स्पर्शोन्मुख सिद्धांत (सांख्यिकी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 96: Line 96:


{{Authority control}}
{{Authority control}}
[[Category: स्पर्शोन्मुख सिद्धांत (सांख्यिकी)| स्पर्शोन्मुख सिद्धांत]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:Collapse templates]]
[[Category: Machine Translated Page]]
[[Category:Created On 07/07/2023]]
[[Category:Created On 07/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:स्पर्शोन्मुख सिद्धांत (सांख्यिकी)| स्पर्शोन्मुख सिद्धांत]]

Latest revision as of 11:54, 7 August 2023


सांख्यिकी में, स्पर्शोन्मुख सिद्धांत (असिम्प्टोटिक थ्योरी), या श्रेष्ठ नमूना सिद्धांत, अनुमानकर्ताओं और सांख्यिकीय परीक्षणों के गुणों का आकलन करने के लिए एक रूपरेखा है। इस फ्रेमवर्क के भीतर, प्रायः यह माना जाता है कि नमूना आकार n अनिश्चित काल तक बढ़ सकता है; फिर अनुमानकों और परीक्षणों के गुणों का मूल्यांकन n → ∞ की सीमा के तहत किया जाता है। व्यवहार में, एक सीमा मूल्यांकन को श्रेष्ठ सीमित नमूना आकारों के लिए भी लगभग मान्य माना जाता है।[1]


अवलोकन

अधिकांश सांख्यिकीय समस्याएं n आकार के डेटासेट से प्रारंभ होती हैं। स्पर्शोन्मुख सिद्धांत यह मानकर आगे बढ़ता है कि अतिरिक्त डेटा एकत्र करना (सैद्धांतिक रूप से) संभव है, इस प्रकार नमूना आकार अनंत रूप से बढ़ता है, n → ∞. धारणा के तहत, कई परिणाम प्राप्त किए जा सकते हैं जो सीमित आकार के नमूनों के लिए अनुपलब्ध हैं। इसका एक उदाहरण बड़ी संख्या का नियम है। कानून कहता है कि स्वतंत्र और समान रूप से वितरित यादृच्छिक चर (आईआईडी) के अनुक्रम के लिए यादृच्छिक चर X1, X2, ..., यदि प्रत्येक यादृच्छिक चर से एक मान निकाला जाता है और पहले का औसत n मानों की गणना इस प्रकार की जाती है Xn, फिर Xn यादृच्छिक चरों का अभिसरण जनसंख्या माध्य की संभाव्यता में अभिसरण E[Xi] जैसा n → ∞.[2]

स्पर्शोन्मुख सिद्धांत में, मानक दृष्टिकोण है n → ∞. कुछ सांख्यिकीय मॉडलों के लिए, स्पर्शोन्मुख्स के थोड़े अलग दृष्टिकोण का उपयोग किया जा सकता है। उदाहरण के लिए, पैनल डेटा के साथ, प्रायः यह माना जाता है कि डेटा में एक आयाम स्थिर रहता है, जबकि दूसरा आयाम बढ़ता है: T = constant और N → ∞, या विपरीत है।[2]

स्पर्शोन्मुखता के लिए मानक दृष्टिकोण के अलावा, अन्य वैकल्पिक दृष्टिकोण उपस्थित हैं:

  • स्थानीय स्पर्शोन्मुख सामान्यता फ्रेमवर्क के भीतर, यह माना जाता है कि मॉडल में वास्तविक पैरामीटर का मान थोड़ा भिन्न होता है n, जैसे कि n-वें मॉडल से मेल खाता है θn = θ + h/n . यह दृष्टिकोण हमें नियमित अनुमानक का अध्ययन करने देता है।
  • जब सांख्यिकीय परीक्षणों का अध्ययन उन विकल्पों के विरुद्ध अंतर करने की उनकी शक्ति के लिए किया जाता है जो शून्य परिकल्पना के निकट हैं, तो यह तथाकथित स्थानीय विकल्प फ्रेमवर्क के भीतर किया जाता है: शून्य परिकल्पना है H0: θ = θ0 और विकल्प है H1: θ = θ0 + h/n . यह दृष्टिकोण यूनिट रूट परीक्षणों के लिए विशेष रूप से लोकप्रिय है।
  • ऐसे मॉडल हैं जहां पैरामीटर स्थान का आयाम Θn के साथ धीरे-धीरे विस्तार होता है n, इस तथ्य को दर्शाते हुए कि जितने अधिक अवलोकन होंगे, मॉडल में उतने ही अधिक संरचनात्मक प्रभावों को संभवतः सम्मिलित किया जा सकता है।
  • कर्नेल घनत्व अनुमान और कर्नेल प्रतिगमन में, एक अतिरिक्त पैरामीटर माना जाता है - बैंडविड्थ h. उन मॉडलों में, यह प्रायः लिया जाता है h → 0 जैसा n → ∞. हालाँकि, प्रायः अभिसरण की दर सावधानी से चुनी जानी चाहिए hn−1/5.

कई मामलों में, परिमित नमूनों के लिए अत्यधिक सटीक परिणाम संख्यात्मक तरीकों (यानी कंप्यूटर) के माध्यम से प्राप्त किए जा सकते हैं; हालाँकि, ऐसे मामलों में भी, स्पर्शोन्मुख विश्लेषण उपयोगी हो सकता है। द्वारा यह बात कही गई Small (2010, §1.4), निम्नलिखित है।

A primary goal of asymptotic analysis is to obtain a deeper qualitative understanding of quantitative tools. The conclusions of an asymptotic analysis often supplement the conclusions which can be obtained by numerical methods.


स्पर्शोन्मुख विश्लेषण का प्राथमिक लक्ष्य मात्रात्मक उपकरणों की गहरी गुणात्मक समझ प्राप्त करना है। एक स्पर्शोन्मुख विश्लेषण के निष्कर्ष प्रायः उन निष्कर्षों के पूरक होते हैं जिन्हें संख्यात्मक तरीकों से प्राप्त किया जा सकता है।

यादृच्छिक चरों के अभिसरण के तरीके

स्पर्शोन्मुख गुण

आकलनकर्ता

संगत अनुमानक

अनुमानों के अनुक्रम को सुसंगत कहा जाता है, यदि यह अनुमान लगाए जा रहे पैरामीटर के वास्तविक मूल्य में संभाव्यता में परिवर्तित हो जाता है:

अर्थात्, साधारणतया डेटा की अनंत मात्रा के साथ बोलते हुए अनुमानक (अनुमान उत्पन्न करने का सूत्र) लगभग निश्चित रूप से अनुमानित पैरामीटर के लिए सही परिणाम देगा।[2]


स्पर्शोन्मुख वितरण

यदि गैर-यादृच्छिक स्थिरांकों का अनुक्रम खोजना संभव है {an}, {bn} (संभवतः के मूल्य पर निर्भर करता है θ0), और एक गैर-विक्षिप्त वितरण G ऐसा है कि

फिर अनुमानकर्ताओं का क्रम कहा जाता है कि इसमें स्पर्शोन्मुख वितरण जी है।

प्रायः, व्यवहार में आने वाले अनुमानक अनुमानक#स्पर्शोन्मुख सामान्यता होते हैं, जिसका अर्थ है कि उनका स्पर्शोन्मुख वितरण सामान्य वितरण है, साथ में an = θ0, bn = n, और G = N(0, V):

स्पर्शोन्मुख आत्मविश्वास क्षेत्र

स्पर्शोन्मुख प्रमेय

यह भी देखें

संदर्भ

  1. Höpfner, R. (2014), Asymptotic Statistics, Walter de Gruyter. 286 pag. ISBN 3110250241, ISBN 978-3110250244
  2. 2.0 2.1 2.2 A. DasGupta (2008), Asymptotic Theory of Statistics and Probability, Springer. ISBN 0387759700, ISBN 978-0387759708


ग्रन्थसूची