श्रृंखला (बीजगणितीय टोपोलॉजी): Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 49: Line 49:
==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
[[Category: बीजगणितीय टोपोलॉजी]] [[Category: अनेक गुना पर एकीकरण]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 03/07/2023]]
[[Category:Created On 03/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अनेक गुना पर एकीकरण]]
[[Category:बीजगणितीय टोपोलॉजी]]

Latest revision as of 13:57, 3 August 2023



बीजगणितीय टोपोलॉजी में, k-श्रृंखला कक्ष परिसर में k-कक्षIओं का औपचारिक रैखिक संयोजन कहलाता है। और सरल कॉम्प्लेक्स (क्रमशः, क्यूबिकल कॉम्प्लेक्स) में, k -चेन के-सिंप्लिस (क्रमशः, k -क्यूब्स) [1][2] [3] k संयोजित किये जाते हैं, किन्तु यह आवश्यक नहीं है , कि यह जुड़े हुए हों। इस प्रकार से चेन का उपयोग समरूपता में किया जाता है | और समरूपता समूह के अवयव में श्रृंखलाओं के समतुल्य वर्ग का उपयोग किया जाता हैं।

परिभाषा

सरल परिसर के लिए , समूह का -चेन की द्वारा दिया गया है |

जहाँ एकवचन - समरूपता एकवचन हैं सरल का ध्यान दें कि कोई भी अवयव जुड़ा हुआ सरलीकृत परिसर होना आवश्यक नहीं है।

चेन पर एकीकरण

इस प्रकार से एकीकरण को श्रृंखला में गुणांकों (जो सामान्यतः पूर्णांक होते हैं) इसके साथ सरलताओं पर अभिन्नों के रैखिक संयोजन को समिल्लित करके परिभाषित किया जाता है।

सभी k-चेन का समुच्चय समूह बनाता है और इन समूहों के अनुक्रम को श्रृंखला सम्मिश्र कहा जाता है।

चेन पर सीमा संचालक

बहुभुज वक्र की सीमा उसके नोड्स का रैखिक संयोजन है | इन स्तिथियों में, A1 से A6 तक का कुछ रैखिक संयोजन होते है । यह मानते हुए कि सभी खंड बाएँ से दाएँ (Ak से Ak+1 तक बढ़ते क्रम में) उन्मुख हैं, सीमा A6 - A1 है।
बंद बहुभुज वक्र, सुसंगत अभिविन्यास मानते हुए, शून्य सीमा रखता है।

किन्तु श्रृंखला की सीमा श्रृंखला में सरलताओं की सीमाओं का रैखिक संयोजन है। इसमें k-श्रृंखला की सीमा (k−1)-श्रृंखला होती है। ध्यान दें कि सिंप्लेक्स की सीमा सिंप्लेक्स नहीं है, किन्तु गुणांक 1 या −1 के साथ श्रृंखला है | इस प्रकार श्रृंखलाएं सीमा ऑपरेटर के तहत सिंप्लेक्स का समापन हैं।

इस प्रकार से 'उदाहरण 1:' किसी पथ की सीमा (टोपोलॉजी) उसके अंतिम बिंदुओं का औपचारिक अंतर पाया जाता है | यह दूरबीन योग माना जाता है। इस प्रकार से इसे स्पष्ट करने के लिए, यदि 1-श्रृंखला , बिंदु से बिंदु तक का पथ है, जहां , और , इसके घटक 1-सिम्प्लेक्स हैं, तब

इस प्रकार से उदाहरण 2: त्रिभुज की सीमा उसके किनारों का औपचारिक योग होती है जिसमें सीमा को वामावर्त बनाने के लिए चिह्नों का उपयोग किया गया है।

अतः श्रृंखला को चक्र कहा जाता है जब उसकी सीमा शून्य होती है। और शृंखला जो दूसरी शृंखला की सीमा होती है, वह सीमा कहलाती है। सीमाएँ चक्र होती हैं,

इसलिए श्रृंखलाएं श्रृंखला परिसर बनाती हैं, जिनके समरूपता समूह (चक्र मॉड्यूलो सीमाएं) को सरल समरूपता (गणित) समूह कहा जाता है।

अतः उदाहरण 3: मूल बिंदु पर छिद्रित स्पेस में गैर-तुच्छ 1-होमोलॉजी समूह है क्योंकि इकाई वृत्त चक्र है, किन्तु यह सीमा नहीं होती है।

विभेदक ज्यामिति में, चेन पर सीमा ऑपरेटर और बाहरी व्युत्पन्न के मध्य द्वंद्व सामान्य स्टोक्स प्रमेय द्वारा व्यक्त किया जाता है।

संदर्भ

  1. Lee, John M. (2011). टोपोलॉजिकल मैनिफोल्ड्स का परिचय (2nd ed.). New York: Springer. ISBN 978-1441979391. OCLC 697506452.
  2. Kaczynski, Tomasz; Mischaikow, Konstantin; Mrozek, Marian (2004). कम्प्यूटेशनल होमोलॉजी. Applied Mathematical Sciences. Vol. 157. New York: Springer-Verlag. doi:10.1007/b97315. ISBN 0-387-40853-3. MR 2028588.
  3. Hatcher, Allen (2002). बीजगणितीय टोपोलॉजी. Cambridge University Press. ISBN 0-521-79540-0.