलन को लिखना सरल होता है।
  • यह श्रेणीबद्ध वितरण को संबंधित बहुपद वितरण से संयोजित करता है।
  • यह दिखाता है कि डिरिचलेट वितरण श्रेणीबद्ध वितरण से पूर्व का संयुग्मित क्यों है, और पैरामीटरों के पश्च वितरण की गणना करने की अनुमति देता है।

तत्पश्चात अन्य सूत्रीकरण श्रेणीबद्ध वितरण को बहुपद वितरण के विशेष विषय के रूप में मानकर श्रेणीबद्ध और बहुपद वितरण के मध्य संबंध को स्पष्ट करता है जिसमें बहुपद वितरण का पैरामीटर n (प्रतिरूप किए गए पद की संख्या) 1 पर निर्धारित किया गया है। इस सूत्रीकरण में, प्रतिरूप स्थान को आयाम k के 1-ऑफ-K एन्कोडेड यादृच्छिक सदिश x का समुच्चय माना जा सकता है,[4] जिसमें यह गुण होता है कि वास्तव में तत्व का मान 1 है और अन्य का मान 0 है। विशेष तत्व वाला मान 1 दर्शाता है कि कौन सी श्रेणी का चयन किया गया है। इस सूत्रीकरण में प्रायिकता द्रव्यमान फलन f है।

जहाँ तत्व i और के अवलोकन की संभावना को दर्शाता है। यह क्रिस्टोफर बिशप द्वारा स्वीकार किया गया सूत्रीकरण है।[4][note 1]

गुण

के साथ श्रेणीबद्ध वितरण के लिए संभावित अनुमान 3-समष्टि में एम्बेडेड 2-सिंप्लेक्स हैं।

वितरण पूर्ण रूप से प्रत्येक संख्या से संयोजित अनुमानओं द्वारा दिया गया है: , i = 1,...,k, जहाँ , अनुमानओं के संभावित समुच्चय मानक -आयामी सिंप्लेक्स के समान हैं; k = 2 के लिए यह बर्नौली वितरण की संभावित संभावनाओं को 1-सिम्प्लेक्स, तक कम कर देता है।

  • वितरण "बहुभिन्नरूपी बर्नौली वितरण" की विशेष स्थिति है, जिसमें k 0-1 चर में से एक का मान होता है।
  • मान लीजिए कि श्रेणीबद्ध वितरण का साधन है। तत्वों से बने यादृच्छिक सदिश Y को परिभाषित करें:
जहां I सूचकफलन है। तत्पश्चात Y का वितरण है जो पैरामीटर के साथ बहुपद वितरण की विशेष स्थिति है। पैरामीटर के साथ श्रेणीबद्ध वितरण से निर्मित स्वतंत्र और समान रूप से वितरित ऐसे यादृच्छिक चर Y का योग बहुपद रूप से पैरामीटर और के साथ वितरित किया जाता है।
  • श्रेणीबद्ध वितरण का संयुग्मित पूर्व वितरण डिरिचलेट वितरण है।[2] अधिक वर्णन के लिए नीचे दिया गया अनुभाग देखें।
  • n स्वतंत्र प्रेक्षणों से पर्याप्त तथ्यांक प्रत्येक श्रेणी में अवलोकनों की गणना (या, समकक्ष, अनुपात) का समुच्चय है, जहाँ परीक्षणों की कुल संख्या (=n) निश्चित है।
  • किसी अवलोकन का सूचक फलन जिसका मान i है, इवरसन ब्रैकेट फलन के समान है या क्रोनकर डेल्टा फलन डेल्टा पैरामीटर के साथ बर्नौली वितरण होता है।


संयुग्म पूर्व का उपयोग करते हुए बायेसियन अनुमान

बायेसियन सांख्यिकी में, डिरिचलेट वितरण श्रेणीबद्ध वितरण (और बहुपद वितरण) का संयुग्मित पूर्व वितरण है। इसका अर्थ यह है कि मॉडल में डेटा बिंदु होता है जिसमें अज्ञात पैरामीटर सदिश p के साथ श्रेणीबद्ध वितरण होता है, और (मानक बायेसियन शैली में) हम इस पैरामीटर को यादृच्छिक चर के रूप में मानते हैं और इसी डिरिचलेट वितरण का उपयोग करके परिभाषित पूर्व वितरण देते हैं, तत्पश्चात प्रेक्षित डेटा से प्राप्त ज्ञान को सम्मिलित करने के पश्चात पैरामीटर का पूर्व वितरण भी डिरिचलेट है। सहज रूप से, ऐसी स्थिति में, डेटा बिंदु को देखने से पूर्व पैरामीटर के विषय में जो ज्ञात होता है उससे प्रारम्भ करके, डेटा बिंदु के आधार पर ज्ञान को अद्यतन किया जा सकता है, जिससे प्राचीन के समान रूप का नया वितरण प्राप्त होता है। इस प्रकार, गणितीय कठिनाइयों के बिना, समय में नए अवलोकनों को सम्मिलित करके पैरामीटर के ज्ञान को क्रमिक रूप से अद्यतन किया जा सकता है।

औपचारिक रूप से, इसे इस प्रकार व्यक्त किया जा सकता है-

तो निम्नलिखित मान्य है:[2]

इस संबंध का उपयोग बायेसियन सांख्यिकी में N प्रारूपों के संग्रह को देखते हुए श्रेणीबद्ध वितरण के अंतर्निहित पैरामीटर P का अनुमान लगाने के लिए किया जाता है। सहज रूप से, हम हाइपरप्रायर सदिश α को छद्मगणना के रूप में देख सकते हैं, अर्थात प्रत्येक श्रेणी में उन टिप्पणियों की संख्या का प्रतिनिधित्व करते हैं जो हम पूर्व ही देख चुके है। तत्पश्चात हम पश्च वितरण प्राप्त करने के लिए सभी नए अवलोकनों (सदिश c) की गणना को जोड़ते हैं।

अग्र अंतर्ज्ञान पश्च वितरण के अपेक्षित मान से प्राप्त होता है (डिरिचलेट वितरण पर लेख देखें):

यह कहता है कि पश्च वितरण द्वारा उत्पन्न विभिन्न असतत वितरणों के मध्य श्रेणी i को देखने के अपेक्षित अनुमान वास्तव में डेटा में देखी गई उस श्रेणी की घटनाओं के अनुपात के समान है, जिसमें पूर्व वितरण में छद्म गणना भी सम्मिलित है। इससे अधिक सीमा तक सहज ज्ञान प्राप्त होता है: यदि उदाहरण के लिए, तीन संभावित श्रेणियां हैं, और श्रेणी 1 को देखे गए डेटा में 40% समय देखा जाता है, तो कोई औसतन 40% समय श्रेणी 1 को देखने की अपेक्षा करेगा।

(यह अंतर्ज्ञान पूर्व वितरण के प्रभाव को अनदेखा कर रहा है। इसके अतिरिक्त, पश्च वितरण है। सामान्य रूप से पश्च वितरण प्रश्न में पैरामीटर का वर्णन करता है, और इस स्थिति में पैरामीटर स्वयं असतत संभाव्यता वितरण है, अर्थात वास्तविक श्रेणीबद्ध वितरण जिसने डेटा उत्पन्न किया। उदाहरण के लिए, यदि 40:5:55 के अनुपात में 3 श्रेणियां प्रेक्षित डेटा में हैं, तो पूर्व वितरण के प्रभाव को अनदेखा करते हुए उचित पैरामीटर के अंतर्निहित वितरण जिसने हमारे देखे गए डेटा को उत्पन्न किया है, और इसी की आशा की जाएगी।औसत मान (0.40,0.05,0.55) होने की आशा है, जो वास्तव में पूर्व से ज्ञात होता है। चूंकि, वास्तविक वितरण वास्तव में (0.35,0.07,0.58) या (0.42,0.04,0.54) या हो सकता है निकट के विभिन्न अन्य अनुमान सम्मिलित अनिश्चितता की मात्रा पश्च भाग के विचरण द्वारा निर्दिष्ट की जाती है, जिसे कुल अवलोकनों की संख्या द्वारा नियंत्रित किया जाता है, जितना अधिक डेटा देखा जाएगा, उचित पैरामीटर के सम्बन्ध में अनिश्चितता उतनी ही कम होगी।)

(तकनीकी रूप से, पूर्व पैरामीटर को वास्तव में श्रेणी के पूर्व अवलोकनों का प्रतिनिधित्व करने के रूप में देखा जाना चाहिए। तत्पश्चात, अद्यतन पश्च पैरामीटर , पश्च अवलोकनों का प्रतिनिधित्व करता है। यह इस तथ्य को दर्शाता है कि डिरिचलेट वितरण के साथ पूर्ण रूप से समतल है - अनिवार्य रूप से, p के संभावित मानों के संकेतन पर समान वितरण (निरंतर) होते है। तार्किक रूप से, इस प्रकार का समतल वितरण कुल अज्ञानता का प्रतिनिधित्व करता है, जो कि किसी भी प्रकार की टिप्पणियों के अनुरूप नहीं है। चूंकि, यदि हम ध्यान न दें तो पश्च का गणितीय अद्यतन उचित कार्य करता है टर्म और केवल α सदिश के विषय में सोचें जो सीधे छद्म गणनाओं के समुच्चय का प्रतिनिधित्व करता है। इसके अतिरिक्त, ऐसा करने से 1 से कम मानों की व्याख्या करने की समस्या से बचा जा सकता है।

एमएपी अनुमान

उपरोक्त मॉडल में पैरामीटर p का अधिकतम-ए-पोस्टीरियरी अनुमान केवल पोस्टीरियर डिरिचलेट वितरण की विधि है, अर्थात[2]

कई व्यावहारिक अनुप्रयोगों में, इस स्थिति का आश्वासन देने की एकमात्र प्रविधि है कि सभी i के लिए सेट करना होता है।

सीमांत अनुमान

उपरोक्त मॉडल में, टिप्पणियों की सीमांत अनुमान (अर्थात पूर्व पैरामीटर सीमांत वितरण के साथ टिप्पणियों का संयुक्त वितरण) डिरिचलेट-बहुपद वितरण है:[2]

यह वितरण पदानुक्रमित बायेसियन मॉडल में महत्वपूर्ण भूमिका निभाता है, क्योंकि गिब्स सैंपलिंग या वेरिएबल बेयस जैसे प्रविधियों का उपयोग करते हुए ऐसे मॉडल पर सांख्यिकीय अनुमान लगाते समय, डिरिचलेट पूर्व वितरण प्रायः हाशिए पर रखे जाते हैं। अधिक विवरण के लिए इस वितरण पर आलेख देखें।

पश्च भविष्य वितरण

उपरोक्त मॉडल में नए अवलोकन का पश्च पूर्वानुमानित वितरण वह वितरण है जिसमें नया अवलोकन , N श्रेणीगत अवलोकनों के समुच्चय को देखते हुए लेगा। जैसा कि डिरिचलेट-मल्टीनोमियल वितरण आलेख में दिखाया गया है, इसका अधिक सरल रूप है:[2]

इस सूत्र और पूर्व सूत्र के मध्य विभिन्न संबंध हैं:

  • किसी विशेष श्रेणी को देखने के पूर्व अनुमानित अनुमान उस श्रेणी में पूर्व टिप्पणियों के सापेक्ष अनुपात के समान होते है (पूर्व की छद्म टिप्पणियों सहित)। यह तार्किक ज्ञान प्रतीत होता है ,सहज रूप से हम उस श्रेणी में प्रथम से देखी गयी आवृत्ति के अनुसार विशेष श्रेणी को देखने की अपेक्षा करेंगे।
  • पोस्टीरियर प्रेडिक्टिव प्रायिकता पोस्टीरियर डिस्ट्रीब्यूशन के अपेक्षित मान के समान है। यह नीचे और अधिक बताया गया है।
  • परिणामस्वरूप, इस सूत्र को किसी श्रेणी को देखने के पश्चगामी अनुमान के रूप में व्यक्त किया जा सकता है, जो उस श्रेणी की कुल देखी गई संख्या के समानुपाती होता है, या किसी श्रेणी की अपेक्षित गणना श्रेणी की कुल देखी गई संख्या के समान होती है। जहां पूर्व की छद्म टिप्पणियों को सम्मिलित करने के लिए प्रेक्षित गणना की जाती है।

पश्च पूर्वानुमानित संभाव्यता और p के पश्च वितरण के अपेक्षित मान के मध्य समानता का कारण उपरोक्त सूत्र के पुन: परिक्षण से स्पष्ट होता है। जैसा कि पोस्टीरियर प्रेडिक्टिव डिस्ट्रीब्यूशन लेख में बताया गया है, पोस्टीरियर प्रेडिक्टिव प्रोबेबिलिटी के सूत्र में पोस्टीरियर डिस्ट्रीब्यूशन के संबंध में अपेक्षित मान का रूप है:

उपरोक्त महत्वपूर्ण पंक्ति तीसरी है। दूसरा अपेक्षित मान की परिभाषा से सीधे अनुसरण करता है। तीसरी पंक्ति विशेष रूप से श्रेणीबद्ध वितरण के लिए है, और इस तथ्य से अनुसरण करती है कि, श्रेणीबद्ध वितरण में विशेष रूप से, किसी विशेष मान i को देखने का अपेक्षित मान संबद्ध पैरामीटर pi द्वारा निर्दिष्ट किया जाता है, चौथी पंक्ति केवल भिन्न संकेतन में तीसरे का पुनर्लेखन है, जो पैरामीटरों के पश्च वितरण के संबंध में की गई अपेक्षा के लिए आगे के संकेतन का उपयोग करता है।

डेटा बिंदुओं का निरिक्षण करें और प्रत्येक डेटा बिंदु का अवलोकन करने और पोस्टीरियर को अपडेट करने से पूर्व उनके अनुमानित अनुमान पर विचार करें। किसी दिए गए डेटा बिंदु के लिए, उस बिंदु की किसी श्रेणी को मानने के अनुमान उस श्रेणी में पूर्व से उपस्थित डेटा बिंदुओं की संख्या पर निर्भर करते है। इस परिदृश्य में, यदि किसी श्रेणी में घटना की उच्च आवृत्ति होती है, तो उस श्रेणी में नए डेटा बिंदुओं के सम्मिलित होने का अनुमान अधिक होता है, जो उसी श्रेणी को और समृद्ध करते है। इस प्रकार के परिदृश्य को प्रायः अधिमान्य लगाव मॉडल कहा जाता है। यह कई वास्तविक विश्व की प्रक्रियाओं को मॉडल करता है, और ऐसे विषयो में प्रथम कुछ डेटा बिंदुओं द्वारा किए गए विकल्पों का बाकी डेटा बिंदुओं पर अधिक प्रभाव पड़ता है।

पश्च सशर्त वितरण

गिब्स प्रतिरूपकरण में, सामान्यतः बहु-चर बेयस नेटवर्क में सशर्त वितरण से आकर्षित करने की आवश्यकता होती है जहां प्रत्येक चर अन्य सभी पर वातानुकूलित होता है। उन नेटवर्कों में जिनमें डिरिचलेट डिस्ट्रीब्यूशन प्रिअर्स (उदाहरण मिश्रण मॉडल और मिश्रण घटकों सहित मॉडल) के साथ श्रेणीबद्ध चर सम्मिलित होते हैं, डिरिचलेट वितरण प्रायः नेटवर्क के संक्षिप्त होता है (सीमांत वितरण), जो किसी दिए गए पूर्व पर निर्भर विभिन्न श्रेणीबद्ध नोड्स के मध्य निर्भरता का परिचय देता है (विशेष रूप से, उनका संयुक्त वितरण डिरिचलेट-बहुपद वितरण है)। ऐसा करने के कारणों में से यह है कि इस प्रकार के विषय में, श्रेणीबद्ध नोड का वितरण दूसरों को दिया गया है, शेष नोड्स का त्रुटिहीन पश्च पूर्वानुमानित वितरण है।

अर्थात नोड्स के समुच्चय के लिए, यदि प्रश्न में नोड को के रूप में और शेष को के रूप में दर्शाया गया है, तब

जहाँ नोड n के अतिरिक्त अन्य नोड्स के मध्य श्रेणी I वाले नोड्स की संख्या है।

प्रतिरूपकरण

कई छद्म-यादृच्छिक संख्या प्रतिरूपकरण परिमित असतत वितरण हैं, किन्तु श्रेणीबद्ध वितरण से प्रतिरूप लेने की सबसे सरल प्रविधि इस प्रकार की विपरीत परिवर्तन प्रतिरूपकरण का उपयोग करती है।

मान लें कि वितरण अज्ञात सामान्यीकरण स्थिरांक के साथ, कुछ अभिव्यक्ति के समानुपाती के रूप में व्यक्त किया गया है। कोई भी प्रतिरूप लेने से पूर्व, कुछ मान निम्नानुसार प्रस्तुत किए जाते हैं।

  1. प्रत्येक श्रेणी के लिए वितरण के असामान्य मान की गणना करें।
  2. उनका योग करें और प्रत्येक मान को इस राशि से विभाजित करें, जिससे उन्हें सामान्य किया जा सके।
  3. श्रेणियों पर किसी प्रकार का क्रम प्रारम्भ करें (उदाहरण के लिए सूचकांक जो 1 से k तक चलता है, जहां k श्रेणियों की संख्या है)।
  4. प्रत्येक मान को पूर्व सभी मानों के योग के साथ परिवर्तन मानों को संचयी वितरण फलन (CDF) में परिवर्तित करे। यह समय O (K) में किया जा सकता है। प्रथम श्रेणी के लिए परिणामी मान 0 होगा।

तत्पश्चात, प्रत्येक बार मान का प्रतिरूप लेना आवश्यक है:

  1. 0 और 1 के मध्य समान वितरण (निरंतर) संख्या चयनित करे।
  2. CDF में सबसे बड़ी संख्या को ज्ञात करे जिसका मान अभी चयनित की गई संख्या से कम या उसके समान है। यह बाइनरी सर्च द्वारा समय O (लॉग (K) में किया जा सकता है।
  3. इस सीडीएफ मान के अनुरूप श्रेणी को रिटर्न करें।

यदि श्रेणीबद्ध वितरण से कई मानों को निकालना आवश्यक है, तो निम्न दृष्टिकोण अधिक कुशल है। यह O(n) समय में n प्रतिरूप लेता है (यह मानते हुए कि O(1) सन्निकटन का उपयोग द्विपद वितरण से मान निकालने के लिए किया जाता है[5]).

जहाँ n श्रेणीबद्ध वितरण से निकाले जाने वाले प्रतिरूपो की संख्या है।

 function draw_categorical(n) // where n is the number of samples to draw from the categorical distribution
 r = 1
 s = 0
 for i from 1 to k // where k is the number of categories
  v = draw from a binomial(n, p[i] / r) distribution // where p[i] is the probability of category i
  for j from 1 to v
   z[s++] = i // where z is an array in which the results are stored
  n = n - v
  r = r - p[i]
 shuffle (randomly re-order) the elements in z
 return z

गंबेल वितरण के माध्यम से प्रतिरूपकरण

मशीन लर्निंग में श्रेणीबद्ध वितरण, को में अप्रतिबंधित प्रतिनिधित्व के माध्यम से पैरामीट्रिज करना विशिष्ट है, जिसके घटक इस प्रकार दिए गए हैं:

जहाँ वास्तविक स्थिरांक है। इस प्रतिनिधित्व को देखते हुए, सॉफ्टमैक्स फलन का उपयोग करके पुनर्प्राप्त किया जा सकता है, जिसे पश्चात में ऊपर वर्णित प्रविधियों का उपयोग करके प्रतिरूप किया जा सकता है। चूंकि अधिक प्रत्यक्ष प्रतिरूपकरण विधि है जो गम्बेल वितरण से प्रतिरूपो का उपयोग करती है।[6] मान लीजिए कि k मानक गम्बेल वितरण से स्वतंत्र है, तो

वांछित श्रेणीबद्ध वितरण से प्रतिरूप होगा। (यदि मानक वितरण (निरंतर) से प्रतिरूप है, तो मानक गम्बेल वितरण से प्रतिरूप है।)

यह भी देखें

  • श्रेणीगत चर

संबंधित वितरण

  • डिरिचलेट वितरण
  • बहुपद वितरण
  • बर्नौली वितरण
  • डिरिचलेट-बहुपद वितरण

टिप्पणियाँ

  1. However, Bishop does not explicitly use the term categorical distribution.


संदर्भ

  1. Murphy, K. P. (2012). Machine learning: a probabilistic perspective, p. 35. MIT press. ISBN 0262018020.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 Minka, T. (2003) Bayesian inference, entropy and the multinomial distribution. Technical report Microsoft Research.
  3. Minka, T. (2003), op. cit. Minka uses the Kronecker delta function, similar to but less general than the Iverson bracket.
  4. 4.0 4.1 Bishop, C. (2006) Pattern Recognition and Machine Learning, Springer. ISBN 0-387-31073-8.
  5. Agresti, A., An Introduction to Categorical Data Analysis, Wiley-Interscience, 2007, ISBN 978-0-471-22618-5, pp. 25
  6. Adams, Ryan. "The Gumbel–Max Trick for Discrete Distributions".