बर्नौली विभेदक समीकरण: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 58: | Line 58: | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
* [https://planetmath.org/indexofdifferentialequations Index of differential equations] | * [https://planetmath.org/indexofdifferentialequations Index of differential equations] | ||
[[Category:CS1 English-language sources (en)]] | |||
[[Category: | |||
[[Category:Created On 06/07/2023]] | [[Category:Created On 06/07/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:सामान्य अवकल समीकरण]] |
Latest revision as of 13:12, 4 August 2023
अंतर समीकरण |
---|
दायरा |
वर्गीकरण |
समाधान |
लोग |
गणित में एक साधारण अवकल समीकरण को बर्नौली अवकल समीकरण कहा जाता है यदि वह इस प्रकार का हो
जहाँ एक वास्तविक संख्या है। कुछ लेखक किसी भी वास्तविक n की अनुमति देते हैं,[1][2] जबकि अन्य चाहते हैं कि 0 या 1 नही होता है।.[3][4] इस समीकरण पर पहली बार 1695 में जैजब बर्नौली के कार्य में चर्चा की गई थी, जिनके नाम पर इसका नाम रखा गया है। चूँकि सबसे पहला समाधान गॉटफ्राइड लीबनिज़ द्वारा प्रस्तुत किया गया था, जिन्होंने उसी वर्ष अपना परिणाम प्रकाशित किया था और जिसकी विधि आज भी उपयोग की जाती है।[5]
बर्नौली समीकरण विशेष हैं क्योंकि वे ज्ञात स्पष्ट समाधानों के साथ गैर-रेखीय अंतर समीकरण हैं। बर्नौली समीकरण का एक उल्लेखनीय विशेष स्थिति लॉजिस्टिक अंतर समीकरण है।
रैखिक अवकल समीकरण में परिवर्तन
जब , अवकल समीकरण रैखिक होता है। जब , यह वियोज्य है। इन स्थितियों में, उन रूपों के समीकरणों को हल करने के लिए मानक तकनीकों को प्रयुक्त किया जा सकता है। और के लिए, प्रतिस्थापन किसी भी बर्नौली समीकरण को एक रैखिक अंतर समीकरण में कम कर देता है
उदाहरण के लिए, स्थितियों में , प्रतिस्थापन करना विभेदक समीकरण में समीकरण उत्पन्न करता है , जो एक रैखिक अवकल समीकरण है
समाधान
माना और
रैखिक अवकल समीकरण का समाधान बनें है
फिर हमारे पास का एक समाधान है
और ऐसे प्रत्येक विभेदक समीकरण के लिए, सभी के लिए हमारे पास के समाधान के रूप में है।
उदाहरण
बर्नौली समीकरण पर विचार करें
(इस स्थितियों में, अधिक विशेष रूप से एक रिकाटी समीकरण)। स्थिर फलन एक समाधान है। से भाग देने पर परिणाम प्राप्त होते हैं
चर बदलने से समीकरण मिलते हैं
जिसे एकीकृत कारक का उपयोग करके हल किया जा सकता है
, से गुणा करना
उत्पाद नियम को व्युत्पन्न कर बाईं ओर को के व्युत्पन्न के रूप में दर्शाया जा सकता है। श्रृंखला नियम को प्रयुक्त करने और के संबंध में दोनों पक्षों को एकीकृत करने से समीकरण बनते हैं
का समाधान है
टिप्पणियाँ
- ↑ Zill, Dennis G. (2013). A First Course in Differential Equations with Modeling Applications (10th ed.). Boston, Massachusetts: Cengage Learning. p. 73. ISBN 9780357088364.
- ↑ Stewart, James (2015). Calculus: Early Transcendentals (8th ed.). Boston, Massachusetts: Cengage Learning. p. 625. ISBN 9781305482463.
- ↑ Rozov, N. Kh. (2001) [1994], "Bernoulli equation", Encyclopedia of Mathematics, EMS Press
- ↑ Teschl, Gerald (2012). "1.4. Finding explicit solutions" (PDF). Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics (in English). Providence, Rhode Island: American Mathematical Society. p. 15. eISSN 2376-9203. ISBN 978-0-8218-8328-0. ISSN 1065-7339. Zbl 1263.34002.
- ↑ Parker, Adam E. (2013). "Who Solved the Bernoulli Differential Equation and How Did They Do It?" (PDF). The College Mathematics Journal. 44 (2): 89–97. ISSN 2159-8118 – via Mathematical Association of America.
संदर्भ
- Bernoulli, Jacob (1695), "Explicationes, Annotationes & Additiones ad ea, quae in Actis sup. de Curva Elastica, Isochrona Paracentrica, & Velaria, hinc inde memorata, & paratim controversa legundur; ubi de Linea mediarum directionum, alliisque novis", Acta Eruditorum. Cited in Hairer, Nørsett & Wanner (1993).
- Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, ISBN 978-3-540-56670-0.