समुच्चय सिद्धांत में गणित का कार्यान्वयन: Difference between revisions
No edit summary |
No edit summary |
||
(25 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
यह आलेख | यह आलेख समुच्चय सिद्धांत में गणितीय अवधारणाओं के कार्यान्वयन का परीक्षण करता है। कई मूलभूत गणितीय अवधारणाओं का कार्यान्वयन [[ZFC|जेडएफसी]] (प्रमुख समुच्चय सिद्धांत) और [[नई नींव|एनएफयू]] में समानांतर रूप से किया जाता है, क्विन के न्यू फ़ाउंडेशन के संस्करण को 1969 में आर बी जेन्सेन द्वारा सुसंगत दिखाया गया है (यहां कम से कम अनन्तता और विकल्प के सिद्धांतों को सम्मिलित करने के लिए समझा गया है)। | ||
यहाँ जो कहा गया है वह | यहाँ जो कहा गया है वह समुच्चय सिद्धांतों के दो परिवारों पर भी प्रस्तावित होता है: एक ओर, स्तर के निचले सिरे के निकट [[ज़र्मेलो सेट सिद्धांत|ज़र्मेलो समुच्चय सिद्धांत]] सहित सिद्धांतों की श्रृंखला और बड़े कार्डिनल संपत्ति परिकल्पनाओं के साथ जेडएफसी तक विस्तारित हुई, जैसे [[मापने योग्य कार्डिनल]] है; और दूसरी ओर एनएफयू के विस्तार का पदानुक्रम जिसका सर्वेक्षण न्यू फ़ाउंडेशन लेख में किया गया है। ये समुच्चय-सैद्धांतिक ब्रह्मांड कैसा है, इसके विभिन्न सामान्य विचारों के अनुरूप हैं, और यह इन दो सामान्य विचारों के अनुसार गणितीय अवधारणाओं के कार्यान्वयन के दृष्टिकोण हैं जिनकी तुलना और तुलना की जा रही है। | ||
गणित की नींव के रूप में इन सिद्धांतों के सापेक्ष गुणों के | गणित की नींव के रूप में इन सिद्धांतों के सापेक्ष गुणों के विषय में कुछ भी कहना इस लेख का प्राथमिक उद्देश्य नहीं है। दो भिन्न-भिन्न समुच्चय सिद्धांतों के उपयोग का कारण यह बताना है कि गणित के कार्यान्वयन के लिए कई दृष्टिकोण संभव हैं। ठीक इसी दृष्टिकोण के कारण, यह लेख किसी गणितीय अवधारणा की आधिकारिक परिभाषा का स्रोत नहीं है। | ||
==प्रारंभिक== | ==प्रारंभिक== | ||
निम्नलिखित अनुभाग दो सिद्धांतों | निम्नलिखित अनुभाग दो सिद्धांतों जेडएफसी और एनएफयू में कुछ निर्माण करते हैं और कुछ गणितीय संरचनाओं (जैसे [[प्राकृतिक संख्या]]) के परिणामी कार्यान्वयन की तुलना करते हैं। | ||
गणितीय सिद्धांत प्रमेयों को सिद्ध करते हैं (और कुछ नहीं)। तो | गणितीय सिद्धांत प्रमेयों को सिद्ध करते हैं (और कुछ नहीं)। तो कहने का यह तात्पर्य है कि सिद्धांत निश्चित वस्तु के निर्माण की अनुमति देता है, इसका तात्पर्य है कि यह उस सिद्धांत का प्रमेय है कि वह वस्तु उपस्थित है। यह x के रूप की परिभाषा के विषय में कथन है जैसे कि <math>\phi</math> उपस्थित है, जहां <math>\phi</math> हमारी [[औपचारिक भाषा]] का [[सुगठित सूत्र]] है: सिद्धांत x के अस्तित्व को इस प्रकार सिद्ध करता है <math>\phi</math> यदि यह प्रमेय है कि ऐसा <math>\phi</math> और केवल x है। (बर्ट्रेंड रसेल देखें। बर्ट्रेंड रसेल के [[विवरण का सिद्धांत|विवरण के सिद्धांत]]को देखें।) शिथिल रूप से, सिद्धांत इस स्थिति में इस वस्तु को परिभाषित या निर्मित करता है। यदि कथन प्रमेय नहीं है, तो सिद्धांत यह नहीं दिखा सकता कि वस्तु उपस्थित है; यदि कथन सिद्धांत में त्रुटिपूर्ण प्रमाणित होता है, तो यह प्रमाणित होता है कि वस्तु का अस्तित्व नहीं हो सकता; शिथिल रूप से, वस्तु का निर्माण नहीं किया जा सकता है। | ||
जेडएफसी और एनएफयू समुच्चय सिद्धांत की भाषा साझा करते हैं, इसलिए x जैसी समान औपचारिक परिभाषाएँ हैं <math>\phi</math> पर दो सिद्धांतों में विचार किया जा सकता है। समुच्चय सिद्धांत की भाषा में परिभाषा का विशिष्ट रूप [[सेट-बिल्डर नोटेशन|समुच्चय-बिल्डर नोटेशन]] है: <math>\{x \mid \phi\}</math> इसका अर्थ है समुच्चय A इस प्रकार है कि सभी x के लिए, <math>x \in A \leftrightarrow \phi</math> (A में [[मुक्त चर और बाध्य चर]] <math>\phi</math> नहीं हो सकते) है। यह नोटेशन कुछ पारंपरिक विस्तारों को स्वीकार करता है: <math>\{x \in B \mid \phi\}</math> का पर्यायवाची है <math>\{x \mid x \in B \wedge \phi\}</math>; <math>\{f(x_1,\ldots,x_n) \mid \phi\}</math> को इस प्रकार परिभाषित किया गया है <math>\{z \mid \exists x_1,\ldots,x_n\,(z=f(x_1,\dots,x_n) \wedge \phi)\}</math>, जहाँ <math>f(x_1,\ldots,x_n)</math> अभिव्यक्ति पूर्व से ही परिभाषित है। | |||
समुच्चय-बिल्डर नोटेशन में परिभाषित अभिव्यक्तियाँ जेडएफसी और एनएफयू दोनों में समझ में आती हैं: यह हो सकता है कि दोनों सिद्धांत प्रमाणित करते हैं कि दी गई परिभाषा सफल होती है, या दोनों में से कोई भी ऐसा नहीं करता है (अभिव्यक्ति <math>\{x \mid x\not\in x\}</math> शास्त्रीय तर्क के साथ किसी भी समुच्चय सिद्धांत में किसी भी चीज़ को संदर्भित करने में विफल रहता है; एनबीजी जैसे [[वर्ग (सेट सिद्धांत)|वर्ग (समुच्चय सिद्धांत)]] सिद्धांतों में यह संकेतन वर्ग को संदर्भित करता है, किन्तु इसे भिन्न प्रकार से परिभाषित किया जाता है), या एक करता है और दूसरा नहीं करता है। इसके अतिरिक्त, जेडएफसी और एनएफयू में एक ही प्रकार से परिभाषित वस्तु के दो सिद्धांतों में भिन्न-भिन्न गुण हो सकते हैं (या जहां उनके गुणों के मध्य कोई सिद्ध अंतर नहीं है, वहां जो प्रमाणित किया जा सकता है उसमें अंतर हो सकता है)। | |||
इसके | इसके अतिरिक्त, समुच्चय सिद्धांत गणित की अन्य शाखाओं (निश्चय में, गणित की सभी शाखाओं) से अवधारणाओं को आयात करता है। कुछ स्थितियों में, जेडएफसी और एनएफयू में अवधारणाओं को आयात करने के विभिन्न प्रकार हैं। उदाहरण के लिए, प्रथम अनंत क्रमवाचक संख्या की सामान्य परिभाषा जेडएफसी में <math>\omega</math> एनएफयू के लिए उपयुक्त नहीं है क्योंकि ऑब्जेक्ट (विशुद्ध रूप से समुच्चय सैद्धांतिक भाषा में सभी परिमित [[वॉन न्यूमैन ऑर्डिनल|वॉन न्यूमैन ऑर्डिनल्स]] के समुच्चय के रूप में परिभाषित) को एनएफयू में उपस्थित नहीं दिखाया जा सकता है। सामान्य परिभाषा एनएफयू में <math>\omega</math> (विशुद्ध रूप से समुच्चय सैद्धांतिक भाषा में) सभी अनंत सु-क्रमों का समुच्चय है, जिनके सभी उचित प्रारंभिक खंड परिमित हैं, वस्तु जिसे जेडएफसी में उपस्थित नहीं दिखाया जा सकता है। ऐसी आयातित वस्तुओं की स्थिति में, भिन्न-भिन्न परिभाषाएँ हो सकती हैं, जेडएफसी और संबंधित सिद्धांतों में उपयोग के लिए, और एनएफयू और संबंधित सिद्धांतों में उपयोग के लिए हैं। आयातित गणितीय अवधारणाओं के ऐसे कार्यान्वयन को समझने के लिए, यह दिखाने में सक्षम होना आवश्यक है कि दो समानांतर व्याख्याओं में अपेक्षित गुण हैं: उदाहरण के लिए, जेडएफसी और एनएफयू में प्राकृतिक संख्याओं के कार्यान्वयन भिन्न-भिन्न हैं, किन्तु दोनों समान गणितीय संरचना के कार्यान्वयन हैं, क्योंकि दोनों में [[पीनो अंकगणित]] के सभी आदिमों के लिए परिभाषाएं सम्मिलित हैं और पीनो सिद्धांतों को संतुष्ट (अनुवाद) करते हैं। तब यह तुलना करना संभव है कि दो सिद्धांतों में क्या होता है जब केवल समुच्चय सैद्धांतिक भाषा का उपयोग किया जाता है, जब तक कि जेडएफसी के लिए उपयुक्त परिभाषाओं को जेडएफसी संदर्भ में उपयोग किया जाना समझा जाता है और एनएफयू के लिए उपयुक्त परिभाषाओं को एनएफयू संदर्भ में उपयोग किया जाना समझा जाता है। | ||
किसी सिद्धांत में जो कुछ भी अस्तित्व में | किसी सिद्धांत में जो कुछ भी अस्तित्व में प्रमाणित होता है वह उस सिद्धांत के किसी भी विस्तार में स्पष्ट रूप से उपस्थित होता है; इसके अतिरिक्त, इस प्रमाण का विश्लेषण कि किसी दिए गए सिद्धांत में कोई वस्तु उपस्थित है, यह दिखा सकता है कि यह उस सिद्धांत के कमजोर संस्करणों में उपस्थित है (उदाहरण के लिए, इस लेख में जो कुछ किया गया है, उसके लिए कोई जेडएफसी के अतिरिक्त ज़र्मेलो समुच्चय सिद्धांत पर विचार कर सकता है)। | ||
== [[खाली सेट]], सिंगलटन, अव्यवस्थित जोड़े और टुपल्स == | == [[खाली सेट|रिक्त समुच्चय]], सिंगलटन, अव्यवस्थित जोड़े और टुपल्स == | ||
ये निर्माण सबसे | ये निर्माण सबसे पूर्व दिखाई देते हैं क्योंकि ये समुच्चय सिद्धांत में सबसे सरल निर्माण हैं, इसलिए नहीं कि ये गणित में दिमाग में आने वाले पूर्व निर्माण हैं (चूँकि परिमित समुच्चय की धारणा निश्चित रूप से मौलिक है)। चूँकि एनएफयू समुच्चय के सदस्य बनने के लिए समुच्चय [[यूराली|यूआर-तत्वों]] के निर्माण की भी अनुमति देता है, रिक्त समुच्चय बिना किसी सदस्य वाला अद्वितीय समुच्चय है: | ||
:<math>\left.\varnothing\right. \, \overset{\mathrm{def.}}{=} \left\{x : x \neq x\right\}</math> | :<math>\left.\varnothing\right. \, \overset{\mathrm{def.}}{=} \left\{x : x \neq x\right\}</math> | ||
प्रत्येक वस्तु के लिए <math>x</math>, | प्रत्येक वस्तु के लिए <math>x</math>, समुच्चय है <math>\{x\}</math> के साथ <math>x</math> इसके एकमात्र तत्व के रूप में है: | ||
:<math>\left\{x\right\} \overset{\mathrm{def.}}{=} \left\{y : y = x\right\}</math> | :<math>\left\{x\right\} \overset{\mathrm{def.}}{=} \left\{y : y = x\right\}</math> | ||
वस्तुओं के लिए <math>x</math> और <math>y</math>, | वस्तुओं के लिए <math>x</math> और <math>y</math>, समुच्चय है <math>\{x,y\}</math> युक्त <math>x</math> और <math>y</math> इसके एकमात्र तत्व के रूप में है: | ||
:<math>\left\{x,y\right\} \overset{\mathrm{def.}}{=} \left\{z : z=x \vee z = y\right\}</math> | :<math>\left\{x,y\right\} \overset{\mathrm{def.}}{=} \left\{z : z=x \vee z = y\right\}</math> | ||
दो | दो समुच्चयों के [[संघ (सेट सिद्धांत)|युग्म]] को सामान्य प्रकार से परिभाषित किया गया है: | ||
:<math>\left.x \cup y\right. \, \overset{\mathrm{def.}}{=} \left\{z : z \in x \vee z \in y\right\}</math> | :<math>\left.x \cup y\right. \, \overset{\mathrm{def.}}{=} \left\{z : z \in x \vee z \in y\right\}</math> | ||
यह अव्यवस्थित की पुनरावर्ती परिभाषा है <math>n</math>- | यह अव्यवस्थित की पुनरावर्ती परिभाषा है किसी भी कंक्रीट के लिए <math>n</math>-टुपल्स <math>n</math> है (परिमित समुच्चय उनके तत्वों की सूची के रूप में दिए गए हैं): | ||
:<math>\left\{x_1, \ldots, x_n, x_{n+1}\right\} \overset{\mathrm{def.}}{=} \left\{x_1, \ldots, x_n\right\} \cup \left\{x_{n+1}\right\}</math> | :<math>\left\{x_1, \ldots, x_n, x_{n+1}\right\} \overset{\mathrm{def.}}{=} \left\{x_1, \ldots, x_n\right\} \cup \left\{x_{n+1}\right\}</math> | ||
एनएफयू में, दी गई सभी निर्धारित परिभाषाएँ स्तरीकृत | एनएफयू में, दी गई सभी निर्धारित परिभाषाएँ स्तरीकृत अध्ययन द्वारा कार्य करती हैं; जेडएफसी में, अव्यवस्थित युग्म का अस्तित्व युग्मन के अभिगृहीत द्वारा दिया जाता है, रिक्त समुच्चय का अस्तित्व किसी भी समुच्चय के अस्तित्व से पृथक्करण के पश्चात होता है,और दो समुच्चयों का द्विआधारी संघ युग्मन और संघ के सिद्धांतों द्वारा उपस्थित होता है (<math>x \cup y = \bigcup\{x,y\}</math>)। | ||
== | == क्रमित युग्म == | ||
{{main article| | {{main article|क्रमित युग्म}} | ||
सर्वप्रथम, '''क्रमित युग्म''' पर विचार करें। इसके प्रथम आने का कारण प्रौद्योगिकी है: संबंधों और [[फ़ंक्शन (गणित)|फलनों]] को प्रारम्भ करने के लिए क्रमित युग्म की आवश्यकता होती है, जो अन्य अवधारणाओं को प्रारम्भ करने के लिए आवश्यक होते हैं जो सर्वप्रथम प्रतीत हो सकते हैं। क्रमित युग्म <math>(x,y) \overset{\mathrm{def}}{=} \{\{\{x\},\emptyset\},\{\{y\}\}\}</math> की प्रथम परिभाषा थी, जो [[गणितीय सिद्धांत]] के प्रकार सिद्धांत के संदर्भ में 1914 में [[नॉर्बर्ट वीनर]] द्वारा प्रस्तावित है। वीनर ने देखा कि इससे उस कार्य की प्रणाली से n > 1 के लिए n-एरी संबंधों के प्रकार को समाप्त करने की अनुमति मिल गई। परिभाषा का उपयोग करना <math>(x,y) \overset{\mathrm{def.}}{=} \{\{x\},\{x,y\}\}</math>, [[काज़िमिर्ज़ कुराटोव्स्की]] के कारण अब अधिक सामान्य हो गया है। इनमें से कोई भी परिभाषा जेडएफसी या एनएफयू में कार्य करती है। एनएफयू में, इन दो परिभाषाओं में प्रौद्योगिकी हानि है: कुराटोस्की द्वारा आदेशित युग्म अपने अनुमानों से दो प्रकार अधिक है, जबकि वीनर द्वारा आदेशित युग्म तीन प्रकार से अधिक है। प्रकार-स्तरीय क्रमित युग्म ( युग्म) के अस्तित्व की परिकल्पना करना सामान्य विषय है, एनएफयू में <math>(x,y)</math> जो इसके अनुमानों के समान प्रकार है। दोनों प्रणालियों में कुराटोस्की युग्म का उपयोग करना तब तक सुविधाजनक है जब तक कि प्रकार-स्तरीय युग्म के उपयोग को औपचारिक रूप से उचित नहीं ठहराया जा सके। इन परिभाषाओं के आंतरिक विवरण का उनके वास्तविक गणितीय कार्य से कोई लेना-देना नहीं है। किसी भी धारणा के लिए <math>(x,y)</math> क्रमित युग्म की स्थिति में, इस विषय आशय यह है कि यह परिभाषित नियम को पूर्ण करता है | |||
क्रमित युग्म | |||
परिभाषा का उपयोग करना | |||
इनमें से कोई भी परिभाषा | |||
इन परिभाषाओं के आंतरिक विवरण का उनके वास्तविक गणितीय कार्य से कोई लेना-देना नहीं है। किसी भी धारणा के लिए <math>(x,y)</math> | |||
:<math>(x,y)=(z,w) \ \equiv \ x=z \wedge y=w</math> | :<math>(x,y)=(z,w) \ \equiv \ x=z \wedge y=w</math> | ||
...और यह कि | ...और यह कि क्रमित युग्म को समुच्चय में एकत्र करना अधिक सरल होगा। | ||
==संबंध== | ==संबंध== | ||
संबंध | संबंध वे समुच्चय हैं जिनके सभी सदस्य क्रमित युग्म हैं। जहां संभव हो, संबंध <math>R</math> ( [[द्विआधारी विधेय]] के रूप में समझा जाता है) <math>\{(x,y) \mid x R y\}</math> के रूप में कार्यान्वित किया जाता है (जिसे इस प्रकार लिखा जा सकता है <math>\{z \mid \pi_1(z) R \pi_2(z)\}</math>)। जब <math>R</math> संबंध है, संकेतन <math>xRy</math> का तात्पर्य <math>\left(x, y\right) \in R</math> है। | ||
जेडएफसी में, कुछ संबंध (जैसे सामान्य समानता संबंध या समुच्चय पर उपसमुच्चय संबंध) व्यवस्थित करने के लिए 'अधिक बड़े' हैं (किन्तु [[उचित वर्ग|उचित वर्गों]] के रूप में हानिरहित रूप से पुन: परिभाषित किया जा सकता है)। एनएफयू में, कुछ संबंध (जैसे सदस्यता संबंध) समुच्चय नहीं हैं क्योंकि उनकी परिभाषाएं स्तरीकृत नहीं हैं: <math>\{(x,y) \mid x \in y\}</math>, <math>x</math> और <math>y</math> में समान प्रकार की आवश्यकता है (क्योंकि वे एक ही युग्म के प्रक्षेपण के रूप में दिखाई देते हैं), किन्तु क्रमिक प्रकार भी है (क्योंकि <math>x</math> का तत्व <math>y</math> माना जाता है)। | |||
समान प्रकार की आवश्यकता है (क्योंकि वे | |||
क्रमिक प्रकार (क्योंकि <math>x</math> का तत्व | |||
=== संबंधित परिभाषाएँ === | === संबंधित परिभाषाएँ === | ||
मान लीजिये कि <math>R</math> और <math>S</math> [[द्विआधारी संबंध]] हैं। तब निम्नलिखित अवधारणाएँ उपयोगी हैं: | |||
<math>R</math> संबंध का [[विपरीत संबंध|व्युत्क्रम]] <math>\left\{\left(y, x\right) : xRy\right\}</math> है। | |||
<math>R</math> समुच्चय का डोमेन <math>\left\{x : \exists y \left(xRy\right)\right\}</math>है। | |||
<math>R</math> की सीमा <math>R</math> के व्युत्क्रम का क्षेत्र है। अर्थात समुच्चय <math>\left\{y : \exists x \left(xRy\right)\right\}</math>है। | |||
का क्षेत्र <math>R</math> के डोमेन और | <math>R</math> का क्षेत्र <math>R</math> के डोमेन और श्रेणी का संघ (समुच्चय सिद्धांत) है। | ||
किसी सदस्य की [[पूर्वछवि]] <math>x</math> के क्षेत्र | किसी सदस्य की [[पूर्वछवि]] <math>x</math> के क्षेत्र <math>R</math> का समुच्चय <math>\left\{y : yRx\right\}</math> है (नीचे 'उचित प्रकार से स्थापित' की परिभाषा में प्रयुक्त।)। | ||
किसी सदस्य का नीचे की ओर | किसी सदस्य का नीचे की ओर विवृत होना <math>x</math> के क्षेत्र का <math>R</math> सबसे छोटा समुच्चय है <math>D</math> युक्त <math>x</math>, और प्रत्येक से युक्त <math>zRy</math> प्रत्येक के लिए <math>y \in D</math> है (अर्थात्, इसके प्रत्येक तत्व की पूर्वछवि सहित <math>R</math> उपसमुच्चय के रूप में।) | ||
[[संबंध रचना]] <math>R|S</math> का <math>R</math> और <math>S</math> संबंध | [[संबंध रचना]] <math>R|S</math> का <math>R</math> और <math>S</math> संबंध <math>\left\{\left(x, z\right) : \exists y\,\left(xRy \wedge ySz\right)\right\}</math> है। | ||
ध्यान दें कि द्विआधारी संबंध की हमारी औपचारिक परिभाषा के साथ, किसी संबंध की सीमा और कोडोमेन को | ध्यान दें कि द्विआधारी संबंध की हमारी औपचारिक परिभाषा के साथ, किसी संबंध की सीमा और कोडोमेन को भिन्न नहीं किया जाता है। यह किसी संबंध का प्रतिनिधित्व करके किया जा सकता है <math>R</math> कोडोमेन के साथ <math>B</math> जैसा <math>\left(R, B\right)</math>, किन्तु हमारे विकास को इसकी आवश्यकता नहीं होगी। | ||
जेडएफसी में, कोई भी संबंध जिसका डोमेन किसी समुच्चय का सबसमुच्चय है <math>A</math> और जिसकी सीमा समुच्चय का उपसमुच्चय है <math>B</math> कार्टेशियन उत्पाद के पश्चात से समुच्चय होगा <math>A \times B = \left\{\left(a, b\right) : a \in A \wedge b \in B\right\}</math> समुच्चय है (उपवर्ग होने के नाते)। <math>\mathcal{P}\!\left(A \cup B\right)</math>), और पृथक्करण अस्तित्व का प्रावधान करता है <math>\left\{\left(x, y\right) \in A \times B : xRy\right\}</math>. एनएफयू में, वैश्विक दायरे (जैसे समानता और उपसमुच्चय) के साथ कुछ संबंधों को समुच्चय के रूप में लागू किया जा सकता है। एनएफयू में, इसे ध्यान में रखें <math>x</math> और <math>y</math> से तीन प्रकार कम हैं <math>R</math> में <math>xRy</math> (यदि प्रकार-स्तरीय आदेशित युग्म का उपयोग किया जाता है तो प्रकार कम)। | |||
===संबंधों के गुण और प्रकार=== | ===संबंधों के गुण और प्रकार=== | ||
द्विआधारी संबंध <math>R</math> है: | द्विआधारी संबंध <math>R</math> है: | ||
*[[प्रतिवर्ती संबंध]] यदि <math>xRx</math> | *[[प्रतिवर्ती संबंध]] यदि <math>xRx</math> प्रत्येक के लिए <math>x</math> के क्षेत्र में <math>R</math> है। | ||
* [[सममित संबंध]] यदि <math>\forall x, y \,(xRy \to yRx)</math> | * [[सममित संबंध]] यदि <math>\forall x, y \,(xRy \to yRx)</math>है। | ||
* [[सकर्मक संबंध]] यदि <math>\forall x, y, z \,(xRy \wedge yRz \rightarrow xRz)</math> | * [[सकर्मक संबंध]] यदि <math>\forall x, y, z \,(xRy \wedge yRz \rightarrow xRz)</math>है। | ||
* [[एंटीसिमेट्रिक संबंध]] यदि <math>\forall x, y \,(xRy \wedge yRx \rightarrow x=y)</math> | * [[एंटीसिमेट्रिक संबंध]] यदि <math>\forall x, y \,(xRy \wedge yRx \rightarrow x=y)</math>है। | ||
* | * प्रत्येक समुच्चय के लिए उचित प्रकार से स्थापित <math>S</math> जो <math>R</math> के क्षेत्र से मिलता है, <math>\ \exists x \in S</math> जिसकी पूर्वछवि <math>S</math> के नीचे है <math>R</math> नहीं मिलता है। | ||
* | *यदि प्रत्येक के लिए विस्तारित <math>x, y</math> के क्षेत्र में <math>R</math>, <math>x = y</math> यदि और केवल <math>x</math> और <math>y</math> नीचे <math>R</math> पूर्वछवि है। | ||
उपरोक्त गुणों के कुछ संयोजन वाले संबंधों के मानक नाम होते हैं। | उपरोक्त गुणों के कुछ संयोजन वाले संबंधों के मानक नाम होते हैं। द्विआधारी संबंध <math>R</math> है: | ||
* तुल्यता संबंध यदि <math>R</math> प्रतिवर्ती, सममित और सकर्मक है। | * तुल्यता संबंध यदि <math>R</math> प्रतिवर्ती, सममित और सकर्मक है। | ||
* [[आंशिक आदेश]] यदि <math>R</math> रिफ्लेक्टिव, एंटीसिमेट्रिक और सकर्मक है। | * [[आंशिक आदेश]] यदि <math>R</math> रिफ्लेक्टिव, एंटीसिमेट्रिक और सकर्मक है। | ||
* रेखीय क्रम यदि <math>R</math> | * रेखीय क्रम यदि <math>R</math> आंशिक आदेश है और प्रत्येक के लिए <math>x, y</math> के क्षेत्र में <math>R</math>, दोनों में से <math>xRy</math> या <math>yRx</math> है। | ||
* सुव्यवस्थित यदि <math>R</math> रेखीय क्रम है और | * सुव्यवस्थित यदि <math>R</math> रेखीय क्रम है और उचित प्रकार से स्थापित है। | ||
* | * समुच्चय चित्र यदि <math>R</math> उचित प्रकार से स्थापित और विस्तारित है, और का क्षेत्र <math>R</math> या तो इसके सदस्यों में से नीचे की ओर विवृत होने के समान है (जिसे इसका शीर्ष तत्व कहा जाता है), या रिक्त है। | ||
== | == फलन == | ||
कार्यात्मक संबंध | कार्यात्मक संबंध द्विआधारी विधेय है <math>F</math> इस प्रकार <math>\forall x, y, z\,\left(xFy \wedge xFz \to y = z\right).</math> है। इस प्रकार के संबंध ([[विधेय (तर्क)|विधेय]]) को संबंध (समुच्चय) के रूप में प्रस्तावित किया जाता है जैसा कि पश्च अनुभाग में वर्णित है। तो विधेय <math>F</math> समुच्चय <math>\left\{\left(x, y\right) : xFy\right\}</math> द्वारा कार्यान्वित किया जाता है। संबंध <math>F</math> फलन है यदि और केवल <math>\forall x, y, z\,\left(\left(x, y\right) \in F \wedge \left(x, z\right) \in F \to y = z\right).</math> है। इसलिए वैल्यू फलन को परिभाषित करना संभव है <math>F\!\left(x\right)</math> अद्वितीय वस्तु के रूप में <math>y</math> इस प्रकार है कि <math>xFy</math>- अर्थात: <math>x</math> है <math>F</math>-संदर्भ के <math>y</math> इस प्रकार है कि संबंध <math>f</math> के मध्य रहता है <math>x</math> और <math>y</math>– या अद्वितीय वस्तु के रूप में <math>y</math> इस प्रकार <math>\left(x, y\right) \in F</math> है। कार्यात्मक विधेय के दोनों सिद्धांतों में उपस्थिति जो समुच्चय नहीं हैं, नोटेशन की अनुमति देना उपयोगी बनाती है <math>F\!\left(x\right)</math> दोनों समुच्चय के लिए <math>F</math> और महत्वपूर्ण कार्यात्मक विधेय के लिए है। जब तक कोई पश्चात के अर्थों में कार्यों की मात्रा निर्धारित नहीं करता है, तब तक ऐसे सभी उपयोग सैद्धांतिक रूप से समाप्त करने योग्य हैं। | ||
औपचारिक | औपचारिक समुच्चय सिद्धांत के बाहर, हम सामान्यतः फलन को उसके डोमेन और कोडोमेन के संदर्भ में निर्दिष्ट करते हैं, जैसा कि वाक्यांश लेट में है। <math>f: A \to B</math> फलन हो। किसी फलन का डोमेन संबंध के रूप में उसका डोमेन ही होता है, किन्तु हमने अभी तक किसी फलन के कोडोमेन को परिभाषित नहीं किया है। ऐसा करने के लिए हम उस शब्दावली का परिचय देते हैं जिससे कोई फलन बनता है <math>A</math> को <math>B</math> यदि इसका डोमेन समान है <math>A</math> और <math>B</math> इसकी सीमा में निहित है। इस प्रकार, प्रत्येक फलन अपने डोमेन से लेकर अपनी सीमा तक फलन होता है <math>f</math> से <math>A</math> को <math>B</math> भी फलन है <math>A</math> को <math>C</math> किसी भी समुच्चय के लिए <math>C</math> युक्त <math>B</math> है। | ||
वास्तव में, इससे कोई प्रभाव नहीं पड़ता कि हम किस समुच्चय को किसी फलन का कोडोमेन मानते हैं, फलन समुच्चय के रूप में परिवर्तित नहीं होता है क्योंकि परिभाषा के अनुसार यह केवल क्रमित युग्म का समुच्चय है। अर्थात्, कोई फलन हमारी परिभाषा के अनुसार अपना कोडोमेन निर्धारित नहीं करता है। यदि किसी को यह अरुचिकर लगता है तो वह किसी फलन को क्रमित युग्म <math>(f, B)</math> के रूप में परिभाषित कर सकता है, जहाँ <math>f</math> कार्यात्मक संबंध है और <math>B</math> इसका कोडोमेन है, किन्तु हम इस लेख में यह दृष्टिकोण नहीं अपनाते हैं (अधिक उत्तम रूप से, यदि कोई प्रथम क्रमबद्ध त्रिगुणों को परिभाषित करता है - उदाहरण के लिए <math>(x, y, z) = (x, (y, z))</math>- तब कोई फलन को क्रमित किए गए ट्रिपल <math>(f, A, B)</math> के रूप में परिभाषित कर सकता है जिससे कि डोमेन को भी सम्मिलित किया जा सके)। ध्यान दें कि संबंधों के लिए भी यही उद्देश्य उपस्थित है: औपचारिक समुच्चय सिद्धांत के बाहर हम सामान्यतः लेट कहते हैं <math>R \subseteq A \times B</math> द्विआधारी संबंध हो, किन्तु औपचारिक रूप से <math>R</math> इस प्रकार क्रमित युग्मों का समुच्चय है <math>\text{dom}\,R \subseteq A</math> और <math>\text{ran}\,R \subseteq B</math> है। | |||
एनएफयू में, <math>x</math> के समान प्रकार | एनएफयू में, <math>x</math> के समान प्रकार <math>F\!\left(x\right)</math> है, और <math>F</math> से तीन प्रकार <math>F\!\left(x\right)</math> अधिक है (उच्चतर, यदि प्रकार-स्तरीय क्रमित युग्म का उपयोग किया जाता है)। इस समस्या को हल करने के लिए, कोई परिभाषित कर सकता है <math>F\left[A\right]</math> जैसा <math>\left\{y : \exists x\,\left(x \in A \wedge y = F\!\left(x\right)\right)\right\}</math> किसी भी समुच्चय के लिए <math>A</math>, किन्तु इसे <math>\left\{F\!\left(x\right) : x \in A\right\}</math> इस रूप में अधिक सरलता से लिखा जाता है। तो यदि <math>A</math> समुच्चय है और <math>F</math> कोई भी कार्यात्मक संबंध है, [[प्रतिस्थापन का सिद्धांत]] यह आश्वासन देता है <math>F\left[A\right]</math> जेडएफसी में समुच्चय है। एनएफयू में, <math>F\left[A\right]</math> और <math>A</math> अब एक ही प्रकार है, और <math>F</math> से <math>F\left[A\right]</math> दो प्रकार अधिक है (उसी प्रकार, यदि प्रकार-स्तरीय क्रमित युग्म का उपयोग किया जाता है)। | ||
फलन <math>I</math> इस प्रकार <math>I\!\left(x\right) = x</math> है। यह जेडएफसी में समुच्चय नहीं है क्योंकि यह अधिक बड़ा है। चूँकि <math>I</math> एनएफयू में समुच्चय है। फलन (विधेय) <math>S</math> इस प्रकार <math>S\!\left(x\right) = \left\{x\right\}</math> है, किसी भी सिद्धांत में न तो कोई फलन है और न ही कोई समुच्चय; जेडएफसी में, यह सच है क्योंकि ऐसा समुच्चय अधिक बड़ा होगा, और, एनएफयू में, यह सत्य है क्योंकि इसकी परिभाषा समुच्चय सिद्धांत में स्तरीकृत सूत्र नहीं होगी। इसके अतिरिक्त, <math>S</math> यह प्रमाणित किया जा सकता है कि एनएफयू उपस्थित नहीं है (न्यू फ़ाउंडेशन्स में कैंटर के विरोधाभास का समाधान देखें।) | |||
=== | === फलन पर संचालन === | ||
मान लीजिये कि <math>f</math> और <math>g</math> इच्छानुसार फलन है। <math>f</math> और <math>g</math>, की [[कार्य संरचना]] <math>g \circ f</math>, को सापेक्ष उत्पाद के रूप में परिभाषित किया गया है <math>f\,|\,g</math>, किन्तु केवल तभी जब इसका परिणाम ऐसा कोई फलन हो <math>g \circ f</math> के साथ भी फलन <math>\left(g \circ f\right)\!\left(x\right) = g\!\left(f\!\left(x\right)\right)</math> है, यदि <math>f</math> की सीमा के डोमेन का उपसमुच्चय <math>g</math> है। <math>f</math> का विपरीत फलन, <math>f^\left(-1\right)</math>, को इसके विपरीत संबंध के रूप में परिभाषित किया गया है <math>f</math> यदि यह फलन है। कोई भी समुच्चय दिया गया <math>A</math>, पहचान फलन <math>i_A</math> समुच्चय <math>\left\{\left(x, x\right) \mid x \in A\right\}</math> है, और यह भिन्न-भिन्न कारणों से जेडएफसी और एनएफयू दोनों में समुच्चय है। | |||
=== विशेष प्रकार के | === विशेष प्रकार के फलन === | ||
फलन [[ इंजेक्शन |इंजेक्टिव]] है (जिसे वन-टू-वन भी कहा जाता है) यदि इसमें विपरीत फलन है। | |||
फलन <math>f</math> से <math>A</math> को <math>B</math> है: | |||
* | * <math>A</math> को <math>B</math> यदि [[छवि (गणित)|छवि]] नीचे है <math>f</math> से इंजेक्शन फलन के विशिष्ट सदस्यों की <math>A</math> <math>B</math> के विशिष्ट सदस्य हैं। | ||
* | *<math>A</math> को <math>B</math> यदि <math>f</math> की सीमा से [[आपत्ति|प्रक्षेपण]] <math>B</math> है। | ||
* | *<math>A</math> को <math>B</math> यदि <math>f</math> यह इंजेक्शन और प्रक्षेपण दोनों से प्रक्षेपण है। | ||
क्रमित युग्मों के रूप में कार्यों को परिभाषित करना <math>(f, B)</math> या ट्रिपल का आदेश दिया <math>(f, A, B)</math> इसके | क्रमित युग्मों के रूप में कार्यों को परिभाषित करना <math>(f, B)</math> या ट्रिपल का आदेश दिया <math>(f, A, B)</math> इसके लाभ यह हैं कि हमें फलन होने की शब्दावली का परिचय नहीं देना पड़ता है <math>A</math> को <math>B</math>, और यह कि हम केवल विशेषणात्मक होने की बात करने में सक्षम होने के विपरीत सामान्यतः विशेषणात्मक होने की बात कर सकते हैं <math>B</math>. | ||
== | == समुच्चय का आकार == | ||
जेडएफसी और एनएफयू दोनों में, दो समुच्चय A और B समान आकार के हैं (या 'समतुल्य' हैं) यदि और केवल तभी जब A से B तक कोई प्रक्षेपण f हो। इसे इस प्रकार <math>|A|=|B|</math> लिखा जा सकता है, किन्तु ध्यान दें कि (इस समय) यह अभी तक अपरिभाषित वस्तुओं के मध्य संबंध के अतिरिक्त A और B के मध्य संबंध <math>|A|</math> और <math>|B|</math> व्यक्त करता है। इस संबंध को <math>A \sim B</math> द्वारा निरूपित करें। कार्डिनल संख्या की वास्तविक परिभाषा जैसे संदर्भों में जहां अनुमानित अमूर्त कार्डिनल्स की उपस्थिति से भी बचा जाना चाहिए। | |||
इसी प्रकार | इसी प्रकार <math>|A| \leq |B|</math> परिभाषित करें यदि और केवल A से B तक कोई इंजेक्टिव फलन है, तो उसे होल्ड करता है। | ||
यह दिखाना | यह दिखाना सरल है कि समसंख्यता का संबंध समतुल्यता संबंध है: A के साथ A की समसंख्यकता <math>i_A</math> देखी जाती है; यदि f प्रत्यक्षदर्शी है <math>|A|=|B|</math>, तब <math>f^{-1}</math> प्रत्यक्षदर्शी <math>|B|=|A|</math> है; और यदि f प्रत्यक्षदर्शी है <math>|A|=|B|</math> और ''g'' प्रत्यक्षदर्शी <math>|B|=|C|</math> है, तब <math>g\circ f</math> प्रत्यक्षदर्शी <math>|A|=|C|</math> है। | ||
ऐसा दिखाया जा सकता है <math>|A| \leq |B|</math> अमूर्त कार्डिनल्स पर | ऐसा दिखाया जा सकता है <math>|A| \leq |B|</math> अमूर्त कार्डिनल्स पर रैखिक क्रम है, किन्तु समुच्चय पर नहीं है। रिफ्लेक्सिविटी स्पष्ट है और ट्रांज़िटिविटी समसंख्यता के जैसे ही सिद्ध होती है। श्रोडर-बर्नस्टीन प्रमेय, जो जेडएफसी और एनएफयू में पूर्ण रूप से मानक प्रकार से सिद्ध है, यह स्थापित करता है: | ||
*<math>|A| \leq |B| \wedge |B| \leq |A| \rightarrow |A| = |B|</math> | *<math>|A| \leq |B| \wedge |B| \leq |A| \rightarrow |A| = |B|</math> | ||
(यह कार्डिनल्स पर एंटीसिममेट्री स्थापित करता है), और | (यह कार्डिनल्स पर एंटीसिममेट्री स्थापित करता है), और | ||
*<math>|A| \leq |B| \vee |B| \leq |A|</math> | *<math>|A| \leq |B| \vee |B| \leq |A|</math> | ||
किसी भी सिद्धांत में | किसी भी सिद्धांत में रूचि के सिद्धांत से मानक प्रकार से अनुसरण किया जाता है। | ||
== परिमित समुच्चय और प्राकृत संख्याएँ == | == परिमित समुच्चय और प्राकृत संख्याएँ == | ||
प्राकृतिक संख्याओं को या तो परिमित क्रमसूचक या परिमित कार्डिनल माना जा सकता है। यहां उन्हें परिमित कार्डिनल संख्या के रूप में | प्राकृतिक संख्याओं को या तो परिमित क्रमसूचक या परिमित कार्डिनल माना जा सकता है। यहां उन्हें परिमित कार्डिनल संख्या के रूप में जाना जाता है। यह प्रथम समष्टि है जहां जेडएफसी और एनएफयू के कार्यान्वयन के मध्य बड़ा अंतर स्पष्ट हो जाता है। | ||
जेडएफसी के अनंत का अभिगृहीत हमें बताता है कि समुच्चय A है जिसमें <math>\emptyset</math> और <math>y \cup \{y\}</math> सम्मिलित है प्रत्येक के लिए <math>y \in A</math> है। यह समुच्चय A विशिष्ट रूप से निर्धारित नहीं है (इस क्लोजर प्रॉपर्टी को संरक्षित करते हुए इसे बड़ा बनाया जा सकता है): प्राकृतिक संख्याओं का समुच्चय N है: | |||
*<math>\{x \in A \mid \forall B\,(\emptyset \in B \wedge \forall y\,(y \in B \rightarrow y \cup \{y\} \in B) \rightarrow x \in B)\}</math> | *<math>\{x \in A \mid \forall B\,(\emptyset \in B \wedge \forall y\,(y \in B \rightarrow y \cup \{y\} \in B) \rightarrow x \in B)\}</math> | ||
जो सभी | जो सभी समुच्चयों का प्रतिच्छेदन है जिसमें रिक्त समुच्चय होता है और उत्तराधिकारी ऑपरेशन के अंतर्गत विवृत होता है <math>y \mapsto y \cup \{y\}</math>. | ||
जेडएफसी में, समुच्चय <math>A</math> यदि और केवल है तो <math>n \in N</math> इस प्रकार <math>|n|=|A|</math>: सीमित है आगे, परिभाषित करें <math>|A|</math> परिमित A के लिए यह n के रूप में है। (यह प्रमाणित किया जा सकता है कि कोई भी दो भिन्न-भिन्न प्राकृतिक संख्याएँ समान आकार की नहीं हैं)। | |||
अंकगणित की सामान्य संक्रियाओं को पुनरावर्ती रूप से और उस शैली के समान परिभाषित किया जा सकता है जिसमें प्राकृतिक संख्याओं के | अंकगणित की सामान्य संक्रियाओं को पुनरावर्ती रूप से और उस शैली के समान परिभाषित किया जा सकता है जिसमें प्राकृतिक संख्याओं के समुच्चय को परिभाषित किया जाता है। उदाहरण के लिए, + (प्राकृतिक संख्याओं पर जोड़ संक्रिया) को सबसे छोटे समुच्चय के रूप में परिभाषित किया जा सकता है <math>((x,\emptyset),x)</math> प्रत्येक प्राकृतिक संख्या के लिए <math>x</math> और सम्मिलित है <math>((x,y \cup \{y\}),z \cup \{z\})</math> जब भी इसमें <math>((x,y),z)</math> सम्मिलित है। | ||
एनएफयू में, यह स्पष्ट नहीं है कि उत्तराधिकारी ऑपरेशन के | एनएफयू में, यह स्पष्ट नहीं है कि उत्तराधिकारी ऑपरेशन के पश्चात से इस दृष्टिकोण का उपयोग किया जा सकता है <math>y \cup \{y\}</math> अस्थिर है और इसलिए ऊपर परिभाषित समुच्चय N को एनएफयू में उपस्थित नहीं दिखाया जा सकता है (यह एनएफयू में उपस्थित परिमित वॉन न्यूमैन ऑर्डिनल्स के समुच्चय के लिए सुसंगत है, किन्तु यह सिद्धांत को दृढ़ करता है, क्योंकि इस समुच्चय का अस्तित्व गणना के सिद्धांत का तात्पर्य है (जिसके लिए नीचे या न्यू फ़ाउंडेशन लेख देखें))। | ||
प्राकृतिक संख्याओं की मानक परिभाषा, जो वास्तव में प्राकृतिक संख्याओं की सबसे | प्राकृतिक संख्याओं की मानक परिभाषा, जो वास्तव में प्राकृतिक संख्याओं की सबसे प्राचीन समुच्चय-सैद्धांतिक परिभाषा है, समतुल्यता के अनुसार परिमित समुच्चयों के समतुल्य वर्गों के रूप में है। मूल रूप से वही परिभाषा नई नींव के लिए उपयुक्त है (यह सामान्य परिभाषा नहीं है, किन्तु परिणाम समान हैं): फिन को परिभाषित करें, परिमित समुच्चय का समुच्चय है, जैसे; | ||
:<math>\{A \mid \forall F\,(\emptyset \in F \wedge \forall x,y\,(x \in F \rightarrow x \cup \{y\} \in F) \rightarrow A \in F)\}</math> | :<math>\{A \mid \forall F\,(\emptyset \in F \wedge \forall x,y\,(x \in F \rightarrow x \cup \{y\} \in F) \rightarrow A \in F)\}</math> | ||
किसी भी | किसी भी समुच्चय के लिए <math>A \in Fin</math>, परिभाषित करना <math>|A|</math> जैसा <math>\{B \mid A \sim B\}</math> N को समुच्चय <math>\{|A| \mid A \in Fin\}</math> के रूप में परिभाषित करें। | ||
एनएफयू के अनंत के अभिगृहीत को इस प्रकार | एनएफयू के अनंत के अभिगृहीत को इस प्रकार <math>V \not\in Fin</math>: व्यक्त किया जा सकता है यह स्थापित करने के लिए पर्याप्त है कि प्रत्येक प्राकृतिक संख्या में गैर-रिक्त उत्तराधिकारी (उत्तराधिकारी) होता है <math>|A|</math> प्राणी <math>|A \cup \{x\}|</math> किसी के लिए <math>x \not\in A</math>) जो यह दिखाने का कठिन भाग है कि अंकगणित के पीनो सिद्धांत संतुष्ट हैं। | ||
अंकगणित की संक्रियाओं को ऊपर दी गई शैली के समान शैली में परिभाषित किया जा सकता है (अभी दी गई उत्तराधिकारी की परिभाषा का उपयोग करके)। उन्हें प्राकृतिक | अंकगणित की संक्रियाओं को ऊपर दी गई शैली के समान शैली में परिभाषित किया जा सकता है (अभी दी गई उत्तराधिकारी की परिभाषा का उपयोग करके)। उन्हें प्राकृतिक समुच्चय सैद्धांतिक प्रकार से भी परिभाषित किया जा सकता है: यदि A और B असंयुक्त परिमित समुच्चय हैं, तो परिभाषित करें |A|+|B| जैसा <math>|A \cup B|</math>है। अधिक औपचारिक रूप से, M के लिए M+N और N में N को परिभाषित करें। | ||
:<math>\{A \mid \exists B,C\,(B \in m \wedge C \in n \wedge B \cap C = \emptyset \wedge A = B \cup C)\}</math> | :<math>\{A \mid \exists B,C\,(B \in m \wedge C \in n \wedge B \cap C = \emptyset \wedge A = B \cup C)\}</math> | ||
( | (किन्तु ध्यान दें कि परिभाषा की यह शैली जेडएफसी अंकों के लिए भी संभव है, किन्तु अधिक घुमावदार: न्यू फ़ाउंडेशन परिभाषा का रूप समुच्चय परिवर्तन की सुविधा देता है जबकि जेडएफसी परिभाषा का रूप पुनरावर्ती परिभाषाओं की सुविधा देता है, किन्तु कोई भी सिद्धांत परिभाषा की किसी भी शैली का समर्थन करता है)। | ||
दोनों कार्यान्वयन | दोनों कार्यान्वयन अधिक भिन्न हैं। जेडएफसी में, प्रत्येक परिमित कार्डिनैलिटी का [[प्रतिनिधि (गणित)|प्रतिनिधि]] चयन किया जाता है (समकक्ष वर्ग स्वयं समुच्चय होने के लिए अधिक बड़े हैं); एनएफयू में समतुल्य वर्ग स्वयं समुच्चय हैं, और इस प्रकार कार्डिनलिटी के लिए वस्तुओं के लिए स्पष्ट विकल्प हैं। चूँकि, दोनों सिद्धांतों का अंकगणित समान है: समान अमूर्तता इन दो सतही रूप से भिन्न दृष्टिकोणों द्वारा कार्यान्वित की जाती है। | ||
== | == समतुल्य संबंध और विभाजन == | ||
समुच्चय सिद्धांत में अमूर्तता को प्रारम्भ करने की सामान्य प्रौद्योगिकी समतुल्य वर्गों का उपयोग है। यदि तुल्यता संबंध R हमें बताता है कि इसके क्षेत्र A के तत्व कुछ विशेष संबंध में समान हैं, तो किसी भी समुच्चय x के लिए, समुच्चय<math>[x]_R=\{y \in A \mid x R y\}</math> पर विचार करें। केवल उन विशेषताओं का सम्मान करते हुए समुच्चय x से अमूर्तता का प्रतिनिधित्व करते हुए (A से R [[तक]] के तत्वों की पहचान करें)। | |||
किसी भी | किसी भी समुच्चय A के लिए, समुच्चय <math>P</math>, A का विभाजन है यदि P के सभी तत्व गैर-रिक्त हैं, P के कोई भी दो भिन्न-भिन्न तत्व असंयुक्त हैं, और <math>A=\bigcup P</math> है। | ||
क्षेत्र A के साथ प्रत्येक तुल्यता संबंध R के लिए, <math>\{[x]_R \mid x \in A\}</math> A का विभाजन है। इसके अतिरिक्त, A का प्रत्येक विभाजन P तुल्यता संबंध <math>\{(x,y) \mid \exists A \in P\,(x \in A \wedge y \in A)\}</math> निर्धारित करता है। | |||
इस | इस प्रौद्योगिकी की जेडएफसी और एनएफयू दोनों में सीमाएँ हैं। जेडएफसी में, चूंकि ब्रह्मांड समुच्चय नहीं है, इसलिए केवल छोटे डोमेन के तत्वों से सुविधाओं को अमूर्त करना संभव लगता है। [[दाना स्कॉट|डाना स्कॉट]] के कारण चाल का उपयोग करके इसे विस्थापित किया जा सकता है: यदि R ब्रह्मांड पर तुल्यता संबंध है, तो <math>[x]_R</math> परिभाषित करें जैसे कि सभी y के समुच्चय के रूप में ऐसा है <math>y R x</math> और y की [[ रैंक (सेट सिद्धांत) |श्रेणी]] किसी <math>z R x</math> की श्रेणी से कम या उसके समान है यह कार्य करता है क्योंकि श्रेणी समुच्चय हैं। अभी भी उचित वर्ग <math>[x]_R</math>'s हो सकता है। एनएफयू में, मुख्य कठिनाई यही है <math>[x]_R</math> x से अधिक है, उदाहरण के लिए मानचित्र <math>x \mapsto [x]_R</math> सामान्यतः यह (समुच्चय) फलन नहीं है (चूँकि <math>\{x\} \mapsto [x]_R</math> समुच्चय है) प्रतिस्थापित करने के लिए प्रत्येक समकक्ष वर्ग से प्रतिनिधि का चयन करने के लिए रूचि के सिद्धांत के उपयोग से इसे विस्थापित किया जा सकता है <math>[x]_R</math>, जो x के समान प्रकार में होगा, या कैनोनिकल प्रतिनिधि का चयन करके यदि चॉइस को प्रारम्भ किए बिना ऐसा करने का कोई प्रकार है (जेडएफसी में प्रतिनिधियों का उपयोग संभवतः ही अज्ञात है)। एनएफयू में, सामान्य समुच्चयों के अमूर्त गुणों के लिए समतुल्य वर्ग निर्माणों का उपयोग अधिक सामान्य है, उदाहरण के लिए नीचे कार्डिनल और क्रमिक संख्या की परिभाषाओं में है। | ||
== | ==क्रमसूचक संख्या == | ||
दो सुव्यवस्थित <math>W_1</math> और <math>W_2</math> समान हैं और | दो सुव्यवस्थित <math>W_1</math> और <math>W_2</math> समान हैं और <math>W_1 \sim W_2</math> लिखते हैं यदि क्षेत्र से कोई आक्षेप f है <math>W_1</math> के क्षेत्र में <math>W_2</math> ऐसा है कि <math>x W_1 y \leftrightarrow f(x)W_2f(y)</math> सभी x और y के लिए है। | ||
समानता को | समानता को तुल्यता संबंध के रूप में दिखाया गया है ठीक उसी प्रकार जैसे ऊपर समतुल्यता को तुल्यता संबंध के रूप में दिखाया गया था। | ||
न्यू फ़ाउंडेशन ( | न्यू फ़ाउंडेशन (एनएफयू) में, वेल-ऑर्डरिंग W का 'क्रम प्रकार' सभी वेल-ऑर्डरिंग का समुच्चय है जो W के समान है। 'क्रमिक संख्याओं' का समुच्चय सभी क्रम प्रकार के वेल-ऑर्डरिंग का समुच्चय है। | ||
यह | यह जेडएफसी में कार्य नहीं करता, क्योंकि समतुल्य वर्ग अधिक बड़े हैं। अनिवार्य रूप से उसी प्रकार से ऑर्डिनल्स को परिभाषित करने के लिए स्कॉट की चाल का उपयोग करना औपचारिक रूप से संभव होगा, किन्तु [[जॉन वॉन न्यूमैन]] का उपकरण अधिक सामान्यतः उपयोग किया जाता है। | ||
किसी भी आंशिक आदेश के लिए <math>\leq</math>, संगत सख्त आंशिक क्रम < के रूप में | किसी भी आंशिक आदेश के लिए <math>\leq</math>, संगत सख्त आंशिक क्रम < के रूप में <math>\{(x,y) \mid x \leq y \wedge x \neq y\}</math> परिभाषित किया गया है। सख्त रैखिक आदेश और सख्त सु-आदेश को समान रूप से परिभाषित किया गया है। | ||
समुच्चय A को 'सकर्मक' कहा जाता है यदि <math>\bigcup A \subseteq A</math>: | समुच्चय A को 'सकर्मक' कहा जाता है यदि <math>\bigcup A \subseteq A</math>: A के तत्व का प्रत्येक तत्व भी A का तत्व है। A '(वॉन न्यूमैन) ऑर्डिनल' सकर्मक समुच्चय है जिस पर सदस्यता सख्त सुव्यवस्थित है। | ||
जेडएफसी में, सुव्यवस्थित W के क्रम प्रकार को तब अद्वितीय वॉन न्यूमैन ऑर्डिनल के रूप में परिभाषित किया जाता है, जो W के क्षेत्र के साथ समतुल्य होता है और सदस्यता जिस पर W के साथ जुड़े सख्त सु-क्रम के लिए आइसोमॉर्फिक होता है। (समरूपता की स्थिति आकार 0 और 1 के क्षेत्रों के साथ सु-क्रमों के मध्य अंतर करती है, जिनके संबंधित सख्त सु-क्रम अप्रभेद्य होते हैं)। | |||
जेडएफसी में सभी ऑर्डिनल्स का समुच्चय नहीं हो सकता है। वास्तव में, वॉन न्यूमैन ऑर्डिनल्स किसी भी समुच्चय सिद्धांत में असंगत समग्रता हैं: इसे सामान्य समुच्चय सैद्धांतिक मान्यताओं के साथ दिखाया जा सकता है कि वॉन न्यूमैन ऑर्डिनल का प्रत्येक तत्व वॉन न्यूमैन ऑर्डिनल है और वॉन न्यूमैन ऑर्डिनल्स सदस्यता द्वारा सख्ती से सुव्यवस्थित हैं। यह इस प्रकार है कि वॉन न्यूमैन ऑर्डिनल्स का वर्ग वॉन न्यूमैन ऑर्डिनल होगा यदि यह समुच्चय होता है: किन्तु यह तब स्वयं का तत्व होगा, जो इस तथ्य का खंडन करता है कि सदस्यता वॉन न्यूमैन ऑर्डिनल्स का सख्त सुव्यवस्थित क्रम है। | |||
सभी सुव्यवस्थित | सभी सुव्यवस्थित क्रम के लिए क्रम प्रकारों का अस्तित्व ज़र्मेलो समुच्चय सिद्धांत का प्रमेय नहीं है: इसके लिए प्रतिस्थापन के सिद्धांत की आवश्यकता होती है। यहां तक कि स्कॉट की चाल का उपयोग ज़र्मेलो समुच्चय सिद्धांत में अतिरिक्त धारणा के बिना नहीं किया जा सकता है (जैसे कि यह धारणा कि प्रत्येक समुच्चय श्रेणी(समुच्चय सिद्धांत) से संबंधित है जो समुच्चय है, जो अनिवार्य रूप से ज़र्मेलो समुच्चय सिद्धांत को दृढ़ नहीं करता है किन्तु यह उस सिद्धांत का प्रमेय नहीं है)। | ||
ज़र्मेलो | |||
एनएफयू में, सभी अध्यादेशों का संग्रह स्तरीकृत समझ द्वारा | एनएफयू में, सभी अध्यादेशों का संग्रह स्तरीकृत समझ द्वारा समुच्चय है। बुराली-फोर्टी विरोधाभास को अप्रत्याशित प्रकार से विस्थापित किया गया है। परिभाषित अध्यादेशों पर <math>\alpha\leq \beta</math> प्राकृतिक क्रम है यदि और केवल कुछ (और कोई भी) <math>W_1 \in \alpha</math> कुछ (और किसी भी) <math>W_2\in \beta</math> के प्रारंभिक खंड के समान है। इसके अतिरिक्त, यह दिखाया जा सकता है कि यह प्राकृतिक क्रम क्रमसूचकों का सुव्यवस्थित क्रम है और इसलिए इसमें <math>\Omega</math> क्रम प्रकार होना चाहिए। ऐसा प्रतीत होता है कि क्रमसूचकों का क्रम प्रकार कम से कम है। <math>\Omega</math> प्राकृतिक व्यवस्था के साथ होगा, <math>\Omega</math> इस तथ्य का खंडन करते हुए <math>\Omega</math> क्रमसूचकों पर संपूर्ण प्राकृतिक क्रम का क्रम प्रकार है (और इसलिए इसके किसी भी उचित प्रारंभिक खंड का नहीं)। किन्तु यह किसी के अंतर्ज्ञान (जेडएफसी में सही) पर निर्भर करता है कि प्राकृतिक क्रम का क्रम प्रकार <math>\alpha</math> कम से कम होता है <math>\alpha</math> किसी भी आदेश के लिए <math>\alpha</math> होता है। यह प्रमाण अव्यवस्थित है, क्योंकि दूसरे का प्रकार <math>\alpha</math> पूर्व के प्रकार से चार अधिक है (यदि प्रकार के स्तर के जोड़े का उपयोग किया जाता है तो दो अधिक है)। एनएफयू में जो प्रमाण सत्य और सिद्ध है, वह यह है कि ऑर्डिनल्स पर प्राकृतिक क्रम का क्रम प्रकार से कम है <math>\alpha</math> <math>T^4(\alpha)</math> है किसी भी आदेश के लिए <math>\alpha</math>, जहाँ <math>T(\alpha)</math> का क्रम प्रकार<math>W^{\iota}=\{(\{x\},\{y\})\mid xWy\}</math> है। किसी के लिए <math>W \in \alpha</math> (यह दिखाना सरल है कि यह W की रूचि पर निर्भर नहीं करता है; ध्यान दें कि T - करके प्रकार बढ़ाता है)। इस प्रकार क्रमसूचकों का क्रम प्रकार इससे कम होता है <math>\Omega</math> प्राकृतिक क्रम <math>T^4(\Omega)</math> के साथ, और <math>T^4(\Omega)<\Omega</math> है। सभी उपयोग यहां <math>T^4</math> को प्रतिस्थापित किया जा सकता है <math>T^2</math> यदि प्रकार-स्तरीय युग्म का उपयोग किया जाता है। | ||
<math>\Omega</math> प्राकृतिक व्यवस्था के साथ होगा <math>\Omega</math> | |||
इससे | इससे ज्ञात होता है कि T ऑपरेशन गैर-तुच्छ है, जिसके कई परिणाम हैं। यह तुरंत सिंगलटन मानचित्र का अनुसरण करता है <math>x \mapsto \{x\}</math> समुच्चय नहीं है, क्योंकि अन्यथा इस मानचित्र के प्रतिबंध W और <math>W^{\iota}</math> की समानता स्थापित करेंगे किसी भी सुव्यवस्थित W के लिए T (बाह्य रूप से) विशेषण और व्यवस्था-संरक्षण है। इस प्रकार से, तथ्य <math>T^4(\Omega)<\Omega</math> उसे स्थापित करता है <math>\Omega > T(\Omega) > T^2(\Omega) \ldots</math> क्रमसूचकों में अवरोही क्रम है जो समुच्चय नहीं हो सकता है। | ||
T द्वारा निर्धारित ऑर्डिनल्स को कैंटोरियन ऑर्डिनल्स कहा जाता है, और जो ऑर्डिनल्स केवल कैंटोरियन ऑर्डिनल्स पर होते हैं (जिन्हें सरलता से स्वयं कैंटोरियन दिखाया जाता है) उन्हें दृढ़ता से कैंटोरियन कहा जाता है। कैंटोरियन ऑर्डिनल्स का कोई समुच्चय या दृढ़ता से कैंटोरियन ऑर्डिनल्स का कोई समुच्चय नहीं हो सकता है। | |||
=== विषयांतर: एनएफयू में वॉन न्यूमैन ऑर्डिनल्स === | === विषयांतर: एनएफयू में वॉन न्यूमैन ऑर्डिनल्स === | ||
एनएफयू में वॉन न्यूमैन ऑर्डिनल्स के विषय में तर्क करना संभव है। याद रखें कि वॉन न्यूमैन ऑर्डिनल सकर्मक समुच्चय A है जैसे कि A की सदस्यता का प्रतिबंध सख्त सुव्यवस्थित है। एनएफयू संदर्भ में यह अधिक दृढ़ स्थिति है, क्योंकि सदस्यता संबंध में प्रकार का अंतर सम्मिलित है। वॉन न्यूमैन ऑर्डिनल A एनएफयू के अर्थ में ऑर्डिनल नहीं है, किन्तु <math>\in\lceil A</math> क्रमसूचक से संबंधित है <math>\alpha</math> जिसे A का क्रम प्रकार कहा जा सकता है। यह दिखाना सरल है कि वॉन न्यूमैन ऑर्डिनल A का क्रम प्रकार कैंटोरियन है: क्रम प्रकार के किसी भी अच्छे क्रम वाले W के लिए <math>\alpha</math>, समावेशन द्वारा W के प्रारंभिक खंडों के प्रेरित सुव्यवस्थित क्रम में क्रम प्रकार <math>T(\alpha)</math> होता है (यह अधिक है, इस प्रकार T का अनुप्रयोग): किन्तु सदस्यता के आधार पर वॉन न्यूमैन ऑर्डिनल A के वेल-ऑर्डरिंग के क्रम प्रकार और समावेशन द्वारा इसके प्रारंभिक खंडों के वेल-ऑर्डरिंग स्पष्ट रूप से समान हैं क्योंकि दो वेल-ऑर्डरिंग वास्तव में समान संबंध हैं, इसलिए A का क्रम प्रकार T के अनुसार निश्चित किया गया है। इसके अतिरिक्त, यही तर्क किसी भी छोटे ऑर्डिनल पर प्रस्तावित होता है (जो कि A के प्रारंभिक खंड का क्रम प्रकार होगा, वॉन न्यूमैन ऑर्डिनल भी) इसलिए किसी का क्रम प्रकार वॉन न्यूमैन ऑर्डिनल दृढ़ता से कैंटोरियन है। | |||
एकमात्र वॉन न्यूमैन ऑर्डिनल्स जिन्हें अतिरिक्त मान्यताओं के बिना एनएफयू में उपस्थित दिखाया जा सकता है, वे ठोस परिमित हैं। चूँकि, क्रमपरिवर्तन विधि का अनुप्रयोग एनएफयू के किसी भी प्रारूप को ऐसे प्रारूप में परिवर्तित कर सकता है जिसमें प्रत्येक दृढ़ता से कैंटोरियन ऑर्डिनल वॉन न्यूमैन ऑर्डिनल का क्रम प्रकार है। इससे ज्ञात होता है कि एनएफयू की दृढ़ता से कैंटोरियन ऑर्डिनल की अवधारणा एनएफयू के स्पष्ट एनालॉग ऑर्डिनल की तुलना में जेडएफसी के ऑर्डिनल का उत्तम एनालॉग हो सकता है। | |||
== कार्डिनल संख्या == | == कार्डिनल संख्या == | ||
एनएफयू में कार्डिनल संख्याओं को इस प्रकार से परिभाषित किया गया है जो प्राकृतिक संख्या की परिभाषा को सामान्य बनाता है: किसी भी समुच्चय A के लिए, <math>|A| \,\overset{\mathrm{def}}{=} \left\{B \mid B \sim A\right\}</math> होता है। | |||
जेडएफसी में, ये समतुल्य वर्ग सदैव के जैसे अधिक बड़े हैं। स्कॉट की चाल का उपयोग किया जा सकता है (और वास्तव में ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत में इसका उपयोग किया जाता है), <math>|A|</math> इसे सामान्यतः A के सुव्यवस्थित क्रम के सबसे छोटे क्रम प्रकार (यहां वॉन न्यूमैन ऑर्डिनल) के रूप में परिभाषित किया जाता है (कि प्रत्येक समुच्चय को सुव्यवस्थित किया जा सकता है)। दोनों सिद्धांतों में सामान्य प्रकार से रूचि के सिद्धांत के अनुसार सुव्यवस्थित किया जा सकता है)। | |||
दोनों सिद्धांतों में सामान्य | |||
कार्डिनल संख्याओं पर प्राकृतिक क्रम को | कार्डिनल संख्याओं पर प्राकृतिक क्रम को सुव्यवस्थित रूप में देखा जाता है: यह रिफ्लेक्सिव, एंटीसिमेट्रिक (अमूर्त कार्डिनल्स पर, जो अब उपलब्ध हैं) और ट्रांजिटिव है, ऊपर दिखाया गया है। यह रैखिक क्रम है जो रूचि के सिद्धांत से अनुसरण करता है: उचित प्रकारसे क्रमबद्ध दो समुच्चय और सुव्यवस्थित क्रम का प्रारंभिक खंड दूसरे के लिए समरूपी होगा, इसलिए समुच्चय की कार्डिनैलिटी दूसरे की तुलना में छोटी होगी। यह सुव्यवस्थित है जो रूचि के सिद्धांत से इसी प्रकार अनुसरण करता है। | ||
सुव्यवस्थित क्रम का प्रारंभिक खंड दूसरे के लिए समरूपी होगा, इसलिए | |||
प्रत्येक अनंत कार्डिनल के साथ, कई | प्रत्येक अनंत कार्डिनल के साथ, कई क्रम प्रकार सामान्य कारणों से जुड़े होते हैं (किसी भी समुच्चय सिद्धांत में)। | ||
कैंटर का प्रमेय दिखाता है (दोनों सिद्धांतों में) कि अनंत कार्डिनल संख्याओं के | कैंटर का प्रमेय दिखाता है (दोनों सिद्धांतों में) कि अनंत कार्डिनल संख्याओं के मध्य गैर-तुच्छ अंतर हैं। जेडएफसी में, <math>|A|<|P(A)|.</math> प्रमाणित होता है। एनएफयू में, कैंटर के प्रमेय का सामान्य रूप त्रुटिपूर्ण है (स्थिति A = V पर विचार करें), किन्तु कैंटर का प्रमेय त्रुटिपूर्ण टाइप किया गया कथन है। एनएफयू में प्रमेय का सही रूप <math>|P_1(A)|<|P(A)|</math> है, जहाँ <math>P_1(A)</math> A के -तत्व उपसमुच्चय का समुच्चय है। <math>|P_1(V)|<|P(V)|</math> दिखाता है कि समुच्चय की तुलना में कम सिंगलटन हैं (स्पष्ट आक्षेप <math>x \mapsto \{x\}</math> से <math>P_1(V)</math> V को पूर्व ही देखा जा चुका है कि यह समुच्चय नहीं है)। यह वास्तव में एनएफयू + चॉइस में सिद्ध है <math>|P_1(V)|<|P(V)|\ll|V|</math> (जहाँ <math>\ll</math> कई हस्तक्षेप करने वाले कार्डिनलों के अस्तित्व का संकेत देता है; वहाँ अनेक, अनेक मूत्र तत्व हैं!) ऑर्डिनल्स पर T ऑपरेशन के अनुरूप कार्डिनल्स पर टाइप-रेज़िंग T ऑपरेशन को परिभाषित करें: <math>T(|A|) = |P_1(A)|</math>; यह कार्डिनल्स का बाहरी एंडोमोर्फिज्म है, जैसे कि ऑर्डिनल्स पर T ऑपरेशन, ऑर्डिनल्स का बाहरी एंडोमोर्फिज्म है। | ||
समुच्चय A को केवल स्थिति में 'कैंटोरियन' कहा जाता है <math>|A| = |P_1(A)| = T(|A|)</math>; कार्डिनल <math>|A|</math> इसे कैंटोरियन कार्डिनल भी कहा जाता है। समुच्चय A को 'दृढ़ता से कैंटोरियन' कहा जाता है (और इसका कार्डिनल भी दृढ़ता से कैंटोरियन होता है) केवल उस स्थिति में जब A पर सिंगलटन मानचित्र का प्रतिबंध होता है (<math>(x \mapsto \{x\})\lceil A</math>) समुच्चय है। दृढ़तापूर्वक कैंटोरियन समुच्चयों का सुव्यवस्थित क्रम सदैव दृढ़तापूर्वक कैंटोरियन क्रमसूचक होता है; यह सदैव कैंटोरियन समुच्चयों के सुव्यवस्थित क्रम के विषय में सत्य नहीं है (चूँकि कैंटोरियन समुच्चय का सबसे छोटा सुक्रमण कैंटोरियन होगा)। कैंटोरियन समुच्चय ऐसा समुच्चय है जो कैंटोर के प्रमेय के सामान्य रूप को संतुष्ट करता है। | |||
दोनों सिद्धांतों में कार्डिनल अंकगणित के संचालन को | दोनों सिद्धांतों में कार्डिनल अंकगणित के संचालन को समुच्चय-सैद्धांतिक रूप से प्रेरित प्रकार <math>|A| + |B| = \{C \cup D \mid C \sim A \wedge D \sim B \wedge C \cap D = \emptyset\}</math> से परिभाषित किया गया है। कोई परिभाषित करना चाहेगा <math>|A|\cdot|B|</math> जैसा <math>|A \times B|</math>, और कोई इसे जेडएफसी में करता है, किन्तु कुराटोस्की युग्म का उपयोग करते समय नई नींव में बाधा होती है: परिभाषित करता है <math>|A|\cdot|B|</math> जैसा <math>T^{-2}(|A \times B|)</math> युग्म और उसके प्रक्षेपणों के मध्य 2 के प्रकार के विस्थापन के कारण, जिसका तात्पर्य कार्टेशियन उत्पाद और उसके कारकों के मध्य दो के प्रकार के विस्थापन से है। यह प्रमाणित करना सरल है कि उत्पाद सदैव उपस्थित रहता है (किन्तु इस पर ध्यान देने की आवश्यकता है क्योंकि T का व्युत्क्रम कुल नहीं है)। | ||
कार्डिनल्स पर घातीय ऑपरेशन को परिभाषित करने के लिए आवश्यक | कार्डिनल्स पर घातीय ऑपरेशन को परिभाषित करने के लिए आवश्यक प्रकार से T की आवश्यकता होती है: यदि <math>B^A</math> A से B तक फलन के संग्रह के रूप में परिभाषित किया गया था, यह A या B से तीन प्रकार अधिक है, इसलिए इसे परिभाषित करना उचित है <math>|B|^{|A|}</math> जैसा <math>T^{-3}(|B^A|)</math> जिससे कि यह A या B के समान प्रकार का हो (<math>T^{-1}</math> के स्थान पर <math>T^{-3}</math> टाइप-स्तरीय जोड़े के साथ)। इसका प्रभाव यह है कि घातांकीय संक्रिया आंशिक है: उदाहरण के लिए, <math>2^{|V|}</math> अपरिभाषित है।जेडएफसी में परिभाषित करता है <math>|B|^{|A|}</math> जैसा <math>|B^A|</math> कठिनाई के बिना है। | ||
घातीय ऑपरेशन कुल है और कैंटोरियन कार्डिनल्स पर बिल्कुल अपेक्षित व्यवहार करता है, क्योंकि | घातीय ऑपरेशन कुल है और कैंटोरियन कार्डिनल्स पर बिल्कुल अपेक्षित व्यवहार करता है, क्योंकि T ऐसे कार्डिनल्स को ठीक करता है और यह दिखाना सरल है कि कैंटोरियन समुच्चयों के मध्य फलन स्पेस कैंटोरियन है (जैसे पावर समुच्चय, कार्टेशियन उत्पाद और अन्य सामान्य प्रकार के कंस्ट्रक्टर हैं)। इससे इस दृष्टिकोण को और प्रोत्साहन मिलता है कि न्यू फ़ाउंडेशन में मानक कार्डिनैलिटीज़ कैंटोरियन (वास्तव में, दृढ़ता से कैंटोरियन) कार्डिनैलिटी हैं, जैसे मानक ऑर्डिनल्स दृढ़ता से कैंटोरियन ऑर्डिनल्स प्रतीत होते हैं। | ||
अब | अब रूचि के स्वयंसिद्ध सहित कार्डिनल अंकगणित के सामान्य प्रमेयों को सिद्ध किया जा सकता है <math>\kappa \cdot \kappa = \kappa</math>. स्थिति से <math>|V|\cdot |V| = |V|</math> प्रकार के स्तर पर क्रमित युग्म का अस्तित्व प्राप्त किया जा सकता है: <math>|V| \cdot |V| = T^{-2}(|V \times V|)</math> के समान है <math>|V|</math> संभवतः आवश्यकता है <math>|V \times V| = T^2(|V|) = |P_1^2(V)|</math>, जो कुराटोस्की जोड़ों के मध्य -से- पत्राचार द्वारा देखा जाएगा <math>(a,b)</math> और डबल सिंगलटन <math>\{\{c\}\}</math>: पुनः परिभाषित करें <math>(a,b)</math> जैसा कि c ऐसा है <math>\{\{c\}\}</math> कुराटोव्स्की <math>(a,b)</math> से जुड़ा है: यह क्रमित युग्म की प्रकार-स्तरीय धारणा है। | ||
== | == गिनती का सिद्धांत और स्तरीकरण का विध्वंस == | ||
इसलिए | इसलिए एनएफयू में प्राकृतिक संख्याओं के दो भिन्न-भिन्न कार्यान्वयन हैं (चूँकि वे जेडएफसी में समान हैं): परिमित क्रमसूचक और परिमित कार्डिनल हैं। इनमें से प्रत्येक एनएफयू T ऑपरेशन (मूल रूप से वही ऑपरेशन) का समर्थन करता है। इसे प्रमाणित करना सरल है <math>T(n)</math> प्राकृतिक संख्या है यदि एनएफयू + इन्फिनिटी + चॉइस (और इसी प्रकार) में n प्राकृतिक संख्या है <math>|N|</math> और प्रथम अनंत क्रमवाचक <math>\omega</math> कैंटोरियन हैं) किन्तु इस सिद्धांत में यह <math>T(n)=n</math> प्रमाणित करना संभव नहीं है। चूँकि, सामान्य ज्ञान प्रदर्शित करता है कि यह सत्य होना चाहिए, और इसलिए इसे स्वयंसिद्ध के रूप में अपनाया जा सकता है: | ||
अनंत क्रमवाचक <math>\omega</math> कैंटोरियन हैं) | *'''रोसेर का गणना का अभिगृहीत:''' प्रत्येक प्राकृतिक संख्या ''n'' के लिए, <math>T(n)=n</math> है। | ||
*रोसेर का | इस स्वयंसिद्ध (और वास्तव में इसका मूल सूत्रीकरण) का स्वाभाविक परिणाम है। | ||
इस स्वयंसिद्ध (और वास्तव में इसका मूल सूत्रीकरण) का | *<math>|\{1,\ldots,n\}| = n</math> प्रत्येक प्राकृत संख्या n के लिए है। | ||
*<math>|\{1,\ldots,n\}| = n</math> प्रत्येक प्राकृत संख्या के लिए | एनएफयू में बिना गणना <math>|\{1,\ldots,n\}| = T^2(n)</math> के सब कुछ सिद्ध किया जा सकता है। | ||
काउंटिंग का | काउंटिंग का परिणाम यह है कि N दृढ़ता से कैंटोरियन समुच्चय है (पुनः, यह समतुल्य प्रमाण है)। | ||
===दृढ़ता से कैंटोरियन | ===दृढ़ता से कैंटोरियन समुच्चय के गुण=== | ||
दृढ़ता से कैंटोरियन | दृढ़ता से कैंटोरियन समुच्चय A तक सीमित किसी भी चर के प्रकार को संदर्भों को प्रतिस्थापित करके इच्छानुसार बढ़ाया या घटाया जा सकता है <math>a \in A</math> के सन्दर्भ में <math>\bigcup f(a)</math> (उठाए गए प्रकार का; यह माना जाता है कि यह ज्ञात है कि A समुच्चय है; अन्यथा किसी को का तत्व कहना होगा <math>f(a)</math>इस प्रभाव को पाने के लिए) या <math>f^{-1}(\{a\})</math> ( प्रकार का निचला भाग) जहाँ <math>f(a) = \{a\}</math> सभी के लिए <math>a \in A</math> है, इसलिए स्तरीकरण के प्रयोजनों के लिए ऐसे चरों को प्रकार निर्दिष्ट करना आवश्यक नहीं है। | ||
दृढ़ता से कैंटोरियन | दृढ़ता से कैंटोरियन समुच्चय का कोई भी उपसमुच्चय दृढ़ता से कैंटोरियन होता है। दृढ़तापूर्वक कैंटोरियन समुच्चय का पावर समुच्चय दृढ़ता से कैंटोरियन होता है। दो दृढ़तापूर्वक कैंटोरियन समुच्चयों का कार्टेशियन उत्पाद दृढ़ता से कैंटोरियन है। | ||
गणना के सिद्धांत का परिचय देने का | गणना के सिद्धांत का परिचय देने का तात्पर्य है कि प्रकारों को N या P(N), R (वास्तविकता का समुच्चय) या वास्तव में समुच्चय सिद्धांत के बाहर शास्त्रीय गणित में कभी भी विचार किए गए किसी भी समुच्चय तक सीमित चर को निर्दिष्ट करने की आवश्यकता नहीं है। | ||
जेडएफसी में कोई समान घटना नहीं है। दृढ़ सिद्धांतों के लिए मुख्य न्यू फ़ाउंडेशन लेख देखें जिन्हें परिचित गणितीय वस्तुओं के मानक व्यवहार को प्रारम्भ करने के लिए एनएफयू से जोड़ा जा सकता है। | |||
== परिचित संख्या | == परिचित संख्या प्रणालियाँ: सकारात्मक परिमेय, परिमाण, और वास्तविक == | ||
धनात्मक भिन्नों को धनात्मक प्राकृतिक संख्याओं के | धनात्मक भिन्नों को धनात्मक प्राकृतिक संख्याओं के युग्म के रूप में निरूपित करें (0 को बाहर रखा गया है): <math>\frac pq</math> को युग्म <math>(p,q)</math> द्वारा दर्शाया गया है। <math>\frac pq = \frac rs \leftrightarrow ps=qr</math>, बनाने के लिए संबंध का परिचय दें <math>\sim</math> द्वारा परिभाषित <math>(p,q)\sim (r,s) \leftrightarrow ps=qr</math> है। यह सिद्ध है कि यह तुल्यता संबंध है: इस संबंध के अंतर्गत सकारात्मक परिमेय संख्याओं को सकारात्मक प्राकृतिक संख्याओं के युग्मों के समतुल्य वर्गों के रूप में परिभाषित करें। सकारात्मक परिमेय संख्याओं पर अंकगणितीय परिचालन और सकारात्मक परिमेय पर क्रम संबंध को प्राथमिक विद्यालय के जैसे ही परिभाषित किया गया है और अपेक्षित गुणों को प्रमाणित किया गया है (कुछ प्रयासों के साथ)। | ||
बिना किसी सबसे बड़े तत्व के सकारात्मक परिमेय के गैर-रिक्त उचित प्रारंभिक खंडों के रूप में परिमाण (सकारात्मक वास्तविक) का प्रतिनिधित्व करें। परिमाणों पर जोड़ और गुणन की संक्रियाओं को परिमाणों के सकारात्मक तर्कसंगत तत्वों के तत्ववार जोड़ द्वारा कार्यान्वित किया जाता है। आदेश को | बिना किसी सबसे बड़े तत्व के सकारात्मक परिमेय के गैर-रिक्त उचित प्रारंभिक खंडों के रूप में परिमाण (सकारात्मक वास्तविक) का प्रतिनिधित्व करें। परिमाणों पर जोड़ और गुणन की संक्रियाओं को परिमाणों के सकारात्मक तर्कसंगत तत्वों के तत्ववार जोड़ द्वारा कार्यान्वित किया जाता है। आदेश को समुच्चय समावेशन के रूप में प्रारम्भ किया गया है। | ||
वास्तविक संख्याओं को अंतर | वास्तविक संख्याओं को अंतर <math>m-n</math> परिमाण के रूप में निरूपित करें: औपचारिक रूप से कहें तो, वास्तविक संख्या युग्मों का तुल्यता वर्ग है <math>(m,n)</math> तुल्यता संबंध के अनुसार परिमाण का <math>\sim</math> द्वारा परिभाषित <math>(m,n) \sim (r,s) \leftrightarrow m+s = n+r</math> है। वास्तविक संख्याओं पर जोड़ और गुणा की संक्रियाओं को वैसे ही परिभाषित किया गया है जैसे कोई अंतर जोड़ने और गुणा करने के लिए बीजगणितीय नियमों से अपेक्षा करता है। क्रम का उपचार भी प्रारंभिक बीजगणित के समान ही है। | ||
यह निर्माणों का संक्षिप्त रेखाचित्र है। ध्यान दें कि प्राकृतिक संख्याओं के निर्माण में अंतर को छोड़कर, | यह निर्माणों का संक्षिप्त रेखाचित्र है। ध्यान दें कि प्राकृतिक संख्याओं के निर्माण में अंतर को छोड़कर, जेडएफसी और न्यू फ़ाउंडेशन में निर्माण बिल्कुल समान हैं: चूंकि सभी चर दृढ़ता से कैंटोरियन समुच्चय तक सीमित हैं, इसलिए स्तरीकरण प्रतिबंधों के विषय में विचार करने की कोई आवश्यकता नहीं है। गिनती के सिद्धांत के बिना, इन निर्माणों की पूर्ण वर्णन में T के कुछ अनुप्रयोगों को प्रस्तुत करना आवश्यक हो सकता है। | ||
== | == समुच्चय के अनुक्रमित परिवारों पर संचालन == | ||
निर्माण के इस वर्ग में ऐसा प्रतीत होता है कि | निर्माण के इस वर्ग में ऐसा प्रतीत होता है कि जेडएफसी को एनएफयू पर लाभ है: चूँकि एनएफयू में निर्माण स्पष्ट रूप से संभव हैं, स्तरीकरण से संबंधित कारणों से वे जेडएफसी की तुलना में अधिक समष्टि हैं। | ||
इस | इस पूर्ण खंड में प्रकार-स्तरीय क्रमित युग्म मान ली गई है। परिभाषित करना <math>(x_1,x_2,\ldots,x_n)</math> के रूप में <math>(x_1,(x_2,\ldots,x_n))</math> है। कुराटोस्की युग्म का उपयोग करके सामान्य एन-टुपल की परिभाषा अधिक कठिन है, क्योंकि सभी अनुमानों के प्रकारों को समान रखने की आवश्यकता होती है, और n-ट्यूपल और उसके अनुमानों के मध्य प्रकार का विस्थापन n बढ़ने के साथ बढ़ता है। यहां, n-ट्यूपल का प्रकार उसके प्रत्येक प्रक्षेपण के समान है। | ||
सामान्य कार्टेशियन उत्पादों को इसी | सामान्य कार्टेशियन उत्पादों को इसी प्रकार परिभाषित किया गया है: <math>A_1 \times A_2 \times \ldots \times A_n = A_1 \times (A_2 \times \ldots \times A_n)</math> | ||
जेडएफसी में परिभाषाएँ समान हैं किन्तु स्तरीकरण के विषय में कोई चिंता नहीं है (यहाँ दिया गया समूहीकरण सामान्यतः उपयोग किए जाने वाले समूह के विपरीत है, किन्तु इसे सरलता से ठीक किया जा सकता है)। | |||
अब अनंत कार्तीय गुणनफल <math>\Pi_{i \in I}A_i</math>पर विचार करें I जेडएफसी में, इसे डोमेन के साथ सभी फलन f के समुच्चय <math>f(i) \in A_i</math>के रूप में परिभाषित किया गया है (जहाँ A को स्पष्ट रूप से प्रत्येक i को ले जाने वाले फलन के रूप में समझा जाता है <math>A_i</math>)। | |||
एनएफयू में, इसके प्रकार पर ध्यान देने की आवश्यकता है। समुच्चय I दिया गया है और मूल्यवान फलन A समुच्चय किया गया है जिसका मान <math>\{i\}</math> में <math>P_1(I)</math> <math>A_i</math> लिखा है, परिभाषित करना <math>\Pi_{i \in I}A_i</math> डोमेन के साथ सभी फलन f के समुच्चय के रूप में <math>f(i) \in A_i</math> है: नोटिस जो <math>f(i) \in A_i = A(\{i\})</math> हमारे सम्मेलन के कारण स्तरीकृत किया गया है कि A सूचकांकों के सिंगलटन पर मान वाला फलन है। ध्यान दें कि समुच्चय के सबसे बड़े परिवारों (जिन्हें सिंगलटन के समुच्चय द्वारा अनुक्रमित नहीं किया जा सकता) में इस परिभाषा के अनुसार कार्टेशियन उत्पाद नहीं होंगे। आगे ध्यान दें कि समुच्चय <math>A_i</math> सूचकांक समुच्चय I के समान प्रकार के हैं (क्योंकि इसके तत्वों से प्रकार अधिक है); उत्पाद, डोमेन I के साथ फलन के समुच्चय के रूप में (इसलिए I के समान प्रकार पर) प्रकार उच्चतर है (प्रकार-स्तरीय आदेशित युग्म मानते हुए)। | |||
अब उत्पाद <math>\Pi_{i \in I}|A_i|</math> पर विचार करें। इन समुच्चयों के कार्डिनल्स की कार्डिनैलिटी |<math>\Pi_{i \in I}A_i</math>| कार्डिनल्स <math>|A_i|</math> से ऊँचा है, इसलिए कार्डिनल्स के अनंत उत्पाद की सही परिभाषा <math>T^{-1}(|\Pi_{i \in I}A_i|)</math> है (चूँकि T का व्युत्क्रम पूर्ण नहीं है, यह संभव है कि इसका अस्तित्व ही न हो)। | |||
योग | समुच्चय के परिवारों और कार्डिनल्स के परिवारों के योग के असंयुक्त संघों के लिए इसे दोहराएं। फिर से, A को डोमेन के साथ समुच्चय-वैल्यू फलन <math>P_1(I)</math> होने दें: <math>A_i</math> के लिए <math>A(\{i\})</math>है असंयुक्त संघ <math>\Sigma_{i \in I}A_i</math> समुच्चय <math>\{(i,a) \mid a \in A_i\}</math>है। यह समुच्चय के समान ही <math>A_i</math> का प्रकार है। | ||
योग की सही परिभाषा <math>\Sigma_{i \in I}|A_i|</math> इस प्रकार <math>|\Sigma_{i \in I}A_i|</math> है, चूँकि किसी प्रकार का विस्थापन नहीं है। | |||
इंडेक्स समुच्चय को संभालने के लिए इन परिभाषाओं का विस्तार करना संभव है जो सिंगलटन के समुच्चय नहीं हैं, किन्तु यह अतिरिक्त प्रकार के स्तर का परिचय देता है और अधिकांश उद्देश्यों के लिए इसकी आवश्यकता नहीं होती है। | |||
क्रमपरिवर्तन विधियों का उपयोग इस | जेडएफसी में असंयुक्त संघ को परिभाषित करें <math>\Sigma_{i \in I}A_i</math> जैसा <math>\{(i,a) \mid a \in A_i\}</math>, जहाँ <math>A_i</math> संक्षिप्तीकरण <math>A(i)</math> है। | ||
क्रमपरिवर्तन विधियों का उपयोग इस प्रमाण के एनएफयू के साथ सापेक्ष स्थिरता दिखाने के लिए किया जा सकता है कि प्रत्येक दृढ़ता से कैंटोरियन समुच्चय A के लिए समान आकार का समुच्चय I होता है जिसके तत्व स्व-सिंगलटन होते हैं: <math>i = \{i\}</math> I में प्रत्येक i के लिए होता है। | |||
== संचयी पदानुक्रम == | == संचयी पदानुक्रम == | ||
जेडएफसी में, संचयी पदानुक्रम को निम्नलिखित नियमों को पूर्ण करने वाले समुच्चयों के क्रमिक-अनुक्रमित अनुक्रम के रूप में परिभाषित करें: <math>V_0 = \emptyset</math>; <math>V_{\alpha+1} = P(V_{\alpha})</math>; <math>V_{\lambda} = \bigcup\{V_{\beta} \mid \beta<\lambda\}</math> सीमा क्रमसूचक के लिए <math>\lambda</math> है। यह [[ट्रांसफ़िनिट रिकर्सन]] द्वारा निर्माण का उदाहरण है। समुच्चय A की श्रेणी बताई गई है <math>\alpha</math> यदि और केवल <math>A \in V_{\alpha+1}-V_{\alpha}</math> है। समुच्चय के रूप में श्रेणियों का अस्तित्व प्रत्येक सीमा चरण पर प्रतिस्थापन के सिद्धांत पर निर्भर करता है (ज़र्मेलो समुच्चय सिद्धांत में पदानुक्रम का निर्माण नहीं किया जा सकता है); नींव के सिद्धांत के अनुसार, प्रत्येक समुच्चय किसी न किसी श्रेणी का होता है। | |||
कार्डिनल <math>|P(V_{\omega + \alpha})|</math> | कार्डिनल <math>|P(V_{\omega + \alpha})|</math> <math>\beth_{\alpha}</math> कहा जाता है। | ||
यह निर्माण | यह निर्माण एनएफयू में नहीं किया जा सकता क्योंकि पावर समुच्चय ऑपरेशन एनएफयू में समुच्चय फलन नहीं है (स्तरीकरण के प्रयोजनों के लिए <math>P(A)</math> A से अधिक है)। | ||
कार्डिनल्स का क्रम <math>\beth_{\alpha}</math> एनएफयू में | कार्डिनल्स का क्रम <math>\beth_{\alpha}</math> एनएफयू में प्रस्तावित किया जा सकता है। याद करें कि <math>2^{|A|}</math> को इस प्रकार <math>T^{-1}(|\{0,1\}^A|)</math>परिभाषित किया गया है कि जहाँ <math>\{0,1\}</math> आकार 2 का सुविधाजनक समुच्चय है, और <math>|\{0,1\}^A|=|P(A)|</math> है। मान लीजिये कि <math>\beth</math> कार्डिनल्स का सबसे छोटा समुच्चय है जिसमें <math>|N|</math> सम्मिलित है (प्राकृतिक संख्याओं के समुच्चय की कार्डिनैलिटी), <math>2^{|A|}</math> में कार्डिनल सम्मिलित है जब <math>|A|</math> भी इसमें सम्मिलित है, और जो कार्डिनल्स के समुच्चय की सर्वोच्चता के अनुसार विवृत है। | ||
किसी भी सुव्यवस्थित क्रम के क्रमिक अनुक्रमण के लिए | किसी भी सुव्यवस्थित क्रम के क्रमिक अनुक्रमण के लिए सम्मेलन <math>W_\alpha</math> के क्षेत्र के तत्व x के रूप में परिभाषित किया गया है, <math>W</math> ऐसा है कि प्रतिबंध का आदेश प्रकार <math>W</math> से <math>\{y \mid y W x\}</math> तक <math>\alpha</math> है; फिर <math>\beth_{\alpha}</math> को परिभाषित करें, सूचकांक वाले तत्व <math>\alpha</math> के रूप में <math>\beth</math> के तत्वों पर प्राकृतिक क्रम में है। कार्डिनल <math>\aleph_{\alpha}</math> सूचकांक <math>\alpha</math> वाला तत्व है, सभी अनंत कार्डिनल्स पर प्राकृतिक क्रम में (जो सुव्यवस्थित है, ऊपर देखें)। ध्यान दें कि <math>\aleph_0 = |N|</math> इस परिभाषा से तुरंत अनुसरण करता है। इन सभी निर्माणों में, ध्यान दें कि सूचकांक का प्रकार <math>\alpha</math>, <math>W_{\alpha}</math>के प्रकार से दो अधिक (प्रकार-स्तरीय क्रमित युग्म के साथ) है। | ||
जेडएफसी के प्रत्येक समुच्चय A में सकर्मक समापन होता <math>TC(A)</math> है (सभी सकर्मक समुच्चयों का प्रतिच्छेदन जिसमें A सम्मिलित है)। नींव के सिद्धांत के अनुसार, A के सकर्मक समापन के लिए सदस्यता संबंध का प्रतिबंध उचित प्रकार से स्थापित संबंध है। संबंध <math>\in \lceil TC(A)</math> या तो रिक्त है या इसका शीर्ष तत्व A है, इसलिए यह संबंध समुच्चय चित्र है। जेडएफसी में यह सिद्ध किया जा सकता है कि प्रत्येक समुच्चय चित्र कुछ के लिए समरूपी <math>\in \lceil TC(A)</math>है। | |||
इससे | इससे ज्ञात होता है कि ( प्रारंभिक खंड) संचयी पदानुक्रम का अध्ययन समुच्चय चित्रों के समरूपता वर्गों पर विचार करके किया जा सकता है। ये समरूपता वर्ग समुच्चय हैं और नई नींव में समुच्चय बनाते हैं। समुच्चय चित्रों के समरूपता वर्गों पर सदस्यता के अनुरूप प्राकृतिक समुच्चय संबंध है: यदि <math>x</math> समुच्चय चित्र है, <math>[x]</math> इसके समरूपता वर्ग के लिए लिखे और <math>[x] E [y]</math> को परिभाषित करें, यदि धारण किये हुए हो <math>[x]</math> y के शीर्ष तत्व y के अंतर्गत प्रीइमेज के तत्वों में से नीचे की ओर बंद होने के लिए y के प्रतिबंध का समरूपता वर्ग है। संबंध E समुच्चय संबंध है, और यह प्रमाणित करना सरल है कि यह उचित प्रकार से स्थापित और विस्तारित है। यदि E की परिभाषा भ्रमित करने वाली है, तो इस अवलोकन <math>A \in B</math> सामान्य समुच्चय सिद्धांत में से यह निष्कर्ष निकाला जा सकता है कि यह ठीक उस संबंध से प्रेरित है जो A से जुड़े समुच्चय चित्र और B से जुड़े समुच्चय चित्र के मध्य होता है। | ||
समुच्चय चित्रों के समरूपता वर्गों पर T ऑपरेशन होता है, जो ऑर्डिनल्स पर T ऑपरेशन के अनुरूप होता है: यदि x समुच्चय चित्र है, तो यह है <math>x^{\iota} = \{(\{a\},\{b\})\mid (a,b) \in x\}</math> है। परिभाषित करना <math>T([x])</math> जैसा <math>[x^{\iota}]</math>, यह <math>[x]E[y] \leftrightarrow T([x])=T([y])</math> है। | |||
इस सिम्युलेटेड | इस सिम्युलेटेड समुच्चय सिद्धांत के लिए विस्तारशीलता का सिद्धांत E की विस्तारशीलता से अनुसरण करता है। इसकी सुगठितता से नींव का सिद्धांत अनुसरण करता है। यह प्रश्न बना हुआ है कि स्वयंसिद्ध E की क्या समझ हो सकती है। समुच्चय चित्रों के किसी भी संग्रह <math>\{x^{\iota}\mid x \in S\}</math> पर विचार करें (समुच्चय चित्रों का संग्रह जिनके क्षेत्र पूर्ण रूप से सिंगलटन से बने हैं)। प्रत्येक के पश्चात से <math>x^{\iota}</math> x से प्रकार अधिक है ( प्रकार-स्तर क्रमित युग्म का उपयोग करके), प्रत्येक तत्व <math>\{a\}</math> को प्रतिस्थापित करता है। प्रत्येक क्षेत्र का <math>x^{\iota}</math> के साथ संग्रह <math>(x,\{a\})</math> परिणामस्वरूप समुच्चय चित्रों का संग्रह मूल संग्रह के समरूप होता है किन्तु उनके क्षेत्र असंबद्ध होते हैं। इन समुच्चय का मिलन नए शीर्ष तत्व के साथ समुच्चय चित्र उत्पन्न करते हैं जिसका समरूपता प्रकार E के अंतर्गत इसकी पूर्वछवियों के रूप में मूल संग्रह के तत्व होंगे। अर्थात्, समरूपता प्रकार के किसी भी संग्रह के लिए <math>[x^{\iota}] = T([x])</math>, समरूपता प्रकार <math>[y]</math> है, जिसका पूर्वचित्र E के अंतर्गत संग्रह है। | ||
नए शीर्ष तत्व के साथ | |||
विशेष रूप से, | विशेष रूप से, समरूपता प्रकार [v] होगा जिसकी E के अंतर्गत पूर्वछवि सभी T[x] (T[v] सहित का संग्रह है। चूँकि T[v] E v और E उचित प्रकार से स्थापित <math>T[v] \neq v</math> है, यह ऊपर और न्यू फ़ाउंडेशन लेख में विचार किए गए बुराली-फोर्टी विरोधाभास के समाधान जैसा दिखता है, और वास्तव में सभी उचित प्रकार से स्थापित समुच्चयों के समुच्चय के मिरिमैनॉफ के विरोधाभास का स्थानीय समाधान है। | ||
समुच्चय चित्रों के समरूपता वर्गों की श्रेणी होती हैं जैसे सामान्य समुच्चय सिद्धांत में समुच्चय की श्रेणी होती हैं। समुच्चय चित्रों A के किसी भी संग्रह के लिए, S(A) को समुच्चय चित्रों के सभी समरूपता वर्गों के समुच्चय के रूप में परिभाषित करें जिनकी E के अनुसार प्रीइमेज A का उपसमुच्चय है; यदि A का प्रत्येक उपसमुच्चय E के अंतर्गत पूर्वछवि है, तो A को पूर्ण समुच्चय कहा जाता है। श्रेणियों का संग्रह सबसे छोटा संग्रह है जिसमें रिक्त समुच्चय होता है और S ऑपरेशन (जो पावर समुच्चय निर्माण है) और इसके उपसंग्रहों के संघों के अनुसार विवृत होता है। यह सिद्ध करना सरल है (सामान्य समुच्चय सिद्धांत के जैसे) कि समावेशन द्वारा श्रेणियों को सुव्यवस्थित किया जाता है, और इसलिए इस सुव्यवस्थित क्रम में श्रेणियों का सूचकांक होता है: सूचकांक <math>\alpha</math> के साथ श्रेणी <math>R_{\alpha}</math> को देखें। यह विषय सिद्ध है कि <math>|R_{\alpha}|=\beth_{\alpha}</math> पूर्ण श्रेणी के लिए <math>R_{\alpha}</math> है। संबंध E के साथ पूर्ण श्रेणियों (जो प्रथम अपूर्ण श्रेणी होगी) का मिलन ज़र्मेलो-शैली समुच्चय सिद्धांत के ब्रह्मांड के प्रारंभिक खंड जैसा दिखता है (आवश्यक नहीं कि जेडएफसी के पूर्ण ब्रह्मांड के जैसे हो क्योंकि यह पर्याप्त बड़ा नहीं हो सकता है)। यह सिद्ध है कि यदि <math>R_{\alpha}</math> प्रथम अपूर्ण श्रेणी है, तो <math>R_{T(\alpha)}</math> पूर्ण श्रेणी है और इस प्रकार <math>T(\alpha)<\alpha</math> है। तो बाहरी ऑटोमोर्फिज्म T के साथ संचयी पदानुक्रम की श्रेणी है जो श्रेणी को नीचे की ओर ले जा रही है, बिल्कुल संचयी पदानुक्रम में श्रेणी के गैर-मानक प्रारूप की स्थिति जिसके अनुसार न्यू फ़ाउंडेशन लेख में एनएफयू का प्रारूप बनाया गया है। सत्यापित करने के लिए प्रौद्योगिकी विवरण हैं, किन्तु इस संरचना में न केवल जेडएफसी के खंड की अन्यथा एनएफयू की भी व्याख्या है। <math>[x]\in_{NFU}[y]</math> को <math>T([x]) E [y] \wedge [y] \in R_{T(\alpha)+1}</math>के रूप में परिभाषित किया गया है: यह संबंध <math>E_{NFU}</math> समुच्चय संबंध नहीं है, किन्तु इसके तर्कों के मध्य सामान्य सदस्यता संबंध <math>\in</math> के समान ही विस्थापन होता है। | |||
तो | तो समुच्चय के संचयी पदानुक्रम के एनएफयू के अंदर प्राकृतिक निर्माण होता है जो ज़र्मेलो-शैली समुच्चय सिद्धांत में एनएफयू के प्रारूप के प्राकृतिक निर्माण को आंतरिक करता है। | ||
न्यू फ़ाउंडेशन लेख में वर्णित कैंटोरियन | न्यू फ़ाउंडेशन लेख में वर्णित कैंटोरियन समुच्चय के एक्सिओम के अनुसार, सदस्यता के रूप में E संबंध के साथ समुच्चय चित्रों के आइसोमोर्फिज्म वर्गों के समुच्चय का दृढ़ता से कैंटोरियन भाग जेडएफसी का (उचित वर्ग) प्रारूप बन जाता है (जिसमें n-महलो कार्डिनल्स होते हैं; प्रत्येक n के लिए; एनएफयू का यह विस्तार जेडएफसी से अधिक दृढ़ है)। यह उचित वर्ग प्रारूप है क्योंकि दृढ़ता से कैंटोरियन समरूपता वर्ग समुच्चय नहीं बनाते हैं। | ||
एनएफयू के किसी भी | एनएफयू के किसी भी प्रारूप से ऐसा प्रारूप बनाने के लिए क्रमपरिवर्तन विधियों का उपयोग किया जा सकता है जिसमें प्रत्येक दृढ़ता से कैंटोरियन आइसोमोर्फिज्म प्रकार के समुच्चय चित्रों को वास्तव में समुच्चय के सकर्मक समापन के लिए वास्तविक सदस्यता संबंध के प्रतिबंध के रूप में अनुभूत किया जाता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 312: | Line 298: | ||
==संदर्भ== | ==संदर्भ== | ||
*[[Keith Devlin]], 1994. ''The Joy of Sets'', 2nd ed. Springer-Verlag. | *[[Keith Devlin]], 1994. ''The Joy of Sets'', 2nd ed. Springer-Verlag. | ||
*Holmes, Randall, 1998. ''[https://randall-holmes.github.io/head.pdf Elementary Set Theory with a Universal Set]''. Academia-Bruylant. The publisher has graciously consented to permit diffusion of this introduction to | *Holmes, Randall, 1998. ''[https://randall-holmes.github.io/head.pdf Elementary Set Theory with a Universal Set]''. Academia-Bruylant. The publisher has graciously consented to permit diffusion of this introduction to एनएफयू via the web. Copyright is reserved. | ||
*Potter, Michael, 2004. ''Set Theory and its Philosophy'', 2nd ed. Oxford Univ. Press. | *Potter, Michael, 2004. ''Set Theory and its Philosophy'', 2nd ed. Oxford Univ. Press. | ||
*Suppes, Patrick, 1972. ''Axiomatic Set Theory''. Dover. | *Suppes, Patrick, 1972. ''Axiomatic Set Theory''. Dover. | ||
*Tourlakis, George, 2003. ''Lectures in Logic and Set Theory, Vol. 2''. Cambridge Univ. Press. | *Tourlakis, George, 2003. ''Lectures in Logic and Set Theory, Vol. 2''. Cambridge Univ. Press. | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* [http://us.metamath.org/ Metamath:] A web site devoted to an ongoing derivation of mathematics from the axioms of | * [http://us.metamath.org/ Metamath:] A web site devoted to an ongoing derivation of mathematics from the axioms of जेडएफसी and [[first-order logic]]. | ||
* [[Stanford Encyclopedia of Philosophy]]: | * [[Stanford Encyclopedia of Philosophy]]: | ||
** [http://plato.stanford.edu/entries/quine-nf Quine's New Foundations]—by Thomas Forster. | ** [http://plato.stanford.edu/entries/quine-nf Quine's New Foundations]—by Thomas Forster. | ||
Line 327: | Line 311: | ||
{{Mathematical logic}} | {{Mathematical logic}} | ||
[[Category: | [[Category:Collapse templates]] | ||
[[Category:Created On 24/07/2023]] | [[Category:Created On 24/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Mathematics navigational boxes]] | |||
[[Category:Navbox orphans]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with maths render errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Philosophy and thinking navigational boxes]] | |||
[[Category:Portal-inline template with redlinked portals]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:औपचारिकता (निगमनात्मक)]] | |||
[[Category:गणितीय तर्क]] | |||
[[Category:बड़े पैमाने पर गणितीय औपचारिकीकरण परियोजनाएँ]] | |||
[[Category:समुच्चय सिद्धान्त]] |
Latest revision as of 14:02, 14 August 2023
यह आलेख समुच्चय सिद्धांत में गणितीय अवधारणाओं के कार्यान्वयन का परीक्षण करता है। कई मूलभूत गणितीय अवधारणाओं का कार्यान्वयन जेडएफसी (प्रमुख समुच्चय सिद्धांत) और एनएफयू में समानांतर रूप से किया जाता है, क्विन के न्यू फ़ाउंडेशन के संस्करण को 1969 में आर बी जेन्सेन द्वारा सुसंगत दिखाया गया है (यहां कम से कम अनन्तता और विकल्प के सिद्धांतों को सम्मिलित करने के लिए समझा गया है)।
यहाँ जो कहा गया है वह समुच्चय सिद्धांतों के दो परिवारों पर भी प्रस्तावित होता है: एक ओर, स्तर के निचले सिरे के निकट ज़र्मेलो समुच्चय सिद्धांत सहित सिद्धांतों की श्रृंखला और बड़े कार्डिनल संपत्ति परिकल्पनाओं के साथ जेडएफसी तक विस्तारित हुई, जैसे मापने योग्य कार्डिनल है; और दूसरी ओर एनएफयू के विस्तार का पदानुक्रम जिसका सर्वेक्षण न्यू फ़ाउंडेशन लेख में किया गया है। ये समुच्चय-सैद्धांतिक ब्रह्मांड कैसा है, इसके विभिन्न सामान्य विचारों के अनुरूप हैं, और यह इन दो सामान्य विचारों के अनुसार गणितीय अवधारणाओं के कार्यान्वयन के दृष्टिकोण हैं जिनकी तुलना और तुलना की जा रही है।
गणित की नींव के रूप में इन सिद्धांतों के सापेक्ष गुणों के विषय में कुछ भी कहना इस लेख का प्राथमिक उद्देश्य नहीं है। दो भिन्न-भिन्न समुच्चय सिद्धांतों के उपयोग का कारण यह बताना है कि गणित के कार्यान्वयन के लिए कई दृष्टिकोण संभव हैं। ठीक इसी दृष्टिकोण के कारण, यह लेख किसी गणितीय अवधारणा की आधिकारिक परिभाषा का स्रोत नहीं है।
प्रारंभिक
निम्नलिखित अनुभाग दो सिद्धांतों जेडएफसी और एनएफयू में कुछ निर्माण करते हैं और कुछ गणितीय संरचनाओं (जैसे प्राकृतिक संख्या) के परिणामी कार्यान्वयन की तुलना करते हैं।
गणितीय सिद्धांत प्रमेयों को सिद्ध करते हैं (और कुछ नहीं)। तो कहने का यह तात्पर्य है कि सिद्धांत निश्चित वस्तु के निर्माण की अनुमति देता है, इसका तात्पर्य है कि यह उस सिद्धांत का प्रमेय है कि वह वस्तु उपस्थित है। यह x के रूप की परिभाषा के विषय में कथन है जैसे कि उपस्थित है, जहां हमारी औपचारिक भाषा का सुगठित सूत्र है: सिद्धांत x के अस्तित्व को इस प्रकार सिद्ध करता है यदि यह प्रमेय है कि ऐसा और केवल x है। (बर्ट्रेंड रसेल देखें। बर्ट्रेंड रसेल के विवरण के सिद्धांतको देखें।) शिथिल रूप से, सिद्धांत इस स्थिति में इस वस्तु को परिभाषित या निर्मित करता है। यदि कथन प्रमेय नहीं है, तो सिद्धांत यह नहीं दिखा सकता कि वस्तु उपस्थित है; यदि कथन सिद्धांत में त्रुटिपूर्ण प्रमाणित होता है, तो यह प्रमाणित होता है कि वस्तु का अस्तित्व नहीं हो सकता; शिथिल रूप से, वस्तु का निर्माण नहीं किया जा सकता है।
जेडएफसी और एनएफयू समुच्चय सिद्धांत की भाषा साझा करते हैं, इसलिए x जैसी समान औपचारिक परिभाषाएँ हैं पर दो सिद्धांतों में विचार किया जा सकता है। समुच्चय सिद्धांत की भाषा में परिभाषा का विशिष्ट रूप समुच्चय-बिल्डर नोटेशन है: इसका अर्थ है समुच्चय A इस प्रकार है कि सभी x के लिए, (A में मुक्त चर और बाध्य चर नहीं हो सकते) है। यह नोटेशन कुछ पारंपरिक विस्तारों को स्वीकार करता है: का पर्यायवाची है ; को इस प्रकार परिभाषित किया गया है , जहाँ अभिव्यक्ति पूर्व से ही परिभाषित है।
समुच्चय-बिल्डर नोटेशन में परिभाषित अभिव्यक्तियाँ जेडएफसी और एनएफयू दोनों में समझ में आती हैं: यह हो सकता है कि दोनों सिद्धांत प्रमाणित करते हैं कि दी गई परिभाषा सफल होती है, या दोनों में से कोई भी ऐसा नहीं करता है (अभिव्यक्ति शास्त्रीय तर्क के साथ किसी भी समुच्चय सिद्धांत में किसी भी चीज़ को संदर्भित करने में विफल रहता है; एनबीजी जैसे वर्ग (समुच्चय सिद्धांत) सिद्धांतों में यह संकेतन वर्ग को संदर्भित करता है, किन्तु इसे भिन्न प्रकार से परिभाषित किया जाता है), या एक करता है और दूसरा नहीं करता है। इसके अतिरिक्त, जेडएफसी और एनएफयू में एक ही प्रकार से परिभाषित वस्तु के दो सिद्धांतों में भिन्न-भिन्न गुण हो सकते हैं (या जहां उनके गुणों के मध्य कोई सिद्ध अंतर नहीं है, वहां जो प्रमाणित किया जा सकता है उसमें अंतर हो सकता है)।
इसके अतिरिक्त, समुच्चय सिद्धांत गणित की अन्य शाखाओं (निश्चय में, गणित की सभी शाखाओं) से अवधारणाओं को आयात करता है। कुछ स्थितियों में, जेडएफसी और एनएफयू में अवधारणाओं को आयात करने के विभिन्न प्रकार हैं। उदाहरण के लिए, प्रथम अनंत क्रमवाचक संख्या की सामान्य परिभाषा जेडएफसी में एनएफयू के लिए उपयुक्त नहीं है क्योंकि ऑब्जेक्ट (विशुद्ध रूप से समुच्चय सैद्धांतिक भाषा में सभी परिमित वॉन न्यूमैन ऑर्डिनल्स के समुच्चय के रूप में परिभाषित) को एनएफयू में उपस्थित नहीं दिखाया जा सकता है। सामान्य परिभाषा एनएफयू में (विशुद्ध रूप से समुच्चय सैद्धांतिक भाषा में) सभी अनंत सु-क्रमों का समुच्चय है, जिनके सभी उचित प्रारंभिक खंड परिमित हैं, वस्तु जिसे जेडएफसी में उपस्थित नहीं दिखाया जा सकता है। ऐसी आयातित वस्तुओं की स्थिति में, भिन्न-भिन्न परिभाषाएँ हो सकती हैं, जेडएफसी और संबंधित सिद्धांतों में उपयोग के लिए, और एनएफयू और संबंधित सिद्धांतों में उपयोग के लिए हैं। आयातित गणितीय अवधारणाओं के ऐसे कार्यान्वयन को समझने के लिए, यह दिखाने में सक्षम होना आवश्यक है कि दो समानांतर व्याख्याओं में अपेक्षित गुण हैं: उदाहरण के लिए, जेडएफसी और एनएफयू में प्राकृतिक संख्याओं के कार्यान्वयन भिन्न-भिन्न हैं, किन्तु दोनों समान गणितीय संरचना के कार्यान्वयन हैं, क्योंकि दोनों में पीनो अंकगणित के सभी आदिमों के लिए परिभाषाएं सम्मिलित हैं और पीनो सिद्धांतों को संतुष्ट (अनुवाद) करते हैं। तब यह तुलना करना संभव है कि दो सिद्धांतों में क्या होता है जब केवल समुच्चय सैद्धांतिक भाषा का उपयोग किया जाता है, जब तक कि जेडएफसी के लिए उपयुक्त परिभाषाओं को जेडएफसी संदर्भ में उपयोग किया जाना समझा जाता है और एनएफयू के लिए उपयुक्त परिभाषाओं को एनएफयू संदर्भ में उपयोग किया जाना समझा जाता है।
किसी सिद्धांत में जो कुछ भी अस्तित्व में प्रमाणित होता है वह उस सिद्धांत के किसी भी विस्तार में स्पष्ट रूप से उपस्थित होता है; इसके अतिरिक्त, इस प्रमाण का विश्लेषण कि किसी दिए गए सिद्धांत में कोई वस्तु उपस्थित है, यह दिखा सकता है कि यह उस सिद्धांत के कमजोर संस्करणों में उपस्थित है (उदाहरण के लिए, इस लेख में जो कुछ किया गया है, उसके लिए कोई जेडएफसी के अतिरिक्त ज़र्मेलो समुच्चय सिद्धांत पर विचार कर सकता है)।
रिक्त समुच्चय, सिंगलटन, अव्यवस्थित जोड़े और टुपल्स
ये निर्माण सबसे पूर्व दिखाई देते हैं क्योंकि ये समुच्चय सिद्धांत में सबसे सरल निर्माण हैं, इसलिए नहीं कि ये गणित में दिमाग में आने वाले पूर्व निर्माण हैं (चूँकि परिमित समुच्चय की धारणा निश्चित रूप से मौलिक है)। चूँकि एनएफयू समुच्चय के सदस्य बनने के लिए समुच्चय यूआर-तत्वों के निर्माण की भी अनुमति देता है, रिक्त समुच्चय बिना किसी सदस्य वाला अद्वितीय समुच्चय है:
प्रत्येक वस्तु के लिए , समुच्चय है के साथ इसके एकमात्र तत्व के रूप में है:
वस्तुओं के लिए और , समुच्चय है युक्त और इसके एकमात्र तत्व के रूप में है:
दो समुच्चयों के युग्म को सामान्य प्रकार से परिभाषित किया गया है:
यह अव्यवस्थित की पुनरावर्ती परिभाषा है किसी भी कंक्रीट के लिए -टुपल्स है (परिमित समुच्चय उनके तत्वों की सूची के रूप में दिए गए हैं):
एनएफयू में, दी गई सभी निर्धारित परिभाषाएँ स्तरीकृत अध्ययन द्वारा कार्य करती हैं; जेडएफसी में, अव्यवस्थित युग्म का अस्तित्व युग्मन के अभिगृहीत द्वारा दिया जाता है, रिक्त समुच्चय का अस्तित्व किसी भी समुच्चय के अस्तित्व से पृथक्करण के पश्चात होता है,और दो समुच्चयों का द्विआधारी संघ युग्मन और संघ के सिद्धांतों द्वारा उपस्थित होता है ()।
क्रमित युग्म
सर्वप्रथम, क्रमित युग्म पर विचार करें। इसके प्रथम आने का कारण प्रौद्योगिकी है: संबंधों और फलनों को प्रारम्भ करने के लिए क्रमित युग्म की आवश्यकता होती है, जो अन्य अवधारणाओं को प्रारम्भ करने के लिए आवश्यक होते हैं जो सर्वप्रथम प्रतीत हो सकते हैं। क्रमित युग्म की प्रथम परिभाषा थी, जो गणितीय सिद्धांत के प्रकार सिद्धांत के संदर्भ में 1914 में नॉर्बर्ट वीनर द्वारा प्रस्तावित है। वीनर ने देखा कि इससे उस कार्य की प्रणाली से n > 1 के लिए n-एरी संबंधों के प्रकार को समाप्त करने की अनुमति मिल गई। परिभाषा का उपयोग करना , काज़िमिर्ज़ कुराटोव्स्की के कारण अब अधिक सामान्य हो गया है। इनमें से कोई भी परिभाषा जेडएफसी या एनएफयू में कार्य करती है। एनएफयू में, इन दो परिभाषाओं में प्रौद्योगिकी हानि है: कुराटोस्की द्वारा आदेशित युग्म अपने अनुमानों से दो प्रकार अधिक है, जबकि वीनर द्वारा आदेशित युग्म तीन प्रकार से अधिक है। प्रकार-स्तरीय क्रमित युग्म ( युग्म) के अस्तित्व की परिकल्पना करना सामान्य विषय है, एनएफयू में जो इसके अनुमानों के समान प्रकार है। दोनों प्रणालियों में कुराटोस्की युग्म का उपयोग करना तब तक सुविधाजनक है जब तक कि प्रकार-स्तरीय युग्म के उपयोग को औपचारिक रूप से उचित नहीं ठहराया जा सके। इन परिभाषाओं के आंतरिक विवरण का उनके वास्तविक गणितीय कार्य से कोई लेना-देना नहीं है। किसी भी धारणा के लिए क्रमित युग्म की स्थिति में, इस विषय आशय यह है कि यह परिभाषित नियम को पूर्ण करता है
...और यह कि क्रमित युग्म को समुच्चय में एकत्र करना अधिक सरल होगा।
संबंध
संबंध वे समुच्चय हैं जिनके सभी सदस्य क्रमित युग्म हैं। जहां संभव हो, संबंध ( द्विआधारी विधेय के रूप में समझा जाता है) के रूप में कार्यान्वित किया जाता है (जिसे इस प्रकार लिखा जा सकता है )। जब संबंध है, संकेतन का तात्पर्य है।
जेडएफसी में, कुछ संबंध (जैसे सामान्य समानता संबंध या समुच्चय पर उपसमुच्चय संबंध) व्यवस्थित करने के लिए 'अधिक बड़े' हैं (किन्तु उचित वर्गों के रूप में हानिरहित रूप से पुन: परिभाषित किया जा सकता है)। एनएफयू में, कुछ संबंध (जैसे सदस्यता संबंध) समुच्चय नहीं हैं क्योंकि उनकी परिभाषाएं स्तरीकृत नहीं हैं: , और में समान प्रकार की आवश्यकता है (क्योंकि वे एक ही युग्म के प्रक्षेपण के रूप में दिखाई देते हैं), किन्तु क्रमिक प्रकार भी है (क्योंकि का तत्व माना जाता है)।
संबंधित परिभाषाएँ
मान लीजिये कि और द्विआधारी संबंध हैं। तब निम्नलिखित अवधारणाएँ उपयोगी हैं:
संबंध का व्युत्क्रम है।
समुच्चय का डोमेन है।
की सीमा के व्युत्क्रम का क्षेत्र है। अर्थात समुच्चय है।
का क्षेत्र के डोमेन और श्रेणी का संघ (समुच्चय सिद्धांत) है।
किसी सदस्य की पूर्वछवि के क्षेत्र का समुच्चय है (नीचे 'उचित प्रकार से स्थापित' की परिभाषा में प्रयुक्त।)।
किसी सदस्य का नीचे की ओर विवृत होना के क्षेत्र का सबसे छोटा समुच्चय है युक्त , और प्रत्येक से युक्त प्रत्येक के लिए है (अर्थात्, इसके प्रत्येक तत्व की पूर्वछवि सहित उपसमुच्चय के रूप में।)
संबंध रचना का और संबंध है।
ध्यान दें कि द्विआधारी संबंध की हमारी औपचारिक परिभाषा के साथ, किसी संबंध की सीमा और कोडोमेन को भिन्न नहीं किया जाता है। यह किसी संबंध का प्रतिनिधित्व करके किया जा सकता है कोडोमेन के साथ जैसा , किन्तु हमारे विकास को इसकी आवश्यकता नहीं होगी।
जेडएफसी में, कोई भी संबंध जिसका डोमेन किसी समुच्चय का सबसमुच्चय है और जिसकी सीमा समुच्चय का उपसमुच्चय है कार्टेशियन उत्पाद के पश्चात से समुच्चय होगा समुच्चय है (उपवर्ग होने के नाते)। ), और पृथक्करण अस्तित्व का प्रावधान करता है . एनएफयू में, वैश्विक दायरे (जैसे समानता और उपसमुच्चय) के साथ कुछ संबंधों को समुच्चय के रूप में लागू किया जा सकता है। एनएफयू में, इसे ध्यान में रखें और से तीन प्रकार कम हैं में (यदि प्रकार-स्तरीय आदेशित युग्म का उपयोग किया जाता है तो प्रकार कम)।
संबंधों के गुण और प्रकार
द्विआधारी संबंध है:
- प्रतिवर्ती संबंध यदि प्रत्येक के लिए के क्षेत्र में है।
- सममित संबंध यदि है।
- सकर्मक संबंध यदि है।
- एंटीसिमेट्रिक संबंध यदि है।
- प्रत्येक समुच्चय के लिए उचित प्रकार से स्थापित जो के क्षेत्र से मिलता है, जिसकी पूर्वछवि के नीचे है नहीं मिलता है।
- यदि प्रत्येक के लिए विस्तारित के क्षेत्र में , यदि और केवल और नीचे पूर्वछवि है।
उपरोक्त गुणों के कुछ संयोजन वाले संबंधों के मानक नाम होते हैं। द्विआधारी संबंध है:
- तुल्यता संबंध यदि प्रतिवर्ती, सममित और सकर्मक है।
- आंशिक आदेश यदि रिफ्लेक्टिव, एंटीसिमेट्रिक और सकर्मक है।
- रेखीय क्रम यदि आंशिक आदेश है और प्रत्येक के लिए के क्षेत्र में , दोनों में से या है।
- सुव्यवस्थित यदि रेखीय क्रम है और उचित प्रकार से स्थापित है।
- समुच्चय चित्र यदि उचित प्रकार से स्थापित और विस्तारित है, और का क्षेत्र या तो इसके सदस्यों में से नीचे की ओर विवृत होने के समान है (जिसे इसका शीर्ष तत्व कहा जाता है), या रिक्त है।
फलन
कार्यात्मक संबंध द्विआधारी विधेय है इस प्रकार है। इस प्रकार के संबंध (विधेय) को संबंध (समुच्चय) के रूप में प्रस्तावित किया जाता है जैसा कि पश्च अनुभाग में वर्णित है। तो विधेय समुच्चय द्वारा कार्यान्वित किया जाता है। संबंध फलन है यदि और केवल है। इसलिए वैल्यू फलन को परिभाषित करना संभव है अद्वितीय वस्तु के रूप में इस प्रकार है कि - अर्थात: है -संदर्भ के इस प्रकार है कि संबंध के मध्य रहता है और – या अद्वितीय वस्तु के रूप में इस प्रकार है। कार्यात्मक विधेय के दोनों सिद्धांतों में उपस्थिति जो समुच्चय नहीं हैं, नोटेशन की अनुमति देना उपयोगी बनाती है दोनों समुच्चय के लिए और महत्वपूर्ण कार्यात्मक विधेय के लिए है। जब तक कोई पश्चात के अर्थों में कार्यों की मात्रा निर्धारित नहीं करता है, तब तक ऐसे सभी उपयोग सैद्धांतिक रूप से समाप्त करने योग्य हैं।
औपचारिक समुच्चय सिद्धांत के बाहर, हम सामान्यतः फलन को उसके डोमेन और कोडोमेन के संदर्भ में निर्दिष्ट करते हैं, जैसा कि वाक्यांश लेट में है। फलन हो। किसी फलन का डोमेन संबंध के रूप में उसका डोमेन ही होता है, किन्तु हमने अभी तक किसी फलन के कोडोमेन को परिभाषित नहीं किया है। ऐसा करने के लिए हम उस शब्दावली का परिचय देते हैं जिससे कोई फलन बनता है को यदि इसका डोमेन समान है और इसकी सीमा में निहित है। इस प्रकार, प्रत्येक फलन अपने डोमेन से लेकर अपनी सीमा तक फलन होता है से को भी फलन है को किसी भी समुच्चय के लिए युक्त है।
वास्तव में, इससे कोई प्रभाव नहीं पड़ता कि हम किस समुच्चय को किसी फलन का कोडोमेन मानते हैं, फलन समुच्चय के रूप में परिवर्तित नहीं होता है क्योंकि परिभाषा के अनुसार यह केवल क्रमित युग्म का समुच्चय है। अर्थात्, कोई फलन हमारी परिभाषा के अनुसार अपना कोडोमेन निर्धारित नहीं करता है। यदि किसी को यह अरुचिकर लगता है तो वह किसी फलन को क्रमित युग्म के रूप में परिभाषित कर सकता है, जहाँ कार्यात्मक संबंध है और इसका कोडोमेन है, किन्तु हम इस लेख में यह दृष्टिकोण नहीं अपनाते हैं (अधिक उत्तम रूप से, यदि कोई प्रथम क्रमबद्ध त्रिगुणों को परिभाषित करता है - उदाहरण के लिए - तब कोई फलन को क्रमित किए गए ट्रिपल के रूप में परिभाषित कर सकता है जिससे कि डोमेन को भी सम्मिलित किया जा सके)। ध्यान दें कि संबंधों के लिए भी यही उद्देश्य उपस्थित है: औपचारिक समुच्चय सिद्धांत के बाहर हम सामान्यतः लेट कहते हैं द्विआधारी संबंध हो, किन्तु औपचारिक रूप से इस प्रकार क्रमित युग्मों का समुच्चय है और है।
एनएफयू में, के समान प्रकार है, और से तीन प्रकार अधिक है (उच्चतर, यदि प्रकार-स्तरीय क्रमित युग्म का उपयोग किया जाता है)। इस समस्या को हल करने के लिए, कोई परिभाषित कर सकता है जैसा किसी भी समुच्चय के लिए , किन्तु इसे इस रूप में अधिक सरलता से लिखा जाता है। तो यदि समुच्चय है और कोई भी कार्यात्मक संबंध है, प्रतिस्थापन का सिद्धांत यह आश्वासन देता है जेडएफसी में समुच्चय है। एनएफयू में, और अब एक ही प्रकार है, और से दो प्रकार अधिक है (उसी प्रकार, यदि प्रकार-स्तरीय क्रमित युग्म का उपयोग किया जाता है)।
फलन इस प्रकार है। यह जेडएफसी में समुच्चय नहीं है क्योंकि यह अधिक बड़ा है। चूँकि एनएफयू में समुच्चय है। फलन (विधेय) इस प्रकार है, किसी भी सिद्धांत में न तो कोई फलन है और न ही कोई समुच्चय; जेडएफसी में, यह सच है क्योंकि ऐसा समुच्चय अधिक बड़ा होगा, और, एनएफयू में, यह सत्य है क्योंकि इसकी परिभाषा समुच्चय सिद्धांत में स्तरीकृत सूत्र नहीं होगी। इसके अतिरिक्त, यह प्रमाणित किया जा सकता है कि एनएफयू उपस्थित नहीं है (न्यू फ़ाउंडेशन्स में कैंटर के विरोधाभास का समाधान देखें।)
फलन पर संचालन
मान लीजिये कि और इच्छानुसार फलन है। और , की कार्य संरचना , को सापेक्ष उत्पाद के रूप में परिभाषित किया गया है , किन्तु केवल तभी जब इसका परिणाम ऐसा कोई फलन हो के साथ भी फलन है, यदि की सीमा के डोमेन का उपसमुच्चय है। का विपरीत फलन, , को इसके विपरीत संबंध के रूप में परिभाषित किया गया है यदि यह फलन है। कोई भी समुच्चय दिया गया , पहचान फलन समुच्चय है, और यह भिन्न-भिन्न कारणों से जेडएफसी और एनएफयू दोनों में समुच्चय है।
विशेष प्रकार के फलन
फलन इंजेक्टिव है (जिसे वन-टू-वन भी कहा जाता है) यदि इसमें विपरीत फलन है।
फलन से को है:
- को यदि छवि नीचे है से इंजेक्शन फलन के विशिष्ट सदस्यों की के विशिष्ट सदस्य हैं।
- को यदि की सीमा से प्रक्षेपण है।
- को यदि यह इंजेक्शन और प्रक्षेपण दोनों से प्रक्षेपण है।
क्रमित युग्मों के रूप में कार्यों को परिभाषित करना या ट्रिपल का आदेश दिया इसके लाभ यह हैं कि हमें फलन होने की शब्दावली का परिचय नहीं देना पड़ता है को , और यह कि हम केवल विशेषणात्मक होने की बात करने में सक्षम होने के विपरीत सामान्यतः विशेषणात्मक होने की बात कर सकते हैं .
समुच्चय का आकार
जेडएफसी और एनएफयू दोनों में, दो समुच्चय A और B समान आकार के हैं (या 'समतुल्य' हैं) यदि और केवल तभी जब A से B तक कोई प्रक्षेपण f हो। इसे इस प्रकार लिखा जा सकता है, किन्तु ध्यान दें कि (इस समय) यह अभी तक अपरिभाषित वस्तुओं के मध्य संबंध के अतिरिक्त A और B के मध्य संबंध और व्यक्त करता है। इस संबंध को द्वारा निरूपित करें। कार्डिनल संख्या की वास्तविक परिभाषा जैसे संदर्भों में जहां अनुमानित अमूर्त कार्डिनल्स की उपस्थिति से भी बचा जाना चाहिए।
इसी प्रकार परिभाषित करें यदि और केवल A से B तक कोई इंजेक्टिव फलन है, तो उसे होल्ड करता है।
यह दिखाना सरल है कि समसंख्यता का संबंध समतुल्यता संबंध है: A के साथ A की समसंख्यकता देखी जाती है; यदि f प्रत्यक्षदर्शी है , तब प्रत्यक्षदर्शी है; और यदि f प्रत्यक्षदर्शी है और g प्रत्यक्षदर्शी है, तब प्रत्यक्षदर्शी है।
ऐसा दिखाया जा सकता है अमूर्त कार्डिनल्स पर रैखिक क्रम है, किन्तु समुच्चय पर नहीं है। रिफ्लेक्सिविटी स्पष्ट है और ट्रांज़िटिविटी समसंख्यता के जैसे ही सिद्ध होती है। श्रोडर-बर्नस्टीन प्रमेय, जो जेडएफसी और एनएफयू में पूर्ण रूप से मानक प्रकार से सिद्ध है, यह स्थापित करता है:
(यह कार्डिनल्स पर एंटीसिममेट्री स्थापित करता है), और
किसी भी सिद्धांत में रूचि के सिद्धांत से मानक प्रकार से अनुसरण किया जाता है।
परिमित समुच्चय और प्राकृत संख्याएँ
प्राकृतिक संख्याओं को या तो परिमित क्रमसूचक या परिमित कार्डिनल माना जा सकता है। यहां उन्हें परिमित कार्डिनल संख्या के रूप में जाना जाता है। यह प्रथम समष्टि है जहां जेडएफसी और एनएफयू के कार्यान्वयन के मध्य बड़ा अंतर स्पष्ट हो जाता है।
जेडएफसी के अनंत का अभिगृहीत हमें बताता है कि समुच्चय A है जिसमें और सम्मिलित है प्रत्येक के लिए है। यह समुच्चय A विशिष्ट रूप से निर्धारित नहीं है (इस क्लोजर प्रॉपर्टी को संरक्षित करते हुए इसे बड़ा बनाया जा सकता है): प्राकृतिक संख्याओं का समुच्चय N है:
जो सभी समुच्चयों का प्रतिच्छेदन है जिसमें रिक्त समुच्चय होता है और उत्तराधिकारी ऑपरेशन के अंतर्गत विवृत होता है .
जेडएफसी में, समुच्चय यदि और केवल है तो इस प्रकार : सीमित है आगे, परिभाषित करें परिमित A के लिए यह n के रूप में है। (यह प्रमाणित किया जा सकता है कि कोई भी दो भिन्न-भिन्न प्राकृतिक संख्याएँ समान आकार की नहीं हैं)।
अंकगणित की सामान्य संक्रियाओं को पुनरावर्ती रूप से और उस शैली के समान परिभाषित किया जा सकता है जिसमें प्राकृतिक संख्याओं के समुच्चय को परिभाषित किया जाता है। उदाहरण के लिए, + (प्राकृतिक संख्याओं पर जोड़ संक्रिया) को सबसे छोटे समुच्चय के रूप में परिभाषित किया जा सकता है प्रत्येक प्राकृतिक संख्या के लिए और सम्मिलित है जब भी इसमें सम्मिलित है।
एनएफयू में, यह स्पष्ट नहीं है कि उत्तराधिकारी ऑपरेशन के पश्चात से इस दृष्टिकोण का उपयोग किया जा सकता है अस्थिर है और इसलिए ऊपर परिभाषित समुच्चय N को एनएफयू में उपस्थित नहीं दिखाया जा सकता है (यह एनएफयू में उपस्थित परिमित वॉन न्यूमैन ऑर्डिनल्स के समुच्चय के लिए सुसंगत है, किन्तु यह सिद्धांत को दृढ़ करता है, क्योंकि इस समुच्चय का अस्तित्व गणना के सिद्धांत का तात्पर्य है (जिसके लिए नीचे या न्यू फ़ाउंडेशन लेख देखें))।
प्राकृतिक संख्याओं की मानक परिभाषा, जो वास्तव में प्राकृतिक संख्याओं की सबसे प्राचीन समुच्चय-सैद्धांतिक परिभाषा है, समतुल्यता के अनुसार परिमित समुच्चयों के समतुल्य वर्गों के रूप में है। मूल रूप से वही परिभाषा नई नींव के लिए उपयुक्त है (यह सामान्य परिभाषा नहीं है, किन्तु परिणाम समान हैं): फिन को परिभाषित करें, परिमित समुच्चय का समुच्चय है, जैसे;
किसी भी समुच्चय के लिए , परिभाषित करना जैसा N को समुच्चय के रूप में परिभाषित करें।
एनएफयू के अनंत के अभिगृहीत को इस प्रकार : व्यक्त किया जा सकता है यह स्थापित करने के लिए पर्याप्त है कि प्रत्येक प्राकृतिक संख्या में गैर-रिक्त उत्तराधिकारी (उत्तराधिकारी) होता है प्राणी किसी के लिए ) जो यह दिखाने का कठिन भाग है कि अंकगणित के पीनो सिद्धांत संतुष्ट हैं।
अंकगणित की संक्रियाओं को ऊपर दी गई शैली के समान शैली में परिभाषित किया जा सकता है (अभी दी गई उत्तराधिकारी की परिभाषा का उपयोग करके)। उन्हें प्राकृतिक समुच्चय सैद्धांतिक प्रकार से भी परिभाषित किया जा सकता है: यदि A और B असंयुक्त परिमित समुच्चय हैं, तो परिभाषित करें |A|+|B| जैसा है। अधिक औपचारिक रूप से, M के लिए M+N और N में N को परिभाषित करें।
(किन्तु ध्यान दें कि परिभाषा की यह शैली जेडएफसी अंकों के लिए भी संभव है, किन्तु अधिक घुमावदार: न्यू फ़ाउंडेशन परिभाषा का रूप समुच्चय परिवर्तन की सुविधा देता है जबकि जेडएफसी परिभाषा का रूप पुनरावर्ती परिभाषाओं की सुविधा देता है, किन्तु कोई भी सिद्धांत परिभाषा की किसी भी शैली का समर्थन करता है)।
दोनों कार्यान्वयन अधिक भिन्न हैं। जेडएफसी में, प्रत्येक परिमित कार्डिनैलिटी का प्रतिनिधि चयन किया जाता है (समकक्ष वर्ग स्वयं समुच्चय होने के लिए अधिक बड़े हैं); एनएफयू में समतुल्य वर्ग स्वयं समुच्चय हैं, और इस प्रकार कार्डिनलिटी के लिए वस्तुओं के लिए स्पष्ट विकल्प हैं। चूँकि, दोनों सिद्धांतों का अंकगणित समान है: समान अमूर्तता इन दो सतही रूप से भिन्न दृष्टिकोणों द्वारा कार्यान्वित की जाती है।
समतुल्य संबंध और विभाजन
समुच्चय सिद्धांत में अमूर्तता को प्रारम्भ करने की सामान्य प्रौद्योगिकी समतुल्य वर्गों का उपयोग है। यदि तुल्यता संबंध R हमें बताता है कि इसके क्षेत्र A के तत्व कुछ विशेष संबंध में समान हैं, तो किसी भी समुच्चय x के लिए, समुच्चय पर विचार करें। केवल उन विशेषताओं का सम्मान करते हुए समुच्चय x से अमूर्तता का प्रतिनिधित्व करते हुए (A से R तक के तत्वों की पहचान करें)।
किसी भी समुच्चय A के लिए, समुच्चय , A का विभाजन है यदि P के सभी तत्व गैर-रिक्त हैं, P के कोई भी दो भिन्न-भिन्न तत्व असंयुक्त हैं, और है।
क्षेत्र A के साथ प्रत्येक तुल्यता संबंध R के लिए, A का विभाजन है। इसके अतिरिक्त, A का प्रत्येक विभाजन P तुल्यता संबंध निर्धारित करता है।
इस प्रौद्योगिकी की जेडएफसी और एनएफयू दोनों में सीमाएँ हैं। जेडएफसी में, चूंकि ब्रह्मांड समुच्चय नहीं है, इसलिए केवल छोटे डोमेन के तत्वों से सुविधाओं को अमूर्त करना संभव लगता है। डाना स्कॉट के कारण चाल का उपयोग करके इसे विस्थापित किया जा सकता है: यदि R ब्रह्मांड पर तुल्यता संबंध है, तो परिभाषित करें जैसे कि सभी y के समुच्चय के रूप में ऐसा है और y की श्रेणी किसी की श्रेणी से कम या उसके समान है यह कार्य करता है क्योंकि श्रेणी समुच्चय हैं। अभी भी उचित वर्ग 's हो सकता है। एनएफयू में, मुख्य कठिनाई यही है x से अधिक है, उदाहरण के लिए मानचित्र सामान्यतः यह (समुच्चय) फलन नहीं है (चूँकि समुच्चय है) प्रतिस्थापित करने के लिए प्रत्येक समकक्ष वर्ग से प्रतिनिधि का चयन करने के लिए रूचि के सिद्धांत के उपयोग से इसे विस्थापित किया जा सकता है , जो x के समान प्रकार में होगा, या कैनोनिकल प्रतिनिधि का चयन करके यदि चॉइस को प्रारम्भ किए बिना ऐसा करने का कोई प्रकार है (जेडएफसी में प्रतिनिधियों का उपयोग संभवतः ही अज्ञात है)। एनएफयू में, सामान्य समुच्चयों के अमूर्त गुणों के लिए समतुल्य वर्ग निर्माणों का उपयोग अधिक सामान्य है, उदाहरण के लिए नीचे कार्डिनल और क्रमिक संख्या की परिभाषाओं में है।
क्रमसूचक संख्या
दो सुव्यवस्थित और समान हैं और लिखते हैं यदि क्षेत्र से कोई आक्षेप f है के क्षेत्र में ऐसा है कि सभी x और y के लिए है।
समानता को तुल्यता संबंध के रूप में दिखाया गया है ठीक उसी प्रकार जैसे ऊपर समतुल्यता को तुल्यता संबंध के रूप में दिखाया गया था।
न्यू फ़ाउंडेशन (एनएफयू) में, वेल-ऑर्डरिंग W का 'क्रम प्रकार' सभी वेल-ऑर्डरिंग का समुच्चय है जो W के समान है। 'क्रमिक संख्याओं' का समुच्चय सभी क्रम प्रकार के वेल-ऑर्डरिंग का समुच्चय है।
यह जेडएफसी में कार्य नहीं करता, क्योंकि समतुल्य वर्ग अधिक बड़े हैं। अनिवार्य रूप से उसी प्रकार से ऑर्डिनल्स को परिभाषित करने के लिए स्कॉट की चाल का उपयोग करना औपचारिक रूप से संभव होगा, किन्तु जॉन वॉन न्यूमैन का उपकरण अधिक सामान्यतः उपयोग किया जाता है।
किसी भी आंशिक आदेश के लिए , संगत सख्त आंशिक क्रम < के रूप में परिभाषित किया गया है। सख्त रैखिक आदेश और सख्त सु-आदेश को समान रूप से परिभाषित किया गया है।
समुच्चय A को 'सकर्मक' कहा जाता है यदि : A के तत्व का प्रत्येक तत्व भी A का तत्व है। A '(वॉन न्यूमैन) ऑर्डिनल' सकर्मक समुच्चय है जिस पर सदस्यता सख्त सुव्यवस्थित है।
जेडएफसी में, सुव्यवस्थित W के क्रम प्रकार को तब अद्वितीय वॉन न्यूमैन ऑर्डिनल के रूप में परिभाषित किया जाता है, जो W के क्षेत्र के साथ समतुल्य होता है और सदस्यता जिस पर W के साथ जुड़े सख्त सु-क्रम के लिए आइसोमॉर्फिक होता है। (समरूपता की स्थिति आकार 0 और 1 के क्षेत्रों के साथ सु-क्रमों के मध्य अंतर करती है, जिनके संबंधित सख्त सु-क्रम अप्रभेद्य होते हैं)।
जेडएफसी में सभी ऑर्डिनल्स का समुच्चय नहीं हो सकता है। वास्तव में, वॉन न्यूमैन ऑर्डिनल्स किसी भी समुच्चय सिद्धांत में असंगत समग्रता हैं: इसे सामान्य समुच्चय सैद्धांतिक मान्यताओं के साथ दिखाया जा सकता है कि वॉन न्यूमैन ऑर्डिनल का प्रत्येक तत्व वॉन न्यूमैन ऑर्डिनल है और वॉन न्यूमैन ऑर्डिनल्स सदस्यता द्वारा सख्ती से सुव्यवस्थित हैं। यह इस प्रकार है कि वॉन न्यूमैन ऑर्डिनल्स का वर्ग वॉन न्यूमैन ऑर्डिनल होगा यदि यह समुच्चय होता है: किन्तु यह तब स्वयं का तत्व होगा, जो इस तथ्य का खंडन करता है कि सदस्यता वॉन न्यूमैन ऑर्डिनल्स का सख्त सुव्यवस्थित क्रम है।
सभी सुव्यवस्थित क्रम के लिए क्रम प्रकारों का अस्तित्व ज़र्मेलो समुच्चय सिद्धांत का प्रमेय नहीं है: इसके लिए प्रतिस्थापन के सिद्धांत की आवश्यकता होती है। यहां तक कि स्कॉट की चाल का उपयोग ज़र्मेलो समुच्चय सिद्धांत में अतिरिक्त धारणा के बिना नहीं किया जा सकता है (जैसे कि यह धारणा कि प्रत्येक समुच्चय श्रेणी(समुच्चय सिद्धांत) से संबंधित है जो समुच्चय है, जो अनिवार्य रूप से ज़र्मेलो समुच्चय सिद्धांत को दृढ़ नहीं करता है किन्तु यह उस सिद्धांत का प्रमेय नहीं है)।
एनएफयू में, सभी अध्यादेशों का संग्रह स्तरीकृत समझ द्वारा समुच्चय है। बुराली-फोर्टी विरोधाभास को अप्रत्याशित प्रकार से विस्थापित किया गया है। परिभाषित अध्यादेशों पर प्राकृतिक क्रम है यदि और केवल कुछ (और कोई भी) कुछ (और किसी भी) के प्रारंभिक खंड के समान है। इसके अतिरिक्त, यह दिखाया जा सकता है कि यह प्राकृतिक क्रम क्रमसूचकों का सुव्यवस्थित क्रम है और इसलिए इसमें क्रम प्रकार होना चाहिए। ऐसा प्रतीत होता है कि क्रमसूचकों का क्रम प्रकार कम से कम है। प्राकृतिक व्यवस्था के साथ होगा, इस तथ्य का खंडन करते हुए क्रमसूचकों पर संपूर्ण प्राकृतिक क्रम का क्रम प्रकार है (और इसलिए इसके किसी भी उचित प्रारंभिक खंड का नहीं)। किन्तु यह किसी के अंतर्ज्ञान (जेडएफसी में सही) पर निर्भर करता है कि प्राकृतिक क्रम का क्रम प्रकार कम से कम होता है किसी भी आदेश के लिए होता है। यह प्रमाण अव्यवस्थित है, क्योंकि दूसरे का प्रकार पूर्व के प्रकार से चार अधिक है (यदि प्रकार के स्तर के जोड़े का उपयोग किया जाता है तो दो अधिक है)। एनएफयू में जो प्रमाण सत्य और सिद्ध है, वह यह है कि ऑर्डिनल्स पर प्राकृतिक क्रम का क्रम प्रकार से कम है है किसी भी आदेश के लिए , जहाँ का क्रम प्रकार है। किसी के लिए (यह दिखाना सरल है कि यह W की रूचि पर निर्भर नहीं करता है; ध्यान दें कि T - करके प्रकार बढ़ाता है)। इस प्रकार क्रमसूचकों का क्रम प्रकार इससे कम होता है प्राकृतिक क्रम के साथ, और है। सभी उपयोग यहां को प्रतिस्थापित किया जा सकता है यदि प्रकार-स्तरीय युग्म का उपयोग किया जाता है।
इससे ज्ञात होता है कि T ऑपरेशन गैर-तुच्छ है, जिसके कई परिणाम हैं। यह तुरंत सिंगलटन मानचित्र का अनुसरण करता है समुच्चय नहीं है, क्योंकि अन्यथा इस मानचित्र के प्रतिबंध W और की समानता स्थापित करेंगे किसी भी सुव्यवस्थित W के लिए T (बाह्य रूप से) विशेषण और व्यवस्था-संरक्षण है। इस प्रकार से, तथ्य उसे स्थापित करता है क्रमसूचकों में अवरोही क्रम है जो समुच्चय नहीं हो सकता है।
T द्वारा निर्धारित ऑर्डिनल्स को कैंटोरियन ऑर्डिनल्स कहा जाता है, और जो ऑर्डिनल्स केवल कैंटोरियन ऑर्डिनल्स पर होते हैं (जिन्हें सरलता से स्वयं कैंटोरियन दिखाया जाता है) उन्हें दृढ़ता से कैंटोरियन कहा जाता है। कैंटोरियन ऑर्डिनल्स का कोई समुच्चय या दृढ़ता से कैंटोरियन ऑर्डिनल्स का कोई समुच्चय नहीं हो सकता है।
विषयांतर: एनएफयू में वॉन न्यूमैन ऑर्डिनल्स
एनएफयू में वॉन न्यूमैन ऑर्डिनल्स के विषय में तर्क करना संभव है। याद रखें कि वॉन न्यूमैन ऑर्डिनल सकर्मक समुच्चय A है जैसे कि A की सदस्यता का प्रतिबंध सख्त सुव्यवस्थित है। एनएफयू संदर्भ में यह अधिक दृढ़ स्थिति है, क्योंकि सदस्यता संबंध में प्रकार का अंतर सम्मिलित है। वॉन न्यूमैन ऑर्डिनल A एनएफयू के अर्थ में ऑर्डिनल नहीं है, किन्तु क्रमसूचक से संबंधित है जिसे A का क्रम प्रकार कहा जा सकता है। यह दिखाना सरल है कि वॉन न्यूमैन ऑर्डिनल A का क्रम प्रकार कैंटोरियन है: क्रम प्रकार के किसी भी अच्छे क्रम वाले W के लिए , समावेशन द्वारा W के प्रारंभिक खंडों के प्रेरित सुव्यवस्थित क्रम में क्रम प्रकार होता है (यह अधिक है, इस प्रकार T का अनुप्रयोग): किन्तु सदस्यता के आधार पर वॉन न्यूमैन ऑर्डिनल A के वेल-ऑर्डरिंग के क्रम प्रकार और समावेशन द्वारा इसके प्रारंभिक खंडों के वेल-ऑर्डरिंग स्पष्ट रूप से समान हैं क्योंकि दो वेल-ऑर्डरिंग वास्तव में समान संबंध हैं, इसलिए A का क्रम प्रकार T के अनुसार निश्चित किया गया है। इसके अतिरिक्त, यही तर्क किसी भी छोटे ऑर्डिनल पर प्रस्तावित होता है (जो कि A के प्रारंभिक खंड का क्रम प्रकार होगा, वॉन न्यूमैन ऑर्डिनल भी) इसलिए किसी का क्रम प्रकार वॉन न्यूमैन ऑर्डिनल दृढ़ता से कैंटोरियन है।
एकमात्र वॉन न्यूमैन ऑर्डिनल्स जिन्हें अतिरिक्त मान्यताओं के बिना एनएफयू में उपस्थित दिखाया जा सकता है, वे ठोस परिमित हैं। चूँकि, क्रमपरिवर्तन विधि का अनुप्रयोग एनएफयू के किसी भी प्रारूप को ऐसे प्रारूप में परिवर्तित कर सकता है जिसमें प्रत्येक दृढ़ता से कैंटोरियन ऑर्डिनल वॉन न्यूमैन ऑर्डिनल का क्रम प्रकार है। इससे ज्ञात होता है कि एनएफयू की दृढ़ता से कैंटोरियन ऑर्डिनल की अवधारणा एनएफयू के स्पष्ट एनालॉग ऑर्डिनल की तुलना में जेडएफसी के ऑर्डिनल का उत्तम एनालॉग हो सकता है।
कार्डिनल संख्या
एनएफयू में कार्डिनल संख्याओं को इस प्रकार से परिभाषित किया गया है जो प्राकृतिक संख्या की परिभाषा को सामान्य बनाता है: किसी भी समुच्चय A के लिए, होता है।
जेडएफसी में, ये समतुल्य वर्ग सदैव के जैसे अधिक बड़े हैं। स्कॉट की चाल का उपयोग किया जा सकता है (और वास्तव में ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत में इसका उपयोग किया जाता है), इसे सामान्यतः A के सुव्यवस्थित क्रम के सबसे छोटे क्रम प्रकार (यहां वॉन न्यूमैन ऑर्डिनल) के रूप में परिभाषित किया जाता है (कि प्रत्येक समुच्चय को सुव्यवस्थित किया जा सकता है)। दोनों सिद्धांतों में सामान्य प्रकार से रूचि के सिद्धांत के अनुसार सुव्यवस्थित किया जा सकता है)।
कार्डिनल संख्याओं पर प्राकृतिक क्रम को सुव्यवस्थित रूप में देखा जाता है: यह रिफ्लेक्सिव, एंटीसिमेट्रिक (अमूर्त कार्डिनल्स पर, जो अब उपलब्ध हैं) और ट्रांजिटिव है, ऊपर दिखाया गया है। यह रैखिक क्रम है जो रूचि के सिद्धांत से अनुसरण करता है: उचित प्रकारसे क्रमबद्ध दो समुच्चय और सुव्यवस्थित क्रम का प्रारंभिक खंड दूसरे के लिए समरूपी होगा, इसलिए समुच्चय की कार्डिनैलिटी दूसरे की तुलना में छोटी होगी। यह सुव्यवस्थित है जो रूचि के सिद्धांत से इसी प्रकार अनुसरण करता है।
प्रत्येक अनंत कार्डिनल के साथ, कई क्रम प्रकार सामान्य कारणों से जुड़े होते हैं (किसी भी समुच्चय सिद्धांत में)।
कैंटर का प्रमेय दिखाता है (दोनों सिद्धांतों में) कि अनंत कार्डिनल संख्याओं के मध्य गैर-तुच्छ अंतर हैं। जेडएफसी में, प्रमाणित होता है। एनएफयू में, कैंटर के प्रमेय का सामान्य रूप त्रुटिपूर्ण है (स्थिति A = V पर विचार करें), किन्तु कैंटर का प्रमेय त्रुटिपूर्ण टाइप किया गया कथन है। एनएफयू में प्रमेय का सही रूप है, जहाँ A के -तत्व उपसमुच्चय का समुच्चय है। दिखाता है कि समुच्चय की तुलना में कम सिंगलटन हैं (स्पष्ट आक्षेप से V को पूर्व ही देखा जा चुका है कि यह समुच्चय नहीं है)। यह वास्तव में एनएफयू + चॉइस में सिद्ध है (जहाँ कई हस्तक्षेप करने वाले कार्डिनलों के अस्तित्व का संकेत देता है; वहाँ अनेक, अनेक मूत्र तत्व हैं!) ऑर्डिनल्स पर T ऑपरेशन के अनुरूप कार्डिनल्स पर टाइप-रेज़िंग T ऑपरेशन को परिभाषित करें: ; यह कार्डिनल्स का बाहरी एंडोमोर्फिज्म है, जैसे कि ऑर्डिनल्स पर T ऑपरेशन, ऑर्डिनल्स का बाहरी एंडोमोर्फिज्म है।
समुच्चय A को केवल स्थिति में 'कैंटोरियन' कहा जाता है ; कार्डिनल इसे कैंटोरियन कार्डिनल भी कहा जाता है। समुच्चय A को 'दृढ़ता से कैंटोरियन' कहा जाता है (और इसका कार्डिनल भी दृढ़ता से कैंटोरियन होता है) केवल उस स्थिति में जब A पर सिंगलटन मानचित्र का प्रतिबंध होता है () समुच्चय है। दृढ़तापूर्वक कैंटोरियन समुच्चयों का सुव्यवस्थित क्रम सदैव दृढ़तापूर्वक कैंटोरियन क्रमसूचक होता है; यह सदैव कैंटोरियन समुच्चयों के सुव्यवस्थित क्रम के विषय में सत्य नहीं है (चूँकि कैंटोरियन समुच्चय का सबसे छोटा सुक्रमण कैंटोरियन होगा)। कैंटोरियन समुच्चय ऐसा समुच्चय है जो कैंटोर के प्रमेय के सामान्य रूप को संतुष्ट करता है।
दोनों सिद्धांतों में कार्डिनल अंकगणित के संचालन को समुच्चय-सैद्धांतिक रूप से प्रेरित प्रकार से परिभाषित किया गया है। कोई परिभाषित करना चाहेगा जैसा , और कोई इसे जेडएफसी में करता है, किन्तु कुराटोस्की युग्म का उपयोग करते समय नई नींव में बाधा होती है: परिभाषित करता है जैसा युग्म और उसके प्रक्षेपणों के मध्य 2 के प्रकार के विस्थापन के कारण, जिसका तात्पर्य कार्टेशियन उत्पाद और उसके कारकों के मध्य दो के प्रकार के विस्थापन से है। यह प्रमाणित करना सरल है कि उत्पाद सदैव उपस्थित रहता है (किन्तु इस पर ध्यान देने की आवश्यकता है क्योंकि T का व्युत्क्रम कुल नहीं है)।
कार्डिनल्स पर घातीय ऑपरेशन को परिभाषित करने के लिए आवश्यक प्रकार से T की आवश्यकता होती है: यदि A से B तक फलन के संग्रह के रूप में परिभाषित किया गया था, यह A या B से तीन प्रकार अधिक है, इसलिए इसे परिभाषित करना उचित है जैसा जिससे कि यह A या B के समान प्रकार का हो ( के स्थान पर टाइप-स्तरीय जोड़े के साथ)। इसका प्रभाव यह है कि घातांकीय संक्रिया आंशिक है: उदाहरण के लिए, अपरिभाषित है।जेडएफसी में परिभाषित करता है जैसा कठिनाई के बिना है।
घातीय ऑपरेशन कुल है और कैंटोरियन कार्डिनल्स पर बिल्कुल अपेक्षित व्यवहार करता है, क्योंकि T ऐसे कार्डिनल्स को ठीक करता है और यह दिखाना सरल है कि कैंटोरियन समुच्चयों के मध्य फलन स्पेस कैंटोरियन है (जैसे पावर समुच्चय, कार्टेशियन उत्पाद और अन्य सामान्य प्रकार के कंस्ट्रक्टर हैं)। इससे इस दृष्टिकोण को और प्रोत्साहन मिलता है कि न्यू फ़ाउंडेशन में मानक कार्डिनैलिटीज़ कैंटोरियन (वास्तव में, दृढ़ता से कैंटोरियन) कार्डिनैलिटी हैं, जैसे मानक ऑर्डिनल्स दृढ़ता से कैंटोरियन ऑर्डिनल्स प्रतीत होते हैं।
अब रूचि के स्वयंसिद्ध सहित कार्डिनल अंकगणित के सामान्य प्रमेयों को सिद्ध किया जा सकता है . स्थिति से प्रकार के स्तर पर क्रमित युग्म का अस्तित्व प्राप्त किया जा सकता है: के समान है संभवतः आवश्यकता है , जो कुराटोस्की जोड़ों के मध्य -से- पत्राचार द्वारा देखा जाएगा और डबल सिंगलटन : पुनः परिभाषित करें जैसा कि c ऐसा है कुराटोव्स्की से जुड़ा है: यह क्रमित युग्म की प्रकार-स्तरीय धारणा है।
गिनती का सिद्धांत और स्तरीकरण का विध्वंस
इसलिए एनएफयू में प्राकृतिक संख्याओं के दो भिन्न-भिन्न कार्यान्वयन हैं (चूँकि वे जेडएफसी में समान हैं): परिमित क्रमसूचक और परिमित कार्डिनल हैं। इनमें से प्रत्येक एनएफयू T ऑपरेशन (मूल रूप से वही ऑपरेशन) का समर्थन करता है। इसे प्रमाणित करना सरल है प्राकृतिक संख्या है यदि एनएफयू + इन्फिनिटी + चॉइस (और इसी प्रकार) में n प्राकृतिक संख्या है और प्रथम अनंत क्रमवाचक कैंटोरियन हैं) किन्तु इस सिद्धांत में यह प्रमाणित करना संभव नहीं है। चूँकि, सामान्य ज्ञान प्रदर्शित करता है कि यह सत्य होना चाहिए, और इसलिए इसे स्वयंसिद्ध के रूप में अपनाया जा सकता है:
- रोसेर का गणना का अभिगृहीत: प्रत्येक प्राकृतिक संख्या n के लिए, है।
इस स्वयंसिद्ध (और वास्तव में इसका मूल सूत्रीकरण) का स्वाभाविक परिणाम है।
- प्रत्येक प्राकृत संख्या n के लिए है।
एनएफयू में बिना गणना के सब कुछ सिद्ध किया जा सकता है।
काउंटिंग का परिणाम यह है कि N दृढ़ता से कैंटोरियन समुच्चय है (पुनः, यह समतुल्य प्रमाण है)।
दृढ़ता से कैंटोरियन समुच्चय के गुण
दृढ़ता से कैंटोरियन समुच्चय A तक सीमित किसी भी चर के प्रकार को संदर्भों को प्रतिस्थापित करके इच्छानुसार बढ़ाया या घटाया जा सकता है के सन्दर्भ में (उठाए गए प्रकार का; यह माना जाता है कि यह ज्ञात है कि A समुच्चय है; अन्यथा किसी को का तत्व कहना होगा इस प्रभाव को पाने के लिए) या ( प्रकार का निचला भाग) जहाँ सभी के लिए है, इसलिए स्तरीकरण के प्रयोजनों के लिए ऐसे चरों को प्रकार निर्दिष्ट करना आवश्यक नहीं है।
दृढ़ता से कैंटोरियन समुच्चय का कोई भी उपसमुच्चय दृढ़ता से कैंटोरियन होता है। दृढ़तापूर्वक कैंटोरियन समुच्चय का पावर समुच्चय दृढ़ता से कैंटोरियन होता है। दो दृढ़तापूर्वक कैंटोरियन समुच्चयों का कार्टेशियन उत्पाद दृढ़ता से कैंटोरियन है।
गणना के सिद्धांत का परिचय देने का तात्पर्य है कि प्रकारों को N या P(N), R (वास्तविकता का समुच्चय) या वास्तव में समुच्चय सिद्धांत के बाहर शास्त्रीय गणित में कभी भी विचार किए गए किसी भी समुच्चय तक सीमित चर को निर्दिष्ट करने की आवश्यकता नहीं है।
जेडएफसी में कोई समान घटना नहीं है। दृढ़ सिद्धांतों के लिए मुख्य न्यू फ़ाउंडेशन लेख देखें जिन्हें परिचित गणितीय वस्तुओं के मानक व्यवहार को प्रारम्भ करने के लिए एनएफयू से जोड़ा जा सकता है।
परिचित संख्या प्रणालियाँ: सकारात्मक परिमेय, परिमाण, और वास्तविक
धनात्मक भिन्नों को धनात्मक प्राकृतिक संख्याओं के युग्म के रूप में निरूपित करें (0 को बाहर रखा गया है): को युग्म द्वारा दर्शाया गया है। , बनाने के लिए संबंध का परिचय दें द्वारा परिभाषित है। यह सिद्ध है कि यह तुल्यता संबंध है: इस संबंध के अंतर्गत सकारात्मक परिमेय संख्याओं को सकारात्मक प्राकृतिक संख्याओं के युग्मों के समतुल्य वर्गों के रूप में परिभाषित करें। सकारात्मक परिमेय संख्याओं पर अंकगणितीय परिचालन और सकारात्मक परिमेय पर क्रम संबंध को प्राथमिक विद्यालय के जैसे ही परिभाषित किया गया है और अपेक्षित गुणों को प्रमाणित किया गया है (कुछ प्रयासों के साथ)।
बिना किसी सबसे बड़े तत्व के सकारात्मक परिमेय के गैर-रिक्त उचित प्रारंभिक खंडों के रूप में परिमाण (सकारात्मक वास्तविक) का प्रतिनिधित्व करें। परिमाणों पर जोड़ और गुणन की संक्रियाओं को परिमाणों के सकारात्मक तर्कसंगत तत्वों के तत्ववार जोड़ द्वारा कार्यान्वित किया जाता है। आदेश को समुच्चय समावेशन के रूप में प्रारम्भ किया गया है।
वास्तविक संख्याओं को अंतर परिमाण के रूप में निरूपित करें: औपचारिक रूप से कहें तो, वास्तविक संख्या युग्मों का तुल्यता वर्ग है तुल्यता संबंध के अनुसार परिमाण का द्वारा परिभाषित है। वास्तविक संख्याओं पर जोड़ और गुणा की संक्रियाओं को वैसे ही परिभाषित किया गया है जैसे कोई अंतर जोड़ने और गुणा करने के लिए बीजगणितीय नियमों से अपेक्षा करता है। क्रम का उपचार भी प्रारंभिक बीजगणित के समान ही है।
यह निर्माणों का संक्षिप्त रेखाचित्र है। ध्यान दें कि प्राकृतिक संख्याओं के निर्माण में अंतर को छोड़कर, जेडएफसी और न्यू फ़ाउंडेशन में निर्माण बिल्कुल समान हैं: चूंकि सभी चर दृढ़ता से कैंटोरियन समुच्चय तक सीमित हैं, इसलिए स्तरीकरण प्रतिबंधों के विषय में विचार करने की कोई आवश्यकता नहीं है। गिनती के सिद्धांत के बिना, इन निर्माणों की पूर्ण वर्णन में T के कुछ अनुप्रयोगों को प्रस्तुत करना आवश्यक हो सकता है।
समुच्चय के अनुक्रमित परिवारों पर संचालन
निर्माण के इस वर्ग में ऐसा प्रतीत होता है कि जेडएफसी को एनएफयू पर लाभ है: चूँकि एनएफयू में निर्माण स्पष्ट रूप से संभव हैं, स्तरीकरण से संबंधित कारणों से वे जेडएफसी की तुलना में अधिक समष्टि हैं।
इस पूर्ण खंड में प्रकार-स्तरीय क्रमित युग्म मान ली गई है। परिभाषित करना के रूप में है। कुराटोस्की युग्म का उपयोग करके सामान्य एन-टुपल की परिभाषा अधिक कठिन है, क्योंकि सभी अनुमानों के प्रकारों को समान रखने की आवश्यकता होती है, और n-ट्यूपल और उसके अनुमानों के मध्य प्रकार का विस्थापन n बढ़ने के साथ बढ़ता है। यहां, n-ट्यूपल का प्रकार उसके प्रत्येक प्रक्षेपण के समान है।
सामान्य कार्टेशियन उत्पादों को इसी प्रकार परिभाषित किया गया है:
जेडएफसी में परिभाषाएँ समान हैं किन्तु स्तरीकरण के विषय में कोई चिंता नहीं है (यहाँ दिया गया समूहीकरण सामान्यतः उपयोग किए जाने वाले समूह के विपरीत है, किन्तु इसे सरलता से ठीक किया जा सकता है)।
अब अनंत कार्तीय गुणनफल पर विचार करें I जेडएफसी में, इसे डोमेन के साथ सभी फलन f के समुच्चय के रूप में परिभाषित किया गया है (जहाँ A को स्पष्ट रूप से प्रत्येक i को ले जाने वाले फलन के रूप में समझा जाता है )।
एनएफयू में, इसके प्रकार पर ध्यान देने की आवश्यकता है। समुच्चय I दिया गया है और मूल्यवान फलन A समुच्चय किया गया है जिसका मान में लिखा है, परिभाषित करना डोमेन के साथ सभी फलन f के समुच्चय के रूप में है: नोटिस जो हमारे सम्मेलन के कारण स्तरीकृत किया गया है कि A सूचकांकों के सिंगलटन पर मान वाला फलन है। ध्यान दें कि समुच्चय के सबसे बड़े परिवारों (जिन्हें सिंगलटन के समुच्चय द्वारा अनुक्रमित नहीं किया जा सकता) में इस परिभाषा के अनुसार कार्टेशियन उत्पाद नहीं होंगे। आगे ध्यान दें कि समुच्चय सूचकांक समुच्चय I के समान प्रकार के हैं (क्योंकि इसके तत्वों से प्रकार अधिक है); उत्पाद, डोमेन I के साथ फलन के समुच्चय के रूप में (इसलिए I के समान प्रकार पर) प्रकार उच्चतर है (प्रकार-स्तरीय आदेशित युग्म मानते हुए)।
अब उत्पाद पर विचार करें। इन समुच्चयों के कार्डिनल्स की कार्डिनैलिटी || कार्डिनल्स से ऊँचा है, इसलिए कार्डिनल्स के अनंत उत्पाद की सही परिभाषा है (चूँकि T का व्युत्क्रम पूर्ण नहीं है, यह संभव है कि इसका अस्तित्व ही न हो)।
समुच्चय के परिवारों और कार्डिनल्स के परिवारों के योग के असंयुक्त संघों के लिए इसे दोहराएं। फिर से, A को डोमेन के साथ समुच्चय-वैल्यू फलन होने दें: के लिए है असंयुक्त संघ समुच्चय है। यह समुच्चय के समान ही का प्रकार है।
योग की सही परिभाषा इस प्रकार है, चूँकि किसी प्रकार का विस्थापन नहीं है।
इंडेक्स समुच्चय को संभालने के लिए इन परिभाषाओं का विस्तार करना संभव है जो सिंगलटन के समुच्चय नहीं हैं, किन्तु यह अतिरिक्त प्रकार के स्तर का परिचय देता है और अधिकांश उद्देश्यों के लिए इसकी आवश्यकता नहीं होती है।
जेडएफसी में असंयुक्त संघ को परिभाषित करें जैसा , जहाँ संक्षिप्तीकरण है।
क्रमपरिवर्तन विधियों का उपयोग इस प्रमाण के एनएफयू के साथ सापेक्ष स्थिरता दिखाने के लिए किया जा सकता है कि प्रत्येक दृढ़ता से कैंटोरियन समुच्चय A के लिए समान आकार का समुच्चय I होता है जिसके तत्व स्व-सिंगलटन होते हैं: I में प्रत्येक i के लिए होता है।
संचयी पदानुक्रम
जेडएफसी में, संचयी पदानुक्रम को निम्नलिखित नियमों को पूर्ण करने वाले समुच्चयों के क्रमिक-अनुक्रमित अनुक्रम के रूप में परिभाषित करें: ; ; सीमा क्रमसूचक के लिए है। यह ट्रांसफ़िनिट रिकर्सन द्वारा निर्माण का उदाहरण है। समुच्चय A की श्रेणी बताई गई है यदि और केवल है। समुच्चय के रूप में श्रेणियों का अस्तित्व प्रत्येक सीमा चरण पर प्रतिस्थापन के सिद्धांत पर निर्भर करता है (ज़र्मेलो समुच्चय सिद्धांत में पदानुक्रम का निर्माण नहीं किया जा सकता है); नींव के सिद्धांत के अनुसार, प्रत्येक समुच्चय किसी न किसी श्रेणी का होता है।
कार्डिनल कहा जाता है।
यह निर्माण एनएफयू में नहीं किया जा सकता क्योंकि पावर समुच्चय ऑपरेशन एनएफयू में समुच्चय फलन नहीं है (स्तरीकरण के प्रयोजनों के लिए A से अधिक है)।
कार्डिनल्स का क्रम एनएफयू में प्रस्तावित किया जा सकता है। याद करें कि को इस प्रकार परिभाषित किया गया है कि जहाँ आकार 2 का सुविधाजनक समुच्चय है, और है। मान लीजिये कि कार्डिनल्स का सबसे छोटा समुच्चय है जिसमें सम्मिलित है (प्राकृतिक संख्याओं के समुच्चय की कार्डिनैलिटी), में कार्डिनल सम्मिलित है जब भी इसमें सम्मिलित है, और जो कार्डिनल्स के समुच्चय की सर्वोच्चता के अनुसार विवृत है।
किसी भी सुव्यवस्थित क्रम के क्रमिक अनुक्रमण के लिए सम्मेलन के क्षेत्र के तत्व x के रूप में परिभाषित किया गया है, ऐसा है कि प्रतिबंध का आदेश प्रकार से तक है; फिर को परिभाषित करें, सूचकांक वाले तत्व के रूप में के तत्वों पर प्राकृतिक क्रम में है। कार्डिनल सूचकांक वाला तत्व है, सभी अनंत कार्डिनल्स पर प्राकृतिक क्रम में (जो सुव्यवस्थित है, ऊपर देखें)। ध्यान दें कि इस परिभाषा से तुरंत अनुसरण करता है। इन सभी निर्माणों में, ध्यान दें कि सूचकांक का प्रकार , के प्रकार से दो अधिक (प्रकार-स्तरीय क्रमित युग्म के साथ) है।
जेडएफसी के प्रत्येक समुच्चय A में सकर्मक समापन होता है (सभी सकर्मक समुच्चयों का प्रतिच्छेदन जिसमें A सम्मिलित है)। नींव के सिद्धांत के अनुसार, A के सकर्मक समापन के लिए सदस्यता संबंध का प्रतिबंध उचित प्रकार से स्थापित संबंध है। संबंध या तो रिक्त है या इसका शीर्ष तत्व A है, इसलिए यह संबंध समुच्चय चित्र है। जेडएफसी में यह सिद्ध किया जा सकता है कि प्रत्येक समुच्चय चित्र कुछ के लिए समरूपी है।
इससे ज्ञात होता है कि ( प्रारंभिक खंड) संचयी पदानुक्रम का अध्ययन समुच्चय चित्रों के समरूपता वर्गों पर विचार करके किया जा सकता है। ये समरूपता वर्ग समुच्चय हैं और नई नींव में समुच्चय बनाते हैं। समुच्चय चित्रों के समरूपता वर्गों पर सदस्यता के अनुरूप प्राकृतिक समुच्चय संबंध है: यदि समुच्चय चित्र है, इसके समरूपता वर्ग के लिए लिखे और को परिभाषित करें, यदि धारण किये हुए हो y के शीर्ष तत्व y के अंतर्गत प्रीइमेज के तत्वों में से नीचे की ओर बंद होने के लिए y के प्रतिबंध का समरूपता वर्ग है। संबंध E समुच्चय संबंध है, और यह प्रमाणित करना सरल है कि यह उचित प्रकार से स्थापित और विस्तारित है। यदि E की परिभाषा भ्रमित करने वाली है, तो इस अवलोकन सामान्य समुच्चय सिद्धांत में से यह निष्कर्ष निकाला जा सकता है कि यह ठीक उस संबंध से प्रेरित है जो A से जुड़े समुच्चय चित्र और B से जुड़े समुच्चय चित्र के मध्य होता है।
समुच्चय चित्रों के समरूपता वर्गों पर T ऑपरेशन होता है, जो ऑर्डिनल्स पर T ऑपरेशन के अनुरूप होता है: यदि x समुच्चय चित्र है, तो यह है है। परिभाषित करना जैसा , यह है।
इस सिम्युलेटेड समुच्चय सिद्धांत के लिए विस्तारशीलता का सिद्धांत E की विस्तारशीलता से अनुसरण करता है। इसकी सुगठितता से नींव का सिद्धांत अनुसरण करता है। यह प्रश्न बना हुआ है कि स्वयंसिद्ध E की क्या समझ हो सकती है। समुच्चय चित्रों के किसी भी संग्रह पर विचार करें (समुच्चय चित्रों का संग्रह जिनके क्षेत्र पूर्ण रूप से सिंगलटन से बने हैं)। प्रत्येक के पश्चात से x से प्रकार अधिक है ( प्रकार-स्तर क्रमित युग्म का उपयोग करके), प्रत्येक तत्व को प्रतिस्थापित करता है। प्रत्येक क्षेत्र का के साथ संग्रह परिणामस्वरूप समुच्चय चित्रों का संग्रह मूल संग्रह के समरूप होता है किन्तु उनके क्षेत्र असंबद्ध होते हैं। इन समुच्चय का मिलन नए शीर्ष तत्व के साथ समुच्चय चित्र उत्पन्न करते हैं जिसका समरूपता प्रकार E के अंतर्गत इसकी पूर्वछवियों के रूप में मूल संग्रह के तत्व होंगे। अर्थात्, समरूपता प्रकार के किसी भी संग्रह के लिए , समरूपता प्रकार है, जिसका पूर्वचित्र E के अंतर्गत संग्रह है।
विशेष रूप से, समरूपता प्रकार [v] होगा जिसकी E के अंतर्गत पूर्वछवि सभी T[x] (T[v] सहित का संग्रह है। चूँकि T[v] E v और E उचित प्रकार से स्थापित है, यह ऊपर और न्यू फ़ाउंडेशन लेख में विचार किए गए बुराली-फोर्टी विरोधाभास के समाधान जैसा दिखता है, और वास्तव में सभी उचित प्रकार से स्थापित समुच्चयों के समुच्चय के मिरिमैनॉफ के विरोधाभास का स्थानीय समाधान है।
समुच्चय चित्रों के समरूपता वर्गों की श्रेणी होती हैं जैसे सामान्य समुच्चय सिद्धांत में समुच्चय की श्रेणी होती हैं। समुच्चय चित्रों A के किसी भी संग्रह के लिए, S(A) को समुच्चय चित्रों के सभी समरूपता वर्गों के समुच्चय के रूप में परिभाषित करें जिनकी E के अनुसार प्रीइमेज A का उपसमुच्चय है; यदि A का प्रत्येक उपसमुच्चय E के अंतर्गत पूर्वछवि है, तो A को पूर्ण समुच्चय कहा जाता है। श्रेणियों का संग्रह सबसे छोटा संग्रह है जिसमें रिक्त समुच्चय होता है और S ऑपरेशन (जो पावर समुच्चय निर्माण है) और इसके उपसंग्रहों के संघों के अनुसार विवृत होता है। यह सिद्ध करना सरल है (सामान्य समुच्चय सिद्धांत के जैसे) कि समावेशन द्वारा श्रेणियों को सुव्यवस्थित किया जाता है, और इसलिए इस सुव्यवस्थित क्रम में श्रेणियों का सूचकांक होता है: सूचकांक के साथ श्रेणी को देखें। यह विषय सिद्ध है कि पूर्ण श्रेणी के लिए है। संबंध E के साथ पूर्ण श्रेणियों (जो प्रथम अपूर्ण श्रेणी होगी) का मिलन ज़र्मेलो-शैली समुच्चय सिद्धांत के ब्रह्मांड के प्रारंभिक खंड जैसा दिखता है (आवश्यक नहीं कि जेडएफसी के पूर्ण ब्रह्मांड के जैसे हो क्योंकि यह पर्याप्त बड़ा नहीं हो सकता है)। यह सिद्ध है कि यदि प्रथम अपूर्ण श्रेणी है, तो पूर्ण श्रेणी है और इस प्रकार है। तो बाहरी ऑटोमोर्फिज्म T के साथ संचयी पदानुक्रम की श्रेणी है जो श्रेणी को नीचे की ओर ले जा रही है, बिल्कुल संचयी पदानुक्रम में श्रेणी के गैर-मानक प्रारूप की स्थिति जिसके अनुसार न्यू फ़ाउंडेशन लेख में एनएफयू का प्रारूप बनाया गया है। सत्यापित करने के लिए प्रौद्योगिकी विवरण हैं, किन्तु इस संरचना में न केवल जेडएफसी के खंड की अन्यथा एनएफयू की भी व्याख्या है। को के रूप में परिभाषित किया गया है: यह संबंध समुच्चय संबंध नहीं है, किन्तु इसके तर्कों के मध्य सामान्य सदस्यता संबंध के समान ही विस्थापन होता है।
तो समुच्चय के संचयी पदानुक्रम के एनएफयू के अंदर प्राकृतिक निर्माण होता है जो ज़र्मेलो-शैली समुच्चय सिद्धांत में एनएफयू के प्रारूप के प्राकृतिक निर्माण को आंतरिक करता है।
न्यू फ़ाउंडेशन लेख में वर्णित कैंटोरियन समुच्चय के एक्सिओम के अनुसार, सदस्यता के रूप में E संबंध के साथ समुच्चय चित्रों के आइसोमोर्फिज्म वर्गों के समुच्चय का दृढ़ता से कैंटोरियन भाग जेडएफसी का (उचित वर्ग) प्रारूप बन जाता है (जिसमें n-महलो कार्डिनल्स होते हैं; प्रत्येक n के लिए; एनएफयू का यह विस्तार जेडएफसी से अधिक दृढ़ है)। यह उचित वर्ग प्रारूप है क्योंकि दृढ़ता से कैंटोरियन समरूपता वर्ग समुच्चय नहीं बनाते हैं।
एनएफयू के किसी भी प्रारूप से ऐसा प्रारूप बनाने के लिए क्रमपरिवर्तन विधियों का उपयोग किया जा सकता है जिसमें प्रत्येक दृढ़ता से कैंटोरियन आइसोमोर्फिज्म प्रकार के समुच्चय चित्रों को वास्तव में समुच्चय के सकर्मक समापन के लिए वास्तविक सदस्यता संबंध के प्रतिबंध के रूप में अनुभूत किया जाता है।
यह भी देखें
संदर्भ
- Keith Devlin, 1994. The Joy of Sets, 2nd ed. Springer-Verlag.
- Holmes, Randall, 1998. Elementary Set Theory with a Universal Set. Academia-Bruylant. The publisher has graciously consented to permit diffusion of this introduction to एनएफयू via the web. Copyright is reserved.
- Potter, Michael, 2004. Set Theory and its Philosophy, 2nd ed. Oxford Univ. Press.
- Suppes, Patrick, 1972. Axiomatic Set Theory. Dover.
- Tourlakis, George, 2003. Lectures in Logic and Set Theory, Vol. 2. Cambridge Univ. Press.
बाहरी संबंध
- Metamath: A web site devoted to an ongoing derivation of mathematics from the axioms of जेडएफसी and first-order logic.
- Stanford Encyclopedia of Philosophy:
- Quine's New Foundations—by Thomas Forster.
- Alternative axiomatic set theories—by Randall Holmes.
- Randall Holmes: New Foundations Home Page