सीमांत संभावना: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 36: | Line 36: | ||
* {{cite book |first=Ben |last=Lambert |chapter=The devil is in the denominator |pages=109–120 |title=A Student's Guide to Bayesian Statistics |location= |publisher=Sage |year=2018 |isbn=978-1-4739-1636-4 }} | * {{cite book |first=Ben |last=Lambert |chapter=The devil is in the denominator |pages=109–120 |title=A Student's Guide to Bayesian Statistics |location= |publisher=Sage |year=2018 |isbn=978-1-4739-1636-4 }} | ||
* [http://www.inference.phy.cam.ac.uk/mackay/itila/ The on-line textbook: Information Theory, Inference, and Learning Algorithms], by [[David J.C. MacKay]]. | * [http://www.inference.phy.cam.ac.uk/mackay/itila/ The on-line textbook: Information Theory, Inference, and Learning Algorithms], by [[David J.C. MacKay]]. | ||
[[Category:Created On 07/07/2023]] | [[Category:Created On 07/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Portal-inline template with redlinked portals]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:बायेसियन आँकड़े]] |
Latest revision as of 14:05, 3 August 2023
Part of a series on |
Bayesian statistics |
---|
Posterior = Likelihood × Prior ÷ Evidence |
Background |
Model building |
Posterior approximation |
Estimators |
Evidence approximation |
Model evaluation |
|
सीमांत संभावना एक संभावना फलन है जिसे पैरामीटर स्थान पर एकीकृत किया गया है। यह बायेसियन सांख्यिकी में होता हैं, यह पूर्व संभाव्यता से प्रतिरूप (सांख्यिकी) उत्पन्न करने की संभावना का प्रतिनिधित्व करता है और इसलिए इसे अधिकांशतः मॉडल साक्ष्य या केवल साक्ष्य के रूप में जाना जाता है।
अवधारणा
स्वतंत्र समान रूप से वितरित डेटा बिंदुओं के समूह को देखते हुए हैं जहाँ कुछ संभाव्यता वितरण के अनुसार द्वारा पैरामीटर किया गया है और जहां स्वयं एक वितरण द्वारा वर्णित एक यादृच्छिक वेरिएबल होता है, अर्थात सामान्यतः सीमांत संभावना पूछती है कि संभावना क्या है, जहां सीमांत वितरण (एकीकृत) किया गया है |
उपरोक्त परिभाषा बायेसियन सांख्यिकी के संदर्भ में व्यक्त की गई है, जिस स्थिति में को पूर्व घनत्व कहा जाता है और संभावना है। सीमांत संभावना एक ज्यामितीय अर्थ में डेटा और पूर्व के मध्य सहमति की मात्रा निर्धारित करती है, जिसे डे कार्वाल्हो एट अल में स्पष्ट बनाया गया है। यह (2019) के मौलिक (फ़्रीक्वेंटिस्ट) आँकड़ों में होता हैं, सीमांत संभावना की अवधारणा एक संयुक्त पैरामीटर के संदर्भ में होती है जहाँ ब्याज का वास्तविक पैरामीटर है, और एक गैर-रोचक उपद्रव पैरामीटर होता है। यदि के लिए संभाव्यता वितरण उपस्थित है, तब अधिकांशतः को सीमांत पर रखकर केवल के संदर्भ में संभावना फलन पर विचार करना वांछनीय होता है |
इस प्रकार दुर्भाग्य से, सीमांत संभावनाओं की गणना करना सामान्यतः कठिन होती है। स्पष्ट समाधान वितरण के लघु वर्ग के लिए जाने जाते हैं, विशेषतः जब सीमांत पर रखा गया पैरामीटर डेटा के वितरण से पहले संयुग्मित होता है। और अन्य स्थितियों में, किसी प्रकार की संख्यात्मक एकीकरण विधि की आवश्यकता होती है, या तब सामान्य विधि जैसे गॉसियन एकीकरण या मोंटे कार्लो विधि, या सांख्यिकीय समस्याओं के लिए विशेष विधि जैसे लाप्लास सन्निकटन, गिब्स प्रतिरूप/मेट्रोपोलिस-हेस्टिंग्स_एल्गोरिदम प्रतिरूप, या ईएम एल्गोरिदम के लिए विशेष विधि की आवश्यकता होती है।
उपरोक्त विचारों को एकल यादृच्छिक वेरिएबल (डेटा बिंदु) पर क्रियान्वित करना भी संभव होता है, बायेसियन संदर्भ में, अवलोकनों के समूह के अतिरिक्त, यह डेटा बिंदु के पूर्व पूर्वानुमानित वितरण के सामान्तर होते है।
अनुप्रयोग
बायेसियन मॉडल तुलना
बायेसियन मॉडल तुलना में, सीमांत वेरिएबल एक विशेष प्रकार के मॉडल के लिए पैरामीटर होता हैं, और शेष वेरिएबल मॉडल की पहचान होता है इन स्थितियों में, सीमांत संभावना मॉडल प्रकार दिए गए हैं जिसमे डेटा की संभावना होती है जो किसी विशेष मॉडल पैरामीटर को नहीं मानती है। मॉडल मापदंडों के लिए लिखना, मॉडल के लिए सीमांत संभावना होती है |
इसी संदर्भ में मॉडल साक्ष्य शब्द का प्रयोग सामान्यतः किया जाता है। यह मात्रा महत्वपूर्ण है क्योंकि मॉडल M1 के विरुद्ध दूसरे मॉडल M2 के लिए पश्च विषम अनुपात में सीमांत संभावनाओं का अनुपात सम्मिलित होता है, तथाकथित बेयस कारक हैं |
जिसे योजनाबद्ध रूप से इस प्रकार बताया जा सकता है
- पोस्टीरियर ऑड्स = पूर्व ऑड्स × बेयस फैक्टर
यह भी देखें
- अनुभवजन्य बेयस विधियाँ
- लिंडले का विरोधाभास
- सीमांत संभाव्यता
- बायेसियन सूचना मानदंड
संदर्भ
- Charles S. Bos. "A comparison of marginal likelihood computation methods". In W. Härdle and B. Ronz, editors, COMPSTAT 2002: Proceedings in Computational Statistics, pp. 111–117. 2002. (Available as a preprint on the web: [1])
- de Carvalho, Miguel; Page, Garritt; Barney, Bradley (2019). "On the geometry of Bayesian inference". Bayesian Analysis. 14 (4): 1013‒1036. (Available as a preprint on the web: [2])
- Lambert, Ben (2018). "The devil is in the denominator". A Student's Guide to Bayesian Statistics. Sage. pp. 109–120. ISBN 978-1-4739-1636-4.
- The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay.