निर्णय नियम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{about|निर्णय सिद्धांत|कंप्यूटर विज्ञान में उपयोग|डिसिजन ट्री#निर्णय नियम}}
[[निर्णय सिद्धांत]] में, '''निर्णय नियम''' एक फलन है जो एक उचित कार्रवाई के लिए एक अवलोकन को माप करता है। निर्णय नियम सांख्यिकी और [[अर्थशास्त्र]] के सिद्धांत में एक महत्वपूर्ण भूमिका निभाते हैं, और [[खेल सिद्धांत|गेम सिद्धांत]] में एक रणनीति (गेम सिद्धांत) की अवधारणा से निकटता से संबंधित हैं।
[[निर्णय सिद्धांत]] में, निर्णय नियम एक फ़ंक्शन है जो एक उचित कार्रवाई के लिए एक अवलोकन को मैप करता है। निर्णय नियम सांख्यिकी और [[अर्थशास्त्र]] के सिद्धांत में एक महत्वपूर्ण भूमिका निभाते हैं, और [[खेल सिद्धांत]] में एक रणनीति (गेम सिद्धांत) की अवधारणा से निकटता से संबंधित हैं।


किसी निर्णय नियम की उपयोगिता का मूल्यांकन करने के लिए, विभिन्न अवस्थाओं के अनुसार प्रत्येक कार्रवाई के परिणाम का विवरण देने वाला हानि फ़ंक्शन होना आवश्यक है।
किसी निर्णय नियम की उपयोगिता का मूल्यांकन करने के लिए, विभिन्न अवस्थाओं के अनुसार प्रत्येक कार्रवाई के परिणाम का विवरण देने वाला लॉस फलन होना आवश्यक है।


== औपचारिक परिभाषा ==
== औपचारिक परिभाषा ==
[[संभाव्यता स्थान]] <math> \scriptstyle (\mathcal{X},\Sigma, P_\theta)</math> पर एक अवलोकन योग्य यादृच्छिक वेरिएबल X को देखते हुए, एक पैरामीटर θ ∈ Θ द्वारा निर्धारित किया गया है, और संभावित क्रियाओं का सेट, (नियतात्मक) 'निर्णय नियम' फ़ंक्शन ''δ'' :<math>\scriptstyle\mathcal{X}</math>→ए है।
[[संभाव्यता स्थान]] <math> \scriptstyle (\mathcal{X},\Sigma, P_\theta)</math> पर एक अवलोकन योग्य यादृच्छिक वेरिएबल X को देखते हुए, एक पैरामीटर θ ∈ Θ द्वारा निर्धारित किया गया है, और संभावित क्रियाओं का समुच्चय, (नियतात्मक) 'निर्णय नियम' फलन ''δ'':<math>\scriptstyle\mathcal{X}</math>→''A'' है।


== निर्णय नियमों के उदाहरण ==
== निर्णय नियमों के उदाहरण ==
* अनुमानक एक निर्णय नियम है जिसका उपयोग किसी पैरामीटर का अनुमान लगाने के लिए किया जाता है। इस स्थिति में क्रियाओं का सेट पैरामीटर स्थान है, और एक हानि फ़ंक्शन पैरामीटर के वास्तविक मूल्य और अनुमानित मूल्य के बीच विसंगति की लागत का विवरण देता है। उदाहरण के लिए, एकल अदिश पैरामीटर <math>\theta</math> वाले रैखिक मॉडल में, <math>\theta</math> का डोमेन <math>\mathcal{R}</math> (सभी वास्तविक संख्याएं) तक विस्तारित हो सकता है। कुछ देखे गए डेटा से <math>\theta</math> का अनुमान लगाने के लिए एक संबद्ध निर्णय नियम हो सकता है, "<math>\theta</math> का मान चुनें, मान लें कि कुछ देखी गई प्रतिक्रियाओं और संबंधित सहसंयोजकों से अनुमानित प्रतिक्रियाओं के बीच वर्ग त्रुटि का योग कम हो जाता है, यह देखते हुए कि आपने <math>\hat{\theta}</math> चुना है । इस प्रकार, लागत फ़ंक्शन वर्ग त्रुटि का योग है, और किसी का लक्ष्य इस लागत को कम करना होगा। एक बार लागत फ़ंक्शन परिभाषित किया गया है, उदाहरण के लिए, कुछ अनुकूलन एल्गोरिदम का उपयोग करके, <math>\hat{\theta}</math> को चुना जा सकता है।
* अनुमानक एक निर्णय नियम है जिसका उपयोग किसी पैरामीटर का अनुमान लगाने के लिए किया जाता है। इस स्थिति में क्रियाओं का समुच्चय पैरामीटर स्थान है, और एक लॉस फलन पैरामीटर के वास्तविक मान और अनुमानित मान के बीच विसंगति की कास्ट का विवरण देता है। उदाहरण के लिए, एकल अदिश पैरामीटर <math>\theta</math> वाले रैखिक मॉडल में, <math>\theta</math> का डोमेन <math>\mathcal{R}</math> (सभी वास्तविक संख्याएं) तक विस्तारित हो सकता है। कुछ देखे गए डेटा से <math>\theta</math> का अनुमान लगाने के लिए एक संबद्ध निर्णय नियम हो सकता है, "<math>\theta</math> का मान चुनें, मान लें कि कुछ देखी गई प्रतिक्रियाओं और संबंधित सहसंयोजकों से अनुमानित प्रतिक्रियाओं के बीच वर्ग त्रुटि का योग कम हो जाता है, यह देखते हुए कि आपने <math>\hat{\theta}</math> चुना है । इस प्रकार, कास्ट फलन वर्ग त्रुटि का योग है, और किसी का लक्ष्य इस कास्ट को कम करना होगा। एक बार कास्ट फलन परिभाषित किया गया है, उदाहरण के लिए, कुछ अनुकूलन एल्गोरिदम का उपयोग करके, <math>\hat{\theta}</math> को चुना जा सकता है।
* [[प्रतिगमन विश्लेषण]] और [[सांख्यिकीय वर्गीकरण]] मॉडल में नमूना [[भविष्यवाणी|पूर्वानुमान]] से बाहर।
* [[प्रतिगमन विश्लेषण]] और [[सांख्यिकीय वर्गीकरण]] मॉडल में नमूना [[भविष्यवाणी|पूर्वानुमान]] से बाहर है।


== यह भी देखें ==
== यह भी देखें ==
Line 17: Line 16:
*[[स्कोरिंग नियम]]
*[[स्कोरिंग नियम]]


श्रेणी:निर्णय सिद्धांत
[[Category: Machine Translated Page]]
[[Category:Created On 26/07/2023]]
[[Category:Created On 26/07/2023]]
[[Category:Machine Translated Page]]

Latest revision as of 10:54, 14 August 2023

निर्णय सिद्धांत में, निर्णय नियम एक फलन है जो एक उचित कार्रवाई के लिए एक अवलोकन को माप करता है। निर्णय नियम सांख्यिकी और अर्थशास्त्र के सिद्धांत में एक महत्वपूर्ण भूमिका निभाते हैं, और गेम सिद्धांत में एक रणनीति (गेम सिद्धांत) की अवधारणा से निकटता से संबंधित हैं।

किसी निर्णय नियम की उपयोगिता का मूल्यांकन करने के लिए, विभिन्न अवस्थाओं के अनुसार प्रत्येक कार्रवाई के परिणाम का विवरण देने वाला लॉस फलन होना आवश्यक है।

औपचारिक परिभाषा

संभाव्यता स्थान पर एक अवलोकन योग्य यादृच्छिक वेरिएबल X को देखते हुए, एक पैरामीटर θ ∈ Θ द्वारा निर्धारित किया गया है, और संभावित क्रियाओं का समुच्चय, (नियतात्मक) 'निर्णय नियम' फलन δ:A है।

निर्णय नियमों के उदाहरण

  • अनुमानक एक निर्णय नियम है जिसका उपयोग किसी पैरामीटर का अनुमान लगाने के लिए किया जाता है। इस स्थिति में क्रियाओं का समुच्चय पैरामीटर स्थान है, और एक लॉस फलन पैरामीटर के वास्तविक मान और अनुमानित मान के बीच विसंगति की कास्ट का विवरण देता है। उदाहरण के लिए, एकल अदिश पैरामीटर वाले रैखिक मॉडल में, का डोमेन (सभी वास्तविक संख्याएं) तक विस्तारित हो सकता है। कुछ देखे गए डेटा से का अनुमान लगाने के लिए एक संबद्ध निर्णय नियम हो सकता है, " का मान चुनें, मान लें कि कुछ देखी गई प्रतिक्रियाओं और संबंधित सहसंयोजकों से अनुमानित प्रतिक्रियाओं के बीच वर्ग त्रुटि का योग कम हो जाता है, यह देखते हुए कि आपने चुना है । इस प्रकार, कास्ट फलन वर्ग त्रुटि का योग है, और किसी का लक्ष्य इस कास्ट को कम करना होगा। एक बार कास्ट फलन परिभाषित किया गया है, उदाहरण के लिए, कुछ अनुकूलन एल्गोरिदम का उपयोग करके, को चुना जा सकता है।
  • प्रतिगमन विश्लेषण और सांख्यिकीय वर्गीकरण मॉडल में नमूना पूर्वानुमान से बाहर है।

यह भी देखें